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Abstract. Relevant logic is a proper subset of classical logic. It does not include among

its theorems any of

positive paradox A → (B → A)

mingle A → (A → A)

linear order (A → B) ∨ (B → A)

unrelated extremes (A ∧ A) → (B ∨ B)

This article shows that those four formulas have different effects when added to relevant

logic, and then lists many formulas that have the same effect as positive paradox or mingle.
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1. Introduction

This paper investigates some extensions of relevant logic; results are sum-
marized at the beginning of Section 3. All results in this article refer to
propositional logic; we will not consider predicate logic. Classical reasoning
will be used for the metalogic throughout this paper. Also, our structural
rules will be classical — i.e., in a derivation of {λ1, λ2, . . . , λn} ` µ, the
hypothesis λi’s may be used in any order, and each λi may be used once, or
more than once, or not at all.

Since relevant logic includes modus ponens, from any theorem of impli-
cation ` P → Q we easily obtain an inference rule P ` Q; we shall refer
to that as the inferential corollary of ` P → Q. But the corollary may
be strictly weaker, as relevant logic does not obey the classical Deduction
Theorem. For instance, among the formulas below, 26 is provable in relevant
logic but 75 is not, though 26 is the inferential corollary of 75.

The author is grateful to Robert K. Meyer for his assistance.

2. Relevant logic

By relevant logic we shall mean the propositional logic given by the following
two assumed inference rules:
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1. {A, A → B} ` B (modus ponens)

2. {A, B} ` A ∧ B (adjunction)

and twelve axiom schemes:

3. ` A → [(A → B) → B] (assertion)

4. ` [A → (A → B)] → (A → B) (contraction)

5. ` (A → B) → [(B → C) → (A → C)] (suffixing)

6. ` (A ∧ B) → A (∧-elimination)

7. ` (A ∧ B) → B (∧-elimination)

8. ` A → (A ∨ B) (∨-introduction)

9. ` B → (A ∨ B) (∨-introduction)

10. ` [(A → B) ∧ (A → C)] → [A → (B ∧ C)] (∧-introduction)

11. ` [(B → A) ∧ (C → A)] → [(B ∨ C) → A] (∨-elimination)

12. ` [A ∧ (B ∨ C)] → [(A ∧ B) ∨ C] (distributive)

13. ` (A → B ) → (B → A ) (contrapositive)

14. ` A → A (double negation)

A thorough introduction to relevant logic — including other, equivalent ax-
iomatizations — can be found in [1] or [3].

For later reference, we also state (without proof) some of the basic theo-
rems and inference rules that can be proved in relevant logic. The following
list is not intended to be exhaustive in any way; it merely is intended to
supply a modicum of intuition and to serve the needs of later parts of this
article. We take P ↔ Q as an abbreviation for (P → Q) ∧ (Q → P ).

15. ` A → A (identity)

16. {A → B, B → C} ` A → C (transitive)

17. A → (B → C) ` B → (A → C) (permutation, inferential)

18. A → B ` (B → C) → (A → C) (suffixing, inferential)

19. ` (A → B) → [(C → A) → (C → B)] (prefixing)

20. A → B ` (C → A) → (C → B) (prefixing, inferential)

21. [(A → B) → B] → B ` A → B (variant of contraction)

22. {A→B, A→C} ` A→(B ∧ C) (∧-introduction, inferential)
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23. {B→A, C→A} ` (B ∨ C)→A (∨-elimination, inferential)

24. ` (A ∧ B) ↔ (B ∧ A) and ` (A ∨ B) ↔ (B ∨ A) (commutative)

25. ` A → (A ∧ A) and ` (A ∨ A) → A (idempotent)

26. A → B ` (A ∧ C) → (B ∧ C) (∧-suffixing)

27. A → B ` (A ∨ C) → (B ∨ C) (∨-suffixing)

28. ` [A ∧ (A → B)] → B (conjunctive detachment)

29. ` A → A (converse of double negation)

30. ` A∨B ↔ (A∧B), ` A∧B ↔ (A∨B) (De Morgan’s Laws)

31. ` (
A → A

) → A (reductio)

32. {A→B, A→B} ` A (proof by contradiction, inferential)

