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Part A

Preliminaries





Chapter 1

Introduction for teachers

Readers with no previous knowledge of formal logic will find it
more useful to begin with Chapter 2.

Purpose and intended audience

1.1. CNL (Classical and Nonclassical Logics) is intended as
an introduction to mathematical logic. However, we wish to im-
mediately caution the reader that the topics in this book are

modal 23
applied +×=∈

predicate ∀∃
propositional ∧∨¬ → & ◦

classical constructive fuzzy
relevant others

ª

traditional

ª

this book

not the same as those in a conventional introduction to logic.
CNL should only be adopted by teachers who are aware of the
differences and are persuaded of this book’s advantages. Chiefly,
CNL trades some depth for breadth:

• A traditional introduction to logic covers classical logic only,
though possibly at several levels — propositional, predicate,
modal, etc.
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• CNL is pluralistic, in that it covers classical and several non-
classical logics — constructive, quantitative, relevant, etc. —
though almost solely at the propositional level.

Of course, a logician needs both depth and breadth, but both
cannot be acquired in the first semester. The depth-first approach
is prevalent in textbooks, perhaps merely because classical logic
developed a few years before other logics. I am convinced that
a breadth-first approach would be better for the students, for
reasons discussed starting in 1.9.

1.2. Intended audience. This is an introductory textbook. No
previous experience with mathematical logic is required. Some
experience with algebraic computation and abstract thinking is
expected, perhaps at the precalculus level or slightly higher. The
exercises in this book are mostly computational and require lit-
tle originality; thus CNL may be too elementary for a graduate
course. Of course, the book may be used at different levels by
different instructors.

CNL was written for classroom use; I have been teaching un-
dergraduate classes from earlier versions for several years. How-
ever, its first few chapters include sufficient review of prerequisite
material to support the book’s use also for self-guided study.
Those chapters have some overlap with a “transition to higher
mathematics” course; CNL might serve as a resource in such
a course.

I would expect CNL to be used mainly in mathematics depart-
ments, but it might be adopted in some philosophy departments
as well. Indeed, some philosophers are very mathematically in-
clined; many of this book’s mathematical theorems originated on
the chalkboards of philosophy departments. Colleagues have also
informed me that this book will be of some interest to students of
computer science, but I am unfamiliar with such connections and
have not pursued them in this book.

1.3. In what sense is this new? This book is a work of exposition
and pedagogy, not of research. All the main theorems of this
book have already appeared, albeit in different form, in research
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journals or advanced monographs. But those articles and books
were written to be read by experts. I believe that the present
work is a substantially new selection and reformulation of results,
and that it will be more accessible to beginners.

1.4. Avoidance of algebra. Aside from its pluralistic approach
(discussed at much greater length later in this chapter), probably
CNL’s most unusual feature is its attempt to avoid higher algebra.

In recent decades, mathematical logic has been freed from
its philosophical and psychological origins; the current research
literature views different logics simply as different kinds of al-
gebraic structures. That viewpoint may be good for research,
but it is not a good prescription for motivating undergraduate
students, who know little of higher algebra.

CNL attempts to use as little algebra as possible. For in-
stance, we shall use topologies instead of Heyting algebras; they
are more concrete and easier to define. (See the remark in 4.6.i.)

1.5. Rethinking of terminology. I have followed conventional
terminology for the most part, but I have adopted new terminol-
ogy whenever a satisfactory word or phrase was not available
in the literature. Of course, what is “satisfactory” is a matter
of opinion.

It is my opinion that there are far too many objects in math-
ematics called “regular,” “normal,” etc. Those words are not
descriptive — they indicate only that some standard is being ad-
hered to, without giving the beginner any assistance whatsoever
in identifying and assimilating that standard. Whenever pos-
sible, I have attempted to replace such terms with phrases that
are more descriptive, such as “truth-preserving” and “tautology-
preserving.”

A more substantive, and perhaps more controversial, exam-
ple of rejected terminology is “intuitionistic logic.” That term has
been widely used for one particular logic since it was introduced in
the early 20th century by Brouwer, Heyting, and Kolmogorov. To
call it anything else is to fight a strong tradition. But the word
“intuitionistic” has connotations of subjectivity and mysticism
that may drive away some scientifically inclined students. There



6 Chapter 1. Introduction for teachers

is nothing subjective, mystical, or unscientific about this inter-
esting logic, which we develop in Chapters 10, 22, 27, 28, and part
of 29.

Moreover, not all mathematicians share the same intuition.
Indeed, aside from logicians, most mathematicians today are
schooled only in classical logic and find all other logics to be
nonintuitive. It is only a historical accident that Brouwer, Heyt-
ing and Kolmogorov appropriated the word “intuitionistic” for
their system. The term “BHK logic,” used in some of the liter-
ature, is less biased, but it too is descriptive only to someone
who already knows the subject.

A more useful name is “constructive logic,” because BHK
logic is to a large extent the reasoning system of constructive
mathematics (discussed in 2.42–2.46). Mathematicians may not
be entirely in agreement about the importance of constructivism,
but at least there is consensus on what the term “constructive”
means. Its meaning in mathematics is quite close to its meaning
outside mathematics, and thus should be more easily grasped
by beginning students.

1.6. What is not covered. This book is intended as an in-
troductory textbook, not an encyclopedia — it includes enough
different logics to illustrate some basic ideas of the subject, but it
does not include all major logics. Derivations in CNL follow only
the Hilbert style, because in my opinion that is easiest for begin-
ners to understand. The treatment of quantifiers consists of only
a few pages (sections 5.40–5.51), and that treatment is informal,
not axiomatic. Omitted entirely (or mentioned in just a sentence
or two) are 2, 3, formal predicate logic, Gentzen sequents, nat-
ural deduction, modal logics, Gödel’s Incompleteness Principles,
recursive functions, Turing machines, linear logic, quantum logic,
substructures logics, nonmonotonic logics, and many other topics.

Topics in the book

1.7. Order of topics. I have tried to arrange the book method-
ically, so that topics within it are not hard to find; but I have also
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provided frequent cross-referencing, to facilitate reading the book
in other orders than mine.

Chapter 2 gives an overview of, and informal introduction
to, the subject of logic. The chapter ends with a detailed dis-
cussion (2.42–2.46) of constructivism and Jarden’s Proof, surely
the simplest example of the fact that a different philosophy can
require a different logic.

Chapters 3 and 4 give a brief introduction to naive set theory
and general topology. Chapter 5 gives a more detailed introduc-
tion to informal classical logic, along with comments about how it
compares with nonclassical logics and with ordinary nonmathe-
matical English. Particular attention is given to the ambiguities
of English.

Chapters 2–5 may be considered “prerequisite” material, in
the sense that their content is not part of logic but will be used
to develop logic. Different students will need different parts of
this prerequisite material; by including it I hope to make the
book accessible to a wide variety of students. Admittedly, these
introductory chapters take up an unusually large portion of the
book, but they are written mostly in English; the remainder of the
book is written in the more concise language of mathematics.

Finally, in Chapter 6 we begin formal logic. This chapter
presents and investigates a formal language that will be used
throughout the remainder of the book. Among the terms defined
in this chapter are “formula,” “rank of a formula,” “variable shar-
ing,” “generalization,” “specialization,” and “order preserving”
and “order reversing.”

There are several feasible strategies for ordering the topics
after formal language. The most obvious would be to present
various logics one by one — e.g., classical logic, then construc-
tive logic, then relevant logic, etc. This strategy would juxtapose
related results — e.g., constructive semantics with constructive
syntactics — and perhaps it is the most desirable approach for
a reference book. But I have instead elected to cover all of seman-
tics before beginning any syntactics. This approach is better for
the beginning student because semantics is more elementary and
concrete than syntactics, and because this approach juxtaposes
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related techniques — e.g., constructive semantics and relevant
semantics.