33. {A→B, A→B} ` B (proof by cases, inferential)

34. ` A ∨ A (excluded middle)

35. {B → C, A → C} ` (A → B) → C (mixing inference)

36. ` (A → B) → (A ∨ B) (disjunctive consequence)

37. ` [A → (B → C)] ↔
[
A → B → C

]
(basic cotenability)

Using relevant logic, we can also prove this substitution principle:

Let A and A′ be two formulas that satisfy ` A ↔ A′. Let X be
a formula in which A appears at least once as a subformula, and
let X ′ be the formula obtained from X by replacing one of the
occurrences of subformula A with A′. Then ` X ↔ X ′.

For instance, A and A can be used interchangeably.
The proofs given in the remainder of this paper are only sketches; for

brevity we shall omit the most obvious steps. In particular, we shall freely
use double negation and its converse (14, 29), identity (15), transitivity
(16), commutativity (24), excluded middle (34), and substitution, sometimes
without explicitly mentioning them.

3. A scale of irrelevancies

We now consider these five additions to relevant logic:
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positive paradox A → (B → A)
mingle A → (A → A)

linear order (A → B) ∨ (B → A)
unrelated extremes (A ∧ A) → (B ∨ B)

no addition at all —

It is well known that adding positive paradox yields classical logic. Adding
mingle yields a logic known as RM (for “relevant plus mingle”). Making no
addition at all yields just relevant logic, included in the list for comparison.

In this section, we will show that each of those additions is stronger than
the one below it. For instance, if we add mingle to relevant logic as an
axiom scheme, then linear order becomes provable; but adding linear order
does not make mingle provable. (This scale of five levels is not intended to
be exhaustive in any respect; it simply contains the five levels that were of
greatest interest to the author.) In Sections 4 and 5 we will investigate an
assortment of equivalents of mingle and positive paradox.

Positive paradox yields mingle. Obvious.

Mingle does not yield positive paradox. The logic RM can be characterized
by the following semantics, sometimes known as “Sugihara’s matrix.” For
semantic values use the integers, with 0, 1, 2, 3, . . . true and −1,−2,−3, . . .
false. Evaluate formulas by these rules:

A ∨ B = max{A,B}, A ∧ B = min{A,B}, A = −A,

A → B =
{

max{−A,B} if A ≤ B,
min{−A,B} if A > B.

It is fairly simple to verify that this interpretation makes tautological (i.e.,
always true) all the axioms of relevant logic, plus mingle, and also makes
both of the assumed inference rules of relevant logic truth-preserving. Hence
every theorem of RM is tautological in this interpretation. But positive
paradox is not tautological. (It can also be shown that every tautology of
this interpretation is a theorem of RM, but that is considerably harder; a
proof can be found in [1].)

Mingle yields linear order. Here we borrow from Section 4 the fact that
mingle and formula 53 are equivalent; thus we may assume ` A → B →
(B → A). On the other hand, we have A → B ∨ (A → B) as an instance of
34. Combine those using 27 to obtain linear order.
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Linear order does not yield mingle. That is shown by the following inter-
pretation. Let −2 be false and let −1,+1,+2 be true values. Define

A ∨ B = max{A,B}, A ∧ B = min{A,B}, A = −A,

and define implication by this table:

A → B B = −2 B = −1 B = +1 B = +2
A = −2 +2 +2 +2 +2
A = −1 −2 −1 +1 +2
A = +1 −2 −2 −1 +2
A = +2 −2 −2 −2 +2

It is not hard to verify that this matrix is sound for the axioms and inference
rules of relevant logic as well as linear order, but not mingle.

We remark that this interpretation falsifies A ` A → (A → A), the
inferential corollary of 46; but it makes valid (A → B) → A ` A, the
inferential corollary of 68.

Linear order yields unrelated extremes. Abbreviate α = A ∧ A and β =
B∧B. Then we also have α = A∨A and β = B∨B, by De Morgan’s Laws.
Both α and β are theorems of relevant logic, and what we want to prove is
α → β.

step formula(s) reason
[1] α → A, β → B ∧-elimination (6)
[2] A → α, B → β ∨-introduction (8)
[3] α → α, β → β [1], [2], transitive (16)
[4] (β → α) → (α → β) contrapositive (13)
[5] (α → β) → (α → β) [3], prefixing (20)
[6] α → [(α → β) → β ] [5], permutation (17)
[7] α → [(α → β) → β ] [3],[6], transitive (16)
[8] α → [(β → α) → β ] [7],[4], suffixing, prefixing
[9] (β → α) → (α → β) [8], permutation (17)

[10] (α → β) → (α → β) identity (15)
[11] (α → β) ∨ (β → α) linear order
[12] α → β [9], [10], [11], ∨-elimination (23)

Unrelated extremes does not yield linear order. The following interpretation
is known as “KR” in some of the literature. Let Ω = {1, 2}; we use the
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subsets of Ω as semantic values. Take false values ∅, {1} and true values
{2}, {1, 2}. Define

A ∨ B = A ∪ B, A ∧ B = A ∩ B, A = Ω \ A.

Implication will be interpreted as follows:

A → B B = ∅ B = {1} B = {2} B = {1, 2}
A = ∅ {1, 2} {1, 2} {1, 2} {1, 2}
A = {1} ∅ {2} ∅ {1, 2}
A = {2} ∅ {1} {2} {1, 2}
A = {1, 2} ∅ ∅ ∅ {1, 2}

It is not hard to verify that this matrix is sound for the axioms and inference
rules of relevant logic as well as unrelated extremes, but not linear order.

We remark that this matrix also makes tautological the formulas A →
(B ∨B) and (A∧A) → B, both stronger than unrelated extremes; thus nei-
ther of those yields linear order. Also, this matrix makes valid the inference
rules A ` A → (A → A) and {A, A ∨ B} ` B, so those do not yield linear
order; those are the inferential corollaries of 46 and 71 respectively.

Relevant logic does not yield unrelated extremes. Belnap [2] showed sound-
ness of relevant logic in a certain 8-valued semantics with this interesting
property: If P → Q is a tautology of Belnap’s semantics, then the formulas
P and Q must share at least one propositional variable symbol; P and Q can-
not be unrelated. Thus (for instance) the formula scheme (A∧A) → (B∨B)
cannot be a theorem scheme in relevant logic.

4. Equivalents of mingle

We will show that mingle (formula 38) is equivalent to the other formulas
and inference rules listed below. The list is not intended to be exhaustive in
any formal sense. Members of this list were selected for their simplicity and
their appeal to the author’s intuition.

38. ` A → (A → A)

39. ` (A → B) → [A → (B → B)]

40. A → B ` A → (B → B)

41. ` (A → C) → {
(B → C) → [

A → (B → C)
]}

42. A → C ` (B → C) → [
A → (B → C)

]
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43. {A → C, B → C} ` A → (B → C) (Remark: compare with 35)

44. ` (A → B) → [
A → (A → B)

]
(Remark: compare with 4)

45. A → B ` A → (A → B)

46. ` A → (A → (A → A))

47. ` A → (A → A)

48. ` A → (A → A)

49. ` A → (A → A) (Remark: compare with 31)

50. ` (A ∧ B) → (A → B) (Remark: compare with 72)

51.
{
A,B

} ` A → B

52. ` A → A → (B → B)

53. ` A → B → (B → A)

54. A → B ` B → A

55. A ` A → A

56. ` A → A → (A → A)

57. ` A → [A → (A → A)].

We will prove the equivalences in this order:

42 ⇒ 43 ⇒ 40 49 ⇒ 50 ⇒ 51 ⇒ 52
⇑ ⇓ ⇑ ⇓
41 ⇐ 39 ⇐ 38 ⇔ 47 ⇔ 48 53
⇓ ⇑ ⇑ ⇓
44 ⇒ 45 ⇒ 46 57 ⇐ 56 ⇐ 55 ⇐ 54

Here “ P ⇒ Q ” does not actually mean “P implies Q.” Rather, it means
that if we add P to relevant logic, as an additional axiom or an additional
assumed inference rule, then Q becomes provable. Following are the proofs:

38⇒ 39: Start from B → (B → B) and apply prefixing (20).