Semantics is introduced in Chapter 7, which defines “valua-
tion,” “interpretation,” and “tautology.” Then come some ex-
amples of interpretations — numerically valued in Chapter 8,
set-valued in Chapter 9, and topological in Chapter 10. In the
presentation of these examples, one recurring theme is the investi-
gation of relevance: If A and B are formulas that are unrelated
in the sense that they share no propositional variable symbols,
and A → B is a tautology in some interpretation, does it follow
that A or B are tautologies? Our conclusions are summarized
in one column of the table in 2.37.

The aforementioned chapters deal with examples of semantic
systems, one at a time. Chapter 11, though not lacking in ex-
amples, presents more abstract results. Sections 11.2–11.7 give
shortcuts that are often applicable in verifying that a formula
is tautologous. Sections 11.8–11.12 give sufficient conditions for
one interpretation to be an extension of another. Sections 11.13–
11.17 show that, under mild assumptions, the Dugundji formula
in n symbols is tautological for interpretations with fewer than
n semantic values, but not for interpretations with n or more
semantic values; as a corollary we see that (again under mild
assumptions) an infinite semantics cannot be replaced by a finite
semantics.

Syntactics is introduced in Chapter 12, which defines “ax-
iom,” “assumed inference rule,” “derivation,” “theorem,” etc.
The chapters after that will deal with various syntactic logics,
but in what order should those be presented? My strategy is
as follows.

The logics of greatest philosophical interest in this book are
classical, constructive (intuitionist), relevant, and fuzzy (Zadeh
and ÃLukasiewicz), shown in the upper half of the diagram below.
These logics have a substantial overlap, which I call basic logic;1

it appears at the bottom of the diagram. To reduce repetition,
our syntactic development will begin with basic logic and then

1That’s my own terminology; be cautioned that different mathematicians
use the word “basic” in different ways.
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Logics in boldface
satisfy chain ordering.

classical/two-valued

LC

con-
struc-
tive

Wajsberg/
ÃLukasiewicz
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Rosser
/Zadeh

posi-
tive
para-
dox

RM/
Sugihara

rele-
vant

not-
elimination

Abelian/comparative

con-
trac-
tion

specialized
contraction

basic

expansion

gradually add more ingredients.
Chapter 13 introduces the assumptions of basic implication,

{A,A → B} ` B, ` (G → H) → [(I → G) → (I → H)] ,
` C → C, ` [D → (E → F )]→ [E → (D → F )],

and investigates their consequences. One elementary but impor-
tant consequence is the availability of detachmental corollaries;
that is, `A→B ⇒ A ` B. Chapter 14 adds the remaining
assumptions of basic logic,

{A,B} `A∧B, `A→(A∨B), `(A∧B)→A,

`(A→B )→(B→A ), `B→(A∨B), `(A∧B)→B,
` [(A → B) ∧ (A → C)]→ [A → (B ∧ C)],
` [(B → A) ∧ (C → A)]→ [(B ∨ C) → A],

` [A ∧ (B ∨ C)]→ [(A ∧B) ∨ C],

and then investigates their consequences. One consequence is
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a substitution principle: if S is an order preserving or order re-
versing function, then `A→B implies, respectively, `S(A)→S(B)
or `S(B)→S(A).

Next come several short chapters, each investigating a dif-
ferent one-axiom extension of basic logic:

Chapter axiom added to basic logic

15 Contraction ` (A→(A→B))→(A→B),

16 Expansion and ` (A → B) → (A → (A → B)),
positive paradox ` A → (B → A)

17 Explosion ` (A ∧ A ) → B (conjunctive) or
` A → (A→B) (implicative)

18 Fusion ` [(A&B)→X]↔ [A→(B→X)],

19 Not-elimination ` A → A,

20 Relativity ` ((A → B) → B) → A.

Those extensions are considered independently of one another
(i.e., results of one of those chapters may not be assumed in
another of those chapters), with this exception:

relativity ⇒ not-elimination ⇒ fusion.

Anticipating the discussion below, we mention a few more
one-axiom extensions :

24.5 Implicative disjunction ` ((A→B)→B)→(A∨B)

15.3.a Specialized contraction ` (A→(A→A))→(A→A)

8.37.f Centering ` (A → A) ↔ A → A

The preceding chapters have shown that various expressions
are derivable. Chapter 21 introduces soundness, a new tool that
will finally enable us to show that certain expressions are not
derivable, a fact that we have only hinted at in earlier chapters.
A pairing of an interpretation (semantic) with an axiomatization
(syntactic) is sound if

{
theorems of the
axiomatization

}
⊆

{
tautologies of the

interpretation

}
.
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If equality holds, we have completeness, but that’s much harder to
establish and doesn’t come until the end of the book. Soundness
is introduced at this point because we can put it to good use
in the next few chapters.

The next few chapters investigate our “major” logics:

Chapter assumptions: basic logic plus . . .

22 Constructive positive paradox, contraction, explosion;

23 Relevant not-elimination and contraction;

24 Fuzzy positive paradox, implicative disjunction,
specialized contraction, not-elimination;

25 Classical all of the above;

26 Abelian relativity and centering.

These chapters include, among other things, several deduction
principles, converses to the detachmental corollary procedure; see
2.37.

Chapter 27 proves the propositional version of Harrop’s ad-
missibility rule for constructive logic. The proof is via Meyer’s
“metavaluation,” a computational device that is a sort of mixture
of semantics and syntactics. Two corollaries are the Disjunction
Property and Mints’s Admissibility Rule. The latter is the most
elementary example of an admissibility rule that is not also a
derivable inference rule. (That admissibility and derivability are
the same in classical logic is proved in 29.15.)

Finally, we prove some completeness pairings. Proofs for con-
structive implication and relevant implication, in Chapter 28,
use Kripke-style “multiple worlds” interpretations. Proofs for
classical, fuzzy, and constructive logic are presented in Chapter
29, all using what I call “maximal Z-unproving sets” — i.e., sets S

that are maximal for the property that S 0 Z.

1.8. What to cover; what to skip. That’s up to the individual
instructor’s own taste, but here are a few suggestions and hints
based on my own teaching experience.

Different students are motivated in different ways, so the first
few chapters cover several different kinds of introductions — his-
torical, linguistic, etc. In my own lectures, I skip large parts
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of the first few chapters, leaving those parts as recommended
reading for students with weak backgrounds. But my lectures
generally do include Jarden’s example (2.45), sets of sets (3.3–
3.6), Russell’s Paradox (3.11–3.12), Venn diagrams (3.47–3.55.a),
topologies and interiors (4.1–4.18), and quantifiers (5.40–5.51).

I do not lecture on every section in the book. I merely hit
the highlights and some crucial parts; I expect the students to
read the rest on their own. I permit my students to use their
textbooks and notes on all tests and quizzes after midsemester,
because I do not expect students to memorize vast collections
of formulas. I encourage students to write their own summaries,
or “crib sheets,” for use during those tests and quizzes; preparing
such summaries is an excellent way to study.

I tend to spend most of my semester on those parts of the
book that have exercises. The exercises may seem repetitious
and mechanical to advanced readers, but they are crucial for
bringing the beginner into frequent and close contact with basic
ideas. I assign many of the exercises as homework, and give tests
made of similar problems. Note that the chapters vary greatly
in length,2 and the exercises do not appear at a constant rate, so a
syllabus cannot be planned by a rule like “a chapter every week.”

Though there are occasional exceptions, the general trend in
the book is from elementary topics to topics of greater math-
ematical sophistication. Graduate students might skip the first
few chapters of the book; at the other extreme, my undergradu-
ate classes generally do not reach the last few chapters. Still,
I do state some of the results of those chapters. Even with-
out their proofs, the results on admissibility and completeness
play an essential role in tying the book together conceptually,
so they are mentioned frequently throughout the book.