39⇒ 41: Start from (B → C) → [B → (C → C)]. Use permutation a
couple of times to get C → [

(B → C) → (B → C)
]
. Prefixing then yields

(A → C) → {
A → [

(B → C) → (B → C)
]}

. Now permutation yields 41.

41⇒ 42⇒ 43: Inferential corollaries.
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43⇒ 40: Substitute C = B.

40⇒ 38: Substitute B = A.

41⇒ 44: (A → B) → [(A → B) → (A → (A → B))] is an instance of 41.
Combine that with contraction (4), to obtain 44.

44⇒ 45: Inferential corollary.

45⇒ 46: Applying 45 once with B = A yields ` A → (A → A). Then
applying 45 with B = (A → A) yields 46.

46⇒ 38: Apply contraction (4).

38⇔ 47: Substitute A for A.

47⇔ 48: Use the contrapositive law (13).

48⇒ 49: Use permutation (17).

49⇒ 50:
[1] (A ∧ B) → A ∧-elimination (6)
[2] (A ∧ B) → B ∧-elimination (7)

[3] (A∧B)→
[
A∧B→(A∧B)

]
49

[4]
[
A∧B→(A∧B)

]
→

[
A∧B→A

]
[1], prefixing (20)

[5]
[
A∧B→A

]
→ [A→(A∧B)] contrapositive

[6] [A→(A ∧ B)]→(A→B) [2], prefixing (20)
[7] (A ∧ B) → (A → B) [3][4][5][6] transitive (16)

50⇒ 51: Inferential corollary.

51⇒ 52:
{
A → A, B → B

}
` A → A → (B → B) is an instance of 51.

52⇒ 53: By substitution, switch roles of A and B; thus 52 yields ` B → B →
(A → A). By permutation, ` A → (

B → B → A
)
. By contraposition,

` A → [A → (B → B)]. Several more permutations yield ` B → [A →
(A → B)]. Then contrapositive again: ` B → (A → B → A). Finally, one
more permutation yields 53.

53⇒ 54: Inferential corollary.

54⇒ 55:
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[1] (A → A) → A reductio (31)
[2] A → A → A [1], contrapositive
[3] A hypothesis of 55
[4] A → A [3], [2], modus ponens
[5] A → A [4], 54

55⇒ 56: A → A ` A → A → (A → A) is an instance of 55.

56⇒ 57: By permutation we have A → (
A → A → A

)
. Then A → [A →

(A → A)] by contraposition. Another permutation yields 57.

57⇒ 48: We have [A → (A → A)] → (A → A) by contraction. Combine
that with 57, using transitivity.

5. Equivalents of positive paradox

We will show that positive paradox (formula 58) is equivalent to the other
formulas listed below:

58. ` A → (B → A)

59. ` B → (A → A)

60. A ` B → A

61. A ` A → B

62. ` A → (A → B)

63. ` A → [(B → B) ∧ A]

64. A ` B → (B ∧ A) (Remark: compare with 2)

65. ` A → [B → (B ∧ A)]

66. A → C ` (B → C) → [(A ∨ B) → C] (Remark: compare 10, 22)

67. ` (A→C)→{(B→C) → [(A∨B)→C]}
68. ` ((A → B) → A) → A (Peirce’s Law)

69. ` (A → B) → (A → A)

70. ` (A → B) → (B → B)

71. A ∨ B ` A → B (Remark: compare with 36)

72. ` (A ∨ B) → (A → B)

73. ` (A → B) → [A → (A ∧ B)]
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74. ` (A → B) → [(A ∨ B) → B]

75. ` (A → B) → [(A ∧ C) → (B ∧ C)] (Remark: compare with 26)

76. ` (A → B) → [(A ∨ C) → (B ∨ C)] (Remark: compare with 27)

Proofs of equivalence. Instead of loops of reasoning, as in Section 4,
we only need to show that the formulas above form a tree: We must show
that each of the formulas listed yields positive paradox. That reduction can
be explained as follows:

All of the results 58–76 are easily verified to be tautologous in the clas-
sical two-valued (true/false) interpretation. Since that interpretation is well
known to be complete for classical logic, all the results 58–76 are provable
in classical logic. But it is well known that adding positive paradox (for-
mula 58) to relevant logic yields classical logic; therefore adding positive
paradox yields all of 58–76.

Thus, it remains to show that each of 58–76 yields positive paradox
(formula 58). Considering the items 58–76 as a list, it suffices to show that
each item listed after 58 yields some earlier item in the list.

59⇒ 58: Use permutation (17).

60⇒ 59: (A → A) ` B → (A → A) is an instance of 60.

61⇒ 60: Substitute A for A and B for B, and use contrapositive (13).

62⇒ 61: Inferential corollary.

63⇒ 59: We have B → [(A → A) ∧ B] as an instance of 63. We also have
[(A → A) ∧ B] → (A → A) as an instance of ∧-elimination (6). Combine
those using transitivity (16).

64⇒ 63: Start with B → B as an instance of identity (15). Apply 64 to
obtain A → [A ∧ (B → B)]. Then use commutativity (24).

65⇒ 64: Inferential corollary.

66⇒ 58:
[1] B → [(B → A) → A] assertion (3)
[2] {[(B → A) → A] → A} → (B → A) [1], suffixing (18)
[3] A → A identity (15)
[4] [(B→A)→A]→{[A∨(B→A)]→A} [3], 66
[5] [A∨(B→A)]→{[(B→A)→A]→A} [4], permutation (17)
[6] A → [A ∨ (B → A)] ∨-introduction (8)
[7] A→(B→A) [6][5][2] transitive (16)
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67⇒ 66: Inferential corollary.

68⇒ 58: (This proof is taken from Meyer [4].)
[1] {[A → (B → A)] → A} → A instance of 68
[2] [A → (B → A)] →

[
A → B → A

]
cotenability (37)

[3]
({

[A → (B → A)] → A
}
→ A

)
→

({[
A → B → A

]
→ A

}
→ A

)
[2]; suffixing (18)

[4]
{ [

A → B → A
]
→ A

}
→ A [1], [3], MP

[5] A → B → A [4], (21)
[6] A → (B → A) [5], cotenability (37)

69⇒ 59:
[1]

(
A → B → A

)
→ (A → A) 69

[2]
[
B→

(
A→B→A

)]
→ [B→(A→A)] [1], prefixing (20)

[3]
[
B→A→B→A

]
→ [B→(A→A)] [2], cotenability (37)

[4] B → A → B → A identity (15)
[5] B → (A → A) [4], [3], modus ponens

70⇒ 69: Substituting B for A and A for B transforms 70 into ` (B → A) →
(A → A). Now two uses of contrapositive laws yield 69.

71⇒ 60: We may rewrite 71 as B ∨ A ` B → A, and then make use of
A ` B ∨ A, which is a corollary of 9.

72⇒ 71: Inferential corollary.

73⇒ 69:
[1] (A → B) → [A → (A ∧ B)] 73
[2] (A ∧ B) → A ∧-elimination (6)
[3] [A → (A ∧ B)] → (A → A) [2], prefixing (20)
[4] (A → B) → (A → A) [1], [3], transitive (16)

74⇒ 73: By replacing A with B and B with A, we may rewrite 74 as (B →
A) → [(B ∨ A) → A]. By De Morgan’s Laws and commutativity, we may
rewrite B ∨ A as A ∧ B; thus 74 is equivalent to (B → A) → (A ∧ B → A).
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Finally, use the contrapositive laws.

75⇒ 73:
[1] (A → B) → [(A ∧ A) → (B ∧ A)] 75
[2] A → (A ∧ A) idempotent (25)
[3] [(A ∧ A) → (B ∧ A)] → [A → (B ∧ A)] [2], suffixing (18)
[4] (B ∧ A) → (A ∧ B) commutative (24)
[5] [A → (B ∧ A)] → [A → (A ∧ B)] [4], prefixing (20)
[6] (A → B) → [A → (A ∧ B)] [1], [3], [5], trans. (16)

76⇒ 74:
[1] (A → B) → [(A ∨ B) → (B ∨ B)] 76
[2] (B ∨ B) → B idempotent (25)
[3] [(A ∨ B) → (B ∨ B)] → [(A ∨ B) → B] [2], prefixing (20)
[4] (A → B) → [(A ∨ B) → B] [1], [3], transitive (16)
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