One simple way to abridge the book is to leave out all the

2It has been my experience that students sometimes become confused
about which formula schemes or inference rules are permitted as justifications
in any particular homework problem. I have arranged the book so that I
can answer, “anything from Chapters such-and-such, plus anything from the
beginning of the current chapter to our current location in that chapter.”
This consideration outweighed the unpleasantness of having chapters with
vastly different lengths.
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topological material, and all the material on constructive logic
that is unavoidably topological — but retain the nontopological
parts of constructive logic. This means skipping Chapters 4 and
10, as well as some parts of Chapters 22 and 29. Chapter 27 does
not depend on topology, so the instructor might decide near the
end of the semester whether to cover it or jettison it, depending
on how much time is left. Its proofs are slightly tedious, but they
do make good exercises, and the conclusion of that chapter is
one of the juiciest bits of the book.

Why pluralism?

1.9. It has been my experience that many mathematicians,
even including some accomplished logicians, are unfamiliar with
the pluralist approach. I believe that many of them would like it if
they gave it a try.

This subchapter is, quite frankly, a sales pitch. I envision
an instructor of logic standing in a bookstore or library or at a
conference exhibit table, leafing through textbooks and trying
to choose one for his/her course. In the next few pages I will at-
tempt to persuade that instructor that pluralism is pedagogically
superior to the traditional, classical-only approach — i.e., that
it will bring beginning students to a better understanding of logic.

1.10. The traditional and pluralist approaches to introductory
logic share the goal of conveying to students not just one or a few
separate logics, but also certain deeper ideas that are common
to all logics:

interpretations, derivations, soundness, completeness,
independence of axioms, redundancy of connectives,
sharing of propositional variable symbols, the finite
model property, etc.

Though the two approaches share deeper ideas, they differ greatly
on the surface level — i.e., in their choice of examples. Indeed,
consider again the diagram in 1.1; the small box in the lower
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left corner represents the overlap between traditional depth and
pluralist breadth. Because the overlap is small, it would not
be meaningful to statistically compare the two approaches by
giving the same exam to students from the two courses. Instead
I will advocate pluralism using arguments based on everyday ex-
perience and commonly held principles of teaching.

1.11. The classical-only approach is unnatural and artificial,
whereas the pluralist approach is motivated by the students’ own
nonmathematical experiences. Classical logic presented by itself
doesn’t really make much sense; it embraces non sequiturs such as

if today is Tuesday then the earth is round

— true for a classical logician, but nonsense for anyone else. The
student is left wondering why implication is defined the way it
is defined; it seems rather arbitrary.

Classical logic is computationally the simplest of all the main
logics, and most mathematicians are comfortable with it as a
method for presenting mathematical proofs. But it does not
closely resemble the way that we actually think most of the
time. Human thought — even that of mathematicians — is
a mixture of many logics, not just classical. Human thought
may be too complicated to be fully understood, but some of
its ingredients are simple enough to analyze. The few logics
in CNL were selected from the much wider variety in the lit-
erature, in part for their computational simplicity, but also for
their philosophical and/or psychological significance.

Admittedly, the student’s everyday experience is not mathe-
matical, and it is not precise enough to actually be used as a
justification in any mathematical proofs. But that experience
provides intuition and motivation, which are invaluable to be-
ginners.

Some teachers, familiar only with classical logic, may fear
that pluralism will open the floodgate of cultural relativism: If
all logics are permitted, then no one of them is of any particular
interest or value. But just the opposite is true. Accepting an
arbitrary-seeming definition as the only correct one deprives us
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of any meaningful choice, whereas pluralism explores the different
advantages enjoyed by different logics.

1.12. Classical propositional semantics is too easy. Later in the
semester, after students in the traditional course have become
accustomed to classical logic and resigned to its artificiality, they
learn to use true/false tables. For instance, they can determine
that (P → ¬Q) → (Q → ¬P ) is true by plugging in the four
combinations TT, TF, FT, FF for P and Q.

But then students may not see any need for syntactic deriva-
tions. Why bother to prove something, when we already know it
is true? (An analogous pedagogical problem arises in the tradi-
tional, Euclidean-only course on geometry; see 2.29. Students
may use pictures to learn isolated facts about lines and circles
without understanding the proofs that connect those facts.)

And even if we persuade them that proofs are somehow worth-
while, students may still have difficulty understanding the criteria
that determine whether a proof is correct. An omitted step will
hardly be noticed, when we already know the conclusion is true.
The choice of steps may seem dictated by arbitrary ritual rather
than logical necessity.

1.13. Reasoning requires doubt, which requires plausible con-
trasting alternatives. The traditional approach to logic presents
classical results — e.g., excluded middle or the Herbrand-Tarski
deduction principle — as absolute truths, with no plausible alter-
natives.

To teach students to reason mathematically, we must encour-
age them to doubt everything until it is proven. The teacher
should be a guide who helps find the right questions, not an
authority who dictates the answers. The student should learn
to always ask,

what if this is not true?

That question is hypothetical and abstract, and requires more so-
phistication than is possessed by many beginning students. They
need plausible concrete alternatives — i.e., they can ask the easier
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question

what happens in one of the other examples
that we’ve been studying?

And those examples are useful for more advanced students too,
and even for researchers. But to ask about other examples, first
we must have other examples.

1.14. Even students who have already learned to doubt will
gain insights from the additional examples. One of the most
widely held principles of teaching is that

whenever possible, an abstract idea should be accompa-
nied by several different examples.

One example — in this case, classical logic — hardly suffices to
explain abstract notions such as the law of the excluded middle,
the deduction principle, variable sharing, or explosion. See the
table in 2.37 for a summary of how those four abstract notions
fare in five different logics studied in this book.

Many traditional textbooks follow a route that builds up to-
ward Gödel’s Incompleteness Principles. But I think that many of
the students studying from such a textbook are lost by the end
of the semester, largely because the incompleteness principles
are preceded by too few examples of completeness. CNL proves
completeness for several logics and describes it for several others;
see the table in 2.26.

1.15. The traditional emphasis on predicate logic sometimes
obscures basic ideas. The most fundamental ideas of logic —
derivation, interpretation, etc. — are already present, in simpler
but still nontrivial form, in propositional logic. Predicate logic
complicates the presentation but in many cases does not enrich
the ideas.

A good example of this is the classical Herbrand-Tarski deduc-
tion principle.3 The predicate logic version (found in most logic
textbooks) is complicated and hard to understand:

3Known as the “Deduction Theorem” in most of the literature; see 2.18.
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Let F and G be formulas, and let H be a set of formulas.
Assume H ∪ {F} ` G. Then H ` F → G . . .

. . . provided that, in the given derivation H∪{F} ` G, none of
the steps involves a substitution in which a free individual variable
being replaced is one that appears in F .

In effect, the hypothesis “H∪{F} ` G” is much more complicated
than it at first appears. We need to know not only that G is
derivable from H ∪ {F}, but also how it is derivable, all the
way down to nitty-gritty details about scopes of quantifiers.

Now contrast that with the propositional logic version. In
propositional logic, there are no free or bound individual vari-
ables, so we can omit the entire fine print clause. The resulting
principle is shorter and simpler, but still retains much of the
power of the predicate logic version.

Admittedly, predicate logic is too important to omit alto-
gether. A first course in logic — for most students, the only
course in logic — should include at least a brief, informal intro-
duction to quantifiers, as CNL does in 5.40–5.51. But that topic
does not need to skew the entire semester; we don’t necessarily
have to carry ∀ and ∃ through our formal development.

1.16. In all fairness, I must also mention one seeming disadvan-
tage of pluralism. Classical logic is computationally the simplest
of all the major logics. To compare it with anything else, we must
accept some complications.

For instance, teachers who are familiar with classical logic’s
short formulation (three axioms, two definitions, and one infer-
ence rule, given in 25.1.d) may be dismayed to see a dozen axioms
in nonclassical logics. Those longer lists are unavoidable. In clas-
sical logic we could define two of ∨,∧,→,¬ in terms of the other
two, but for some nonclassical logics we need all four connec-
tives as primitives. (See 10.9.) More primitives require more
axioms to govern them.

Still, the dozen axioms need not all be swallowed at one time.
They can be digested in several courses, each quite tasty by itself.
That is the plan we have described in 1.7.
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1.17. Pluralism is more modern; the prepluralistic view is rather
antiquated. Traditional, classical-only textbooks are still largely
built around Gödel’s important (but not elementary) discoveries
of the 1930s.

I do not advocate teaching to our undergraduates whatever is
the latest discovery. Thousands of new mathematical discover-
ies are published in research journals every year, but most of
those discoveries are too advanced and specialized to deserve the
attention of beginning students.

Still, when a fundamental (important and/or elementary) de-
velopment does comes along, we should not overlook it. Such a
development has occurred gradually during the late 20th century,
in the work of Kripke, Anderson, Belnap, Zadeh, and others.
Pluralism (many logics considered simultaneously) has become
predominant in the research literature — not as a focus of at-
tention, but as a fact in the background, an accepted and as-
similated part of the paradigm. Moreover, enough elementary
examples have accumulated in recent decades to make pluralism
feasible in the beginners’ classroom. I believe that beginning logic
students would benefit from pluralism, for reasons indicated in
the preceding pages.

1.18. Pluralism has greater applicability to computer science. Or
at least, so I have been told. I know too little of that subject, so it
will not be pursued in the present edition of this book.

Feedback

1.19. Despite the best efforts of myself and the editors at Princeton Uni-
versity Press, I’m sure a few errors remain in this edition. I hope they’re
small ones, but at any rate I’ll list them on a web page when they’re reported.
I may also post some shorter proofs, if I learn of any. The main page for this
book is at

http://www.math.vanderbilt.edu/∼schectex/logics/

and links from that page will lead to the errata and addenda pages. Also I
invite suggestions for alterations for a second edition, which might or might
not eventually happen. Email me at eric.schechter@vanderbilt.edu.
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(Yes, the URL and email are spelled differently.) A second edition, if it
happens, probably will have shorter introductory chapters, less repetition,
more exercises, and perhaps (if I can find sufficiently elementary ones) proofs
of some of the results that are stated without proof in this edition.
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Chapter 2

Introduction for students

2.1. This is a textbook about propositional logics. A more
detailed overview of the contents can be found in 1.7.

This chapter, and to a lesser extent Chapter 5, are intended as
an overview of logic. Caution:

• These introductory chapters are not intended to be mathemat-
ically precise. Arguments sketched in these chapters should
not be viewed as proofs, and will not be used as ingredients in
the rigorous proofs developed later in the book.

• These introductory chapters are not typical of the style of
the whole book. Formal logic, which begins in Chapter 6,
is much more computational. The student who is undecided
about registering for or dropping the course should look at
some of the later chapters.

Who should study logic?

2.2. The subjects of logic, algebra, and computer science are
enough alike that a previous course in any one of these three
subjects may aid the student in pursuing the other two — partly
because of specific results, but more because of a familiarity with
the general style of thinking.

Regardless of previous background, however, any liberal arts
undergraduate student might wish to take at least one course in
logic, for the subject has great philosophical significance: It tells
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us something about our place in the universe. It tells us how we
think — or more precisely, how we think we think. Mathematics
contains eternal truths about number and shape; mathematical
logic contains truths about the nature of truth itself.

The grandeur of logic’s history (sketched later in this chapter)
and the power and beauty of its ideas can be appreciated by any
student in a first course on logic, but only a few students will
greatly enjoy its computations. It is those few who may choose
to study beyond the first course (i.e., beyond this book) and
become logicians. I would expect that most students taking a
first course in mathematical logic are simply liberal arts students
fulfilling a mathematics requirement and seeking a sampling of
our culture. Logic is an important part of that culture, and
I will try to present it in a way that does not require all the
background of a mathematician.

2.3. Logic and set theory are sometimes called the foundations of
mathematics, because they are used as a basis for other branches
of mathematics; those other branches are then called ordinary
mathematics.

• Logic is a foundation because the logician studies the kinds of
reasoning used in the individual steps of a proof. An ordinary
mathematical proof may be long and complicated, involving
many steps, but those steps involve only a few different kinds
of reasoning. The logician studies the nature of those few
kinds of reasoning.

• Set theory (also studied briefly in this book) is a foundation for
the objects that mathematicians reason about. For instance,
3 and

√
2 are members of the set of real numbers. Likewise,

π1 → π2 and π2∧¬π1 are members of the set of all formulas in
the formal language studied in this book.

Logic and set theory are fundamental but not central in math-
ematics. Knowing a little about the foundations may make you
a better mathematician, but knowing a lot about the foundations
will only make you a better logician or set theorist.

That disclaimer surprises some people. It might be explained
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by this analogy: If you want to write The Great American Novel,
you’ll need to know English well; one or two grammar books
might help. But studying dozens of grammar books will make you
a grammarian, not a novelist. Knowing the definitions of “verb”
and “noun” is rather different from being able to use verbs and
nouns effectively. Reading many novels might be better training
for a novelist, and writing many novels — or rewriting one novel
many times — may be the best training. Likewise, to become
proficient in the kinds of informal proofs that make up “ordinary”
mathematics, you probably should read and/or write more of
“ordinary” mathematics.

For that purpose, I would particularly recommend a course in general
topology, also known as “point set topology.” We will use topology as a tool
in our development of formal logic, so a very brief introduction to topology
is given in Chapter 4 of this book, but mathematics majors should take
one or more courses on the subject.

General topology has the advantage that its results are usually formu-
lated in sentences rather than equations or other mathematical symbols.
Also, it has few prerequisites — e.g., it does not require algebra, geometry,
or calculus.

General topology is one of the subjects best suited for the Moore method .
That is a teaching method in which the students are supplied with just
definitions and the statements of theorems, and the students must discover
and write up the proofs. In my opinion, that is the best way to learn to
do proofs.

2.4. A few students — particularly young adults — may begin
to study logic in the naive hope of becoming better organized
in their personal lives, or of becoming more “logical” people,
less prone to making rash decisions based on transient emotions.
I must inform those students that, unfortunately, a knowledge
of mathematical logic is not likely to help with such matters.
Those students might derive greater understanding of their lives
by visiting a psychotherapist, or by reading biochemists’ accounts
of the hormones that storm through humans during adolescence.

Logic was misrepresented by the popular television series Star
Trek. The unemotional characters Spock (half human, half Vul-
can) and Data (an android) claimed to be motivated solely by
logic. But that claim was belied by their behavior. Logic can
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only be used as an aid in acting on one’s values, not in choosing
those values. Spock’s and Data’s very positive values, such as
respect for other sentient beings and loyalty to their crew mates,
must have been determined by extralogical means. Indeed, a
few episodes of the program pitted Spock or Data against some
“logical” villains — evil Vulcans, evil androids — who exhibited
just as much rationality in carrying out quite different values.
(See the related remarks about logic and ethics, in 2.19.d.)

Logicians are as likely as anyone to behave illogically in their
personal lives. Kurt Gödel (1906–1978) was arguably the greatest
logician in history, but he was burdened with severe psychiatric
problems for which he was sometimes hospitalized. In the end,
he believed he was being poisoned; refusing to eat, he starved
to death. In the decades since Gödel’s time, medical science
has made great progress, and many afflictions of the mind can
now be treated successfully with medication or by other means.
Any reader who feels emotionally troubled is urged to seek help
from a physician, not from this logic book.

2.5. Why should we formalize logic? What are the advantages
of writing ∧ instead of “and,” or writing ∃ instead of “there
exists”? These symbols are seldom used in other branches of
mathematics — e.g., you won’t often find them in a research
paper on differential equations.

One reason is if we’re interested in logic itself. Pursuit of
that subject will lead us to logical expressions such as{

(∀x)
[
W (x) → R(x)

]} ∨
{

(∀x)
[
R(x) → W (x)

]}
,

much more complicated than any arising from merely abbreviat-
ing the reasoning of, say, differential equations. Clearly, without
symbols an expression like this would be difficult to analyze.

But even students who do not intend to become logicians
would benefit from using these symbols for at least a while. Basic
properties of the symbols, such as the difference between ∀x ∃y
and ∃y ∀x are easier to understand if presented symbolically.

Moreover, even if the symbols do not show up explicitly else-
where, the underlying concepts are implicit in some other defini-
tions (particularly in mathematics). For instance, the expression
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“lim supt→∞ f(t)” might appear somewhere in a paper on dif-
ferential equations. One way to define limsup is as follows: It
is a number with the property that, for numbers r,

lim sup
t→∞

f(t) ≤ r ⇐⇒ (∀ε > 0)(∃u ∈ R)(∀t > u) f(t)<r+ε.

(Other definitions of limsup say essentially the same thing, but
may differ in appearance.) Researchers in differential equations
generally think of limsup in terms of its familiar properties rather
than in terms of this definition, but they first must learn it in
terms of its definition — either in words or symbolically. In
effect, there are ∀ ’s and ∃ ’s in a paper on differential equations,
but they are hidden inside the limsup’s and other tools of that
subject.

2.6. Teaching students how to think — how to analyze, how
to question, etc. — is sometimes cited as one of the goals of
a mathematics course, especially a mathematical logic course.
But that justification for logic may be erroneous. Though “how
to think” and mathematical logic do have some overlap, they are
two different subjects. Techniques of thinking — e.g., look for
a similar but more familiar problem, think about conditions that
would hold if the problem were already solved, draw a diagram —
can be found, not in logic books, but in a book such as Polya’s
How to Solve It.

Though logic does formalize some thinking techniques, the
use of those techniques and the study of the formalizations occur
on very different levels.

• The lower level consists of equations, formulas, and computa-
tional techniques. For instance, CNL shows that the “proof by
contradiction” formula (A → B) → ((A → B) → A) is a theo-
rem in classical, relevant, and constructive logics, and shows
how that formula is used in the derivations of other formulas.
Practice should make the student adept at computations of
this sort.

• The higher level consists of paragraphs of reasoning about
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those symbolic formulas. Section 5.35 discusses proof by con-
tradiction in informal terms, and the technique is applied in
paragraph-style arguments in 3.70, 7.7, 7.14, 22.16, 27.6, 29.6,
29.14, and a few other parts of the book. All of the higher-level
reasoning in this book is in an informal version of classical logic
(see discussion of metalogic in 2.17). However, this book is not
written for use with the Moore method — the exercises in this
book are mostly computational and do not require much cre-
ativity.

2.7. Granted that you have decided to study logic, is this book
the right one for you? This book is unconventional, and does
not follow the standard syllabus for an introductory course on
logic. It may be unsuitable if you need a conventional logic course
as a prerequisite for some other, more advanced course. The
differences between this book and a conventional treatment are
discussed in 1.1, 1.10, and at the end of 2.36.

Formalism and certification

2.8. To describe what logic is, we might begin by contrasting
formal and informal proofs. A formal proof is a purely com-
putational derivation using abstract symbols such as ∨, ∧, ¬, →,
`, ∀, ∃, ⇒, =, ∈, ⊆. All steps must be justified; nothing is
taken for granted. Completely formal proofs are seldom used
by anyone except logicians. Informal reasoning may lack some of
those qualifications.

2.9. Here is an example. Informal set theory is presented with-
out proofs, as a collection of “observed facts” about sets. We shall
review informal set theory in Chapter 3, before we get started on
formal logic; we shall use it as a tool in our development of formal
logic.

In contrast, formal set theory (or axiomatic set theory) can
only be developed after logic. It is a rigorous mathematical
theory in which all assertions are proved. In formal set the-
ory, the symbols ∈ (“is a member of”) and ⊆ (“is a subset of”)
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are stripped of their traditional intuitive meanings, and given
only the meanings determined by consciously chosen axioms. In-
deed, ⊆ is not taken as a primitive symbol at all; it is defined
in terms of ∈. Here is its definition: x ⊆ y is an abbreviation for

(∀z) [ (z ∈ x) → (z ∈ y) ].

That is, in words: For each z, if z is a member of x, then z
is a member of y.

In informal set theory, a “set” is understood to mean “a collec-
tion of objects.” Thus it is obvious that

(a) there exists a set with no elements, which we may
call the empty set ; and

(b) any collection of sets has a union.

But both of those “obvious” assertions presuppose some notion
of what a “set” is, and assertion (b) also presupposes an under-
standing of “union.” That understanding is based on the usual
meanings of words in English, which may be biased or imprecise
in ways that we have not yet noticed.

Axiomatic set theory, in contrast, rejects English as a reliable
source of understanding. After all, English was not designed by
mathematicians, and may conceal inherent erroneous assump-
tions. (An excellent example of that is Russell’s Paradox, dis-
cussed in 3.11.) Axiomatic set theory takes the attitude that
we do not already know what a “set” is, or what “∈” repre-
sents. In fact, in axiomatic set theory we don’t even use the
word “set,” and the meaning of the symbol “∈” is specified only
by the axioms that we choose to adopt. For the existence of
empty sets and unions, we adopt axioms something like these:

(a) (∃x) (∀y) ¬ (y ∈ x).

(b) (∀x) (∃y) (∀z) [ (z ∈ y) ↔ (∃w (z∈w) ∧ (w∈x)) ].

That is, in words,

(a) there exists a set x with the property that for every set
y, it is not true that y is a member of x; and
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(b) for each set x there exists a set y with the property
that the members of y are the same as the members of
members of x.

The issue is not whether empty sets and unions “really exist,”
but rather, what consequences can be proved about some abstract
objects from an abstract system of axioms, consisting of (a) and
(b) and a few more such axioms and nothing else — i.e., with no
“understanding” based on English or any other kind of common
knowledge.

Because our natural language is English, we cannot avoid
thinking in terms of phrases such as “really exist,” but such
phrases may be misleading. The “real world” may include three
apples or three airplanes, but the abstract concept of the number
3 itself does not exist as a physical entity anywhere in our real
world. It exists only in our minds.

If some sets “really” do exist in some sense, perhaps they
are not described accurately by our axioms. We can’t be sure
about that. But at least we can investigate the properties of
any objects that do satisfy our axioms. We find it convenient
to call those objects “sets” because we believe that those objects
correspond closely to our intuitive notion of “sets” — but that
belief is not really a part of our mathematical system.

Our successes with commerce and technology show that we
are in agreement about many abstract notions — e.g., the concept
of “3” in my mind is essentially the same as the concept of “3” in
your mind. That kind of agreement is also present for many
higher concepts of mathematics, but not all of them. Our men-
tal universes may differ on more complicated and more abstract
objects. See 3.10 and 3.33 for examples of this.

2.10. Formalism is the style or philosophy or program that
formalizes each part of mathematics, to make it more clear and
less prone to error. Logicism is a more extreme philosophy that
advocates reducing all of mathematics to consequences of logic.

The most extensive formalization ever carried out was Prin-
cipia Mathematica, written by logicists Whitehead and Russell
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near the beginning of the 20th century. That work, three vol-
umes totaling nearly 2000 pages, reduced all the fundamentals of
mathematics to logical symbols. Comments in English appeared
occasionally in the book but were understood to be outside the
formal work. For instance, a comment on page 362 points out
that the main idea of 1 + 1 = 2 has just been proved!

In principle, all of known mathematics can be formulated in
terms of the symbols and axioms. But in everyday practice, most
ordinary mathematicians do not completely formalize their work;
to do so would be highly impractical. Even partial formalization
of a two-page paper on differential equations would turn it into
a 50-page paper. For analogy, imagine a cake recipe written
by a nuclear physicist, describing the locations and quantities
of the electrons, protons, etc., that are included in the butter,
the sugar, etc.

Mathematicians generally do not formalize their work com-
pletely, and so they refer to their presentation as “informal.”
However, this word should not be construed as “careless” or
“sloppy” or “vague.” Even when they are informal, mathemati-
cians do check that their work is formalizable — i.e., that they
have stated their definitions and theorems with enough preci-
sion and clarity that any competent mathematician reading the
work could expand it to a complete formalization if so desired.
Formalizability is a requirement for mathematical publications
in refereed research journals; formalizability gives mathematics
its unique ironclad certainty.

2.11. Complete formalization is routinely carried out by com-
puter programmers. Unlike humans, a computer cannot read
between the lines; every nuance of intended meaning must be
spelled out explicitly. Any computer language, such as Pascal
or C++, has a very small vocabulary, much like the language
of formal logic studied in this book. But even a small vocabulary
can express complicated ideas if the expression is long enough;
that is the case both in logic and in computer programs.

In recent years some researchers in artificial intelligence have
begun carrying out complete formalizations of mathematics —
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they have begun “teaching” mathematics to computers, in ex-
cruciating detail. A chief reason for this work is to learn more
about intelligence — i.e., to see how sentient beings think, or
how sentient beings could think. However, these experiments
also have some interesting consequences for mathematics. The
computer programs are able to check the correctness of proofs,
and sometimes the computers even produce new proofs. In a
few cases, computer programs have discovered new proofs that
were shorter or simpler than any previously known proofs of the
same theorems.

Aside from complete formalizations, computers have greatly
extended the range of feasible proofs. Some proofs involve long
computations, beyond the endurance of mathematicians armed
only with pencils, but not beyond the reach of electronic comput-
ers. The most famous example of this is the Four Color Theorem,
which had been a conjecture for over a century: Four colors suffice
to color any planar map so that no two adjacent regions have the
same color. This was finally proved in 1976 by Appel and Haken.
They wrote a computer program that verified 1936 different cases
into which the problem could be classified.

In 1994 another computer-based proof of the Four Color The-
orem, using only 633 cases, was published by Robertson, Sanders,
Seymour, and Thomas. The search for shorter and simpler proofs
continues. There are a few mathematicians who will not be satis-
fied until/unless a proof is produced that can actually be read and
verified by human beings, unaided by computers. Whether the
theorem is actually true is a separate question from what kind of
proof is acceptable, and what “true” or “acceptable” actually
mean. Those are questions of philosophy, not of mathematics.

2.12. One of the chief attractions of mathematics is its iron-
clad certainty , unique among the fields of human knowledge.
(See Kline [1980] for a fascinating treatment of the history of
certainty.) Mathematics can be certain only because it is an arti-
ficial and finite system, like a game of chess: All the ingredients in
a mathematical problem have been put there by the mathemati-
cians who formulated the problem. In contrast, a problem in
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physics or chemistry may involve ingredients that have not yet
been detected by our imperfect instruments; we can never be
sure that our observations have taken everything into account.

The absolute certainty in the mental world of pure mathe-
matics is intellectually gratifying, but it disappears as soon as
we try to apply our results in the physical world. As Albert
Einstein said,

As far as the laws of mathematics refer to reality, they
are not certain; and as far as they are certain, they do not
refer to reality.

Despite its uncertainty, however, applied mathematics has been
extraordinarily successful. Automobiles, television, the lunar
landing, etc., are not mere figments of imagination; they are
real accomplishments that used mathematics.

This book starts from the uncertain worlds of psychology and
philosophy, but only for motivation and discovery, not to justify
any of our reasoning. The rigorous proofs developed in later
chapters will not depend on that uncertain motivation.

Ultimately this is a book of pure mathematics. Conceivably
our results could be turned to some real-world application, but
that would be far beyond the expertise of the author, so no such
attempt will be made in this volume.

2.13. Some beginning students confuse these two aspects of
mathematics:

(discovery) How did you find that proof?
(certification) How do you know that proof is correct?

Those are very different questions. This book is chiefly concerned
with the latter question, but we must understand the distinction
between the two questions.

2.14. Before a mathematician can write up a proof, he or she
must first discover the ideas that will be used as ingredients in
that proof, and any ideas that might be related. During the
discovery phase, all conclusions are uncertain, but all methods
are permitted. Certain heuristic slogans and mantras may be



Formalism and certification 31

followed — e.g., “First look for a similar, simpler problem that
we do know how to solve.”

Correct reasoning is not necessary or even highly important.
For instance, one common discovery process is to work backwards
from what the mathematician is trying to prove, even though
this is known to be a faulty method of reasoning. (It is discussed
further starting in 5.36.)

Another common method is trial-and-error : Try something,
and if it doesn’t work, try something else. This method is more
suitable for some problems than others. For instance, on a prob-
lem that only has eight conceivable answers, it might not take
long to try all eight. The method may be less suitable for a
problem that has infinitely many plausible answers. But even
there we may gain something from trial-and-error: When a trial
fails, we may look at how it fails, and so our next guess may
be closer to the target. One might call this “enlightened trial-
and-error”; it does increase the discoverer’s understanding after a
while.

The discovery process may involve experimenting with nu-
merous examples, searching through books and articles, talking
to oneself and/or to one’s colleagues, and scribbling rough ideas
on hamburger sacks or tavern napkins. There are many false
starts, wrong turns, and dead ends. Some mathematicians will
tell you that they get their best inspirations during long evening
walks or during a morning shower. They may also tell you that
the inspiration seems to come suddenly and effortlessly, but only
after weeks of fruitless pacing and muttering. Though it is not
meant literally, mathematicians often speak of “banging one’s
head against a wall for a few weeks or months.”

The discovery phase is an essential part of the mathemati-
cian’s work; indeed, the researcher devotes far more time to dis-
covery than to writing up the results. But discovery may be
more a matter of psychology than of mathematics. It is personal,
idiosyncratic, and hard to explain. Consequently, few mathe-
maticians make any attempt to explain it.

Likewise, this book will make little attempt to explain the
discovery process; this book will be chiefly concerned with the
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certification process of mathematical logic. To solve this book’s
exercises, we recommend to the student the methods of work-
ing backward and enlightened trial-and-error. Students with a
knowledge of computers are urged to use those as well; see 1.20.

The need for discovery may not be evident to students in pre-
college or beginning college math courses, since those courses
mainly demand mechanical computations similar to examples
given in the textbook. Higher-level math courses require more
discovery, more original and creative thought.

Actually, for some kinds of problems a mechanical, compu-
tational procedure is known to be available, though explaining
that procedure may be difficult. For other problems it is known
that there cannot be a mechanical procedure. For still other
problems it is not yet known whether a mechanical procedure is
possible. The subject of such procedures is computability theory .
But that theory is far too advanced for this introductory course.

2.15. After discovery, the mathematician must start over from
scratch, and rewrite the ideas into a legitimate, formalizable proof
following rigid rules, to certify the conclusions. Each step in the
proof must be justified. “Findings” from the discovery phase
can be used as suggestions, but not as justifications.

The certification process is more careful than the discovery
process, and so it may reveal gaps that were formerly overlooked;
if so, then one must go back to the discovery phase. Indeed, I am
describing discovery and certification as two separate processes,
to emphasize the differences between them; but in actual practice
the two processes interact with each other. The researcher hops
back and forth between discovery and certification; efforts on
one yield new insights on the other.

In the presentation of a proof, any comment about intuition
or about the earlier discovery of the ideas is a mere aside; it
is not considered to be part of the actual proof. Such comments
are optional, and they are so different in style from the proof
itself that they generally seem out of place. Skilled writers may
sometimes find a way to work such comments into the proof, in
hopes of assisting the reader if the proof is hard to understand.
But it is more commonplace to omit them altogether.
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Indeed, it is quite common to rewrite the proof so that it
is more orderly, even though this may further remove any traces
of the discovery process. (An example of this is sketched in 5.39.)
Consequently, some students get the idea that there is little or
no discovery process — i.e., that the polished proof simply sprang
forth from the mathematician’s mind, fully formed. These same
students, when unable to get an answer quickly, may get the
idea that they are incapable of doing mathematics. Some of
these students need nothing more than to be told that they need
to continue “banging their heads against the the walls” for a
bit longer — that it is perfectly normal for the ideas to take
a while to come.

2.16. Overall, what procedures are used in reasoning? For
an analogy, here are two ways behavior may be prescribed in
religion or law:

(a) A few permitted activities (“you may do this, you may
do that”) are listed. Whatever is not expressly allowed
by that list is forbidden.

(b) Or, a few prohibited activities (“thou shalt nots”) are
listed. Whatever is not explicitly forbidden by that list
is permitted.

Real life is a mixture of these two options — e.g., you must pay
taxes; you must not kill other people. But we may separate
the two options when trying to understand how behavior is pre-
scribed.

Theologians and politicians have argued over these options for
centuries — at least as far back as Tertullian, an early Christian
philosopher (c. 150–222 A.D.). The arguments persist. For in-
stance, pianos are not explicitly mentioned in the bible; should
they be permitted or prohibited in churches? Different church
denominations have chosen different answers to this question.
(See Shelley [1987].)

In the teaching of mathematics, we discuss both

• permitted techniques, that can and should be used, and
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• common errors, based on unjustified techniques — i.e., prohib-
ited techniques.

Consequently, it may take some students a while to understand
that mathematical certification is based on permissions only — or
more precisely, a modified version of permissions:

(a′) We are given an explicit list of axioms (permitted
statements), and an explicit list of rules for deriving
further results from those axioms (permitted meth-
ods). Any result that is not among those axioms, and
that cannot be derived from those axioms via those
rules, is prohibited.

Language and levels

2.17. Levels of formality. To study logic mathematically, we
must reason about reasoning. But isn’t that circular? Well,
yes and no.

Any work of logic involves at least two levels of language and
reasoning; the beginner should take care not confuse these:

a. The inner system, or object system, or formal system, or
lower system, is the formalized theory that is being studied
and discussed. Its language is the object language. It uses
symbols such as

(, ), ∧, ¬, ∀, →, π1, π2, π3, . . .

that are specified explicitly; no other symbols may be used.
Also specified explicitly are the grammatical rules and the
axioms. For instance, in a typical grammar,

π1→(π1∨π2) is a formula; π1)(→ π1π2∨ is not.

(Precise rules for forming formulas will be given in 6.7.) Each
inner system is fixed and unchanging (though we may study
different inner systems on different days). The inner system
is entirely artificial, like a language of computers or of robots.
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The individual components of that language are simpler and
less diverse than those of a natural language such as English.
However, by combining a very large number of these simple
components, we can build very complicated ideas.

b. The outer system, or metasystem, or higher system, is the
system in which the discussion is carried out. The reasoning
methods of that system form the metalogic or metamathe-
matics. The only absolute criteria for correctness of a meta-
mathematical proof are that the argument must be clear and
convincing. The metalanguage may be an informal language,
such as the slightly modified version of English that mathe-
maticians commonly use when speaking among themselves.
(“Informal” should not be construed as “sloppy” or “impre-
cise”; see 2.10.) For instance,

assume L is a language with
only countably many symbols

is a sentence in English about a formal language L; here
English is the informal metalanguage.

c. (Strictly speaking, we also have an intermediate level between the for-
mal and informal languages, which we might call the “level of systematic
abbreviations.” It includes symbols such as `, ², ⇒, and A, B,C, . . .,
which will be discussed starting in 2.23.)

Throughout this book, we shall use classical logic for our meta-
logic. That is, whenever we assert that one statement about some
logic implies another statement about some logic, the “implies”
between those two statements is the “implies” of classical logic.
For instance, Mints’s Admissibility Rule for Constructive Logic
can be stated as

` S → (Q ∨R) ⇒ ` (S → Q) ∨ (S → R);

this rule is proved in 27.13. Here the symbols “→” are impli-
cations in the object system, which in this case happens to be
constructive logic. The symbols “`” mean “is a theorem” —
in this case, “is a theorem of constructive logic.” The symbol
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⇒ is in the metasystem, and represents implication in classical
logic. The whole line can be read as

if S → (Q ∨R) is a theorem of constructive logic,

then (S → Q) ∨ (S → R) is too.

The words “if” and “then,” shown in italic for emphasis here,
are the classical implication (⇒) of our metalogic.1

The metalogic is classical not only in this book, but in most
of the literature of logic. However, that is merely a convenient
convention, not a necessity. A few mathematicians prefer to base
their outer system on more restrictive rules, such as those of
the relevantist or the constructivist (see 2.41 and 2.42). Such
an approach requires more time and greater sophistication; it
will not be attempted here.

Returning to the question we asked at the beginning of this
section: Is our reasoning circular? Yes, to some extent it is,
and unavoidably so. Our outer system is classical logic, and our
inner system is one of several logics — perhaps classical. How can
we justify using classical logic in our study of classical logic?

Well, actually it’s two different kinds of classical logic.

• Our inner system is some formal logic — perhaps classical
— which we study without any restriction on the complexity
of the formulas.

• Our outer system is an informal and simple version of classical
logic; we use just fundamental inference rules that we feel fairly
confident about.

It must be admitted that this “confidence” stems from common
sense and some experience with mathematics. We assume a back-
ground and viewpoint that might not be shared by all readers.

1Actually, even that last explanation of Mints’s rule is an abbreviation.
In later chapters we shall see that S → (Q ∨ R) is not a formula, but a
formula scheme, and it is not a theorem scheme of constructive logic as
stated. A full statement of Mints’s rule is the following:

Suppose that X, Y, and Z are some formula schemes. Suppose that some
particular substitution of formulas for the metavariables appearing in X,
Y, and Z makes Z → (X ∨ Y) into a theorem. Then the same substitution
also makes (Z → X) ∨ (Z → Y ) into a theorem.
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There is no real bottom point of complete ignorance from which
we can begin.

An analogous situation is that of the student in high school
who takes a course in English.2 The student already must know
some English in order to understand the teacher; the course is
intended to extend and refine that knowledge. Likewise, it is
presumed that the audience of this book already has some expe-
rience with reasoning in everyday nonmathematical situations;
this book is intended to extend and refine that knowledge of
reasoning.

2.18. To reduce confusion, this book will use the terms theorem and tau-
tology for truths in the inner system, and principle and rule for truths on
a higher level. However, we caution the reader that this distinction is not fol-
lowed in most other books and papers on logic. In most of the literature, the
words “principle,” “theorem,” and “tautology” are used almost interchange-
ably (and outside of logic, the word “rule” too); the word “theorem” is
used most often for all these purposes. In particular, what I have called
the Deduction Principle, Glivenko’s Principle, and Gödel’s Incompleteness
Principles are known as “theorems” in most of the literature. One must
recognize from the context whether inner or outer is being discussed.

I will use the term corollary for “an easy consequence,” in all settings —
inner and outer, semantic and syntactic. See also 13.16.

2.19. Adding more symbols to the language. One major way
of classifying logics is by what kinds of symbols they involve.

a. This book is chiefly concerned with propositional logic, also
known as sentential logic. That logic generally deals with
∨ (or), ∧ (and), ¬ (not), → (implies), and propositional
variable symbols such as π1, π2, π3, . . . . A typical formula
in propositional logic is (π1 ∨ π2) → π3. (The symbols ↔, ◦,
;, &, ⊥ are also on this level but are used less often in this
book.)

b. Predicate logic adds some symbols for “individual variables”
x, y, . . . to the language, as well as the quantifier symbols
∀ and ∃. Propositions π1, π2, . . . may be functions of those
variables. For instance, ∀x ∃y π2(x, y) says that “for each x
there exists at least one y (which may depend on x) such that

2Replace “English” with whatever is your language, of course.
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π2(x, y) holds.” This book includes a brief study of quantifiers
in informal classical logic, starting in 5.41.

c. An applied logic, or first-order theory , adds some nonlogical
symbols . For instance,

= (equals), + (plus), × (times)

are symbols, not of logic, but of arithmetic, another subject.
To obtain the theory of arithmetic we add to predicate logic
those nonlogical symbols, plus a few axioms governing the
use of those symbols. A typical theorem about the set Z of
integers (but not about the positive integers N) is

∀x ∀y ∃z x + z = y,

which says that for each choice of x and y there exists at least
one z such that x + z = y. (In other words, we are able to
subtract.) Another important applied logic is axiomatic set
theory, described in 2.9. Applied logics will not be studied
in this book.

d. Modal logic (also not studied in this book) adds some modal
operators to one of the logics described above. Here are some
examples of modal operators:

In this the symbol the symbol
logic “2” means “3” means

alethic it is necessary that it is possible that

deontic it is obligatory that it is permitted that

epistemic it is known that it is not known to
be false that

(See Copeland [1996] and references therein.) These modal
operators occur in dual pairs, satisfying ¬ (3x) = 2(¬x).
For instance,

it is not permitted that we kill people

says the same thing as

it is obligatory that we do not kill people.
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Each modal logic has many variants. For instance, differ-
ent ethical systems can be represented by the deontic logics
stemming from different axiom systems. We cannot prove
that one ethical system is “more correct” or “more logical”
or “better” than another, but in principle we should be able
to calculate the different consequences of those different eth-
ical systems.

Semantics and syntactics

2.20. The logician studies the form and the meanings of language
separately from each other. For a nonmathematical example of
this separation, consider Lewis Carroll’s nonsense poem Jabber-
wocky, which begins

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

We don’t know exactly what “slithy” or “tove” means, but we’re
fairly certain that “slithy” is an adjective and “tove” is a noun —
i.e., that “slithy” specifies some particular kind of “tove” — be-
cause the verse seems to follow the grammatical rules of ordinary
English.

In much the same fashion, in mathematical logic we can study
the grammar of formulas separately from the meanings of those
formulas. For instance, the expression “(A ∨ B) → C ” con-
forms to grammatical rules commonly used in logic, while the
expression “A)(∨ → BC ” does not. All the logics studied in this
book use the same grammatical rules, which we will study in
Chapter 6.

2.21. Two faces of logic. Logic can be classified as either seman-
tic or syntactic.3 We will study these separately at first, and then
together.

3Van Dalen refers to these as the “profane” and “sacred” sides of logic.
That description may be intended humorously but has some truth to it.
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Semantics is the concrete or applied approach, which initially
may be more easily understood. We study examples, and investi-
gate which statements are true as computational facts. A typical
computation is

Jπ1 ∨ ¬ π1K = Jπ1K©∨
(
©¬ Jπ1K

)
= max

{
Jπ1K, 1− Jπ1K

}
∈ Σ+,

which would be read as follows: The expression π1 ∨ ¬ π1 is an
uninterpreted string of symbols. We are interested in finding
its value, Jπ1∨¬ π1K, in some valuation, in some particular inter-
pretation. We first expand that expression to Jπ1K©∨ ©¬ Jπ1K by
replacing each uninterpreted connective symbol, ∨ or ¬, with
an interpretation of that symbol. Different logics give different
meanings to those symbols; in the fuzzy interpretation which
we are taking as an example, disjunction is the maximum of
two numbers, and negation is subtraction from 1. Finally, we
evaluate those numbers, and determine whether the resulting
value is a member of Σ+, the set of true values. The formula
π1 ∨ ¬ π1 always evaluates to “true” in the two-valued interpre-
tation and in some other interpretations; we write that fact as
² π1∨¬ π1. It evaluates sometimes to true and sometimes to false,
in other interpretations, such as the fuzzy interpretation; we write
that fact as 2 π1 ∨ ¬ π1. Semantic logic can also prove deeper
results; for instance, it is shown in 9.12 that if some two formulas
A and B satisfy ² A → B in the crystal interpretation, then
the formulas A and B must have at least one πj in common
— they cannot be unrelated formulas like π1 → π6 and π2 ∨¬π2.

Syntactics is the abstract or theoretical approach. In syn-
tactic logics, we do not have a set Σ+ of true values or a set Σ−
of false values; we do not evaluate a formula to semantic values
at all. Instead we start from some axioms (assumed formulas) and
assumed inference rules, and investigate what other formulas and
inference rules can be proved from the given ones. As a typical
example, we shall now present a proof of the Third Contrapositive
Law, ` (A → B) → (B → A), though the notation used here is
less concise than that used later in the book. Of course, the
proof makes use of results that are established prior to the Third
Contrapositive Law.
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# formula justification

(1) (A→B)→
(B→A)

This is a specialization of the Second Con-
trapositive Law, which is proved earlier.

(2) A→A This is an axiom (an assumed formula).

(3) (B→A)→
(B→A)

This follows by applying the detachmental
corollary of → -Prefixing to step (2).

(4) (A→B)→
(B→A)

This follows by applying Transitivity,
proved earlier, to steps (1) and (3).

2.22. Example (optional): the real numbers. Though the theory of R will
not be studied in this book, we sketch the definition of R briefly here, because
it makes a good example of the relation between semantics and syntactics.

In lower-level mathematics courses, the real numbers are presented as
infinite decimal expansions or as points on a line. Those presentations are
concrete and appeal to the intuition, and they will suffice for the needs
of this book as well, but they do not really suffice to support proofs of
deeper theorems about the real number system. A freshman college calculus
book proves some of its theorems but leaves many unproved, stating that
their proofs can be found in more advanced courses; those proofs actually
require a more rigorous definition. For instance:

Intermediate Value Theorem. If f is continuous on [a, b] and
f(a) < m < f(b), then there is at least one number c in (a, b)
such that f(c) = m.

Maximum Value Theorem. If f is continuous on [a, b], then there
is at least one number c in [a, b] with f(c) = max{f(t) : a ≤
t ≤ b}.

These results are evident from pictures (using the “points on a line” ex-
planation of the real numbers), but the pictures do not really constitute
a rigorous proof, and the proof is omitted from such books. The rigorous
proof must be omitted, because it requires notions that cannot be seen in pic-
tures and that are too advanced to be discussed in any detail in freshman
calculus books. The proof requires the completeness of the reals (discussed in
2.27), or equivalently the least upper bound property : Every subset of R that
has an upper bound in R, also has a least upper bound in R. Some calculus
books mention that property, but they don’t follow through with the proofs.

A more advanced course, usually called “Introduction to Real Analysis,”
is taken by some mathematics majors in their senior year of college. It
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investigates the real number system more carefully. It lists the axioms for a
complete ordered field ; these include the least upper bound property and
rules such as x + y = y + x. The axioms give us a syntactic system.

Some introductory textbooks on real analysis simply assume that the
real numbers satisfy those axioms, but that really is evading part of the
question. What is this thing that satisfies those axioms? How do we know
that there is a thing satisfying those axioms? What are the “real numbers,”
really? More mature mathematicians take a slightly longer route to the
real numbers:

One can prove that the infinite decimal expansions satisfy these ax-
ioms and thus form a complete ordered field. However, it is much easier
to prove that those axioms are satisfied by Dedekind cuts of rationals or
by Cantor’s equivalence classes of Cauchy sequences of rationals; these are
two “constructions” of the real numbers from the rational numbers. Dec-
imal expansions, Dedekind cuts, and equivalence classes of Cauchy sequences
are three different semantic systems that satisfy the axioms for a complete
ordered field.

In a still more advanced course on algebra, one can prove that any
two complete ordered fields are isomorphic.4 For instance, each infinite
decimal expansion corresponds to one Dedekind cut, or to one equivalence
class of Cauchy sequences. Thus it doesn’t really matter which complete
ordered field we use. All such fields have the same algebraic properties, and
thus they are just different manifestations or representations or relabelings of
the same algebraic system.

Finally, one can define the real number system to be that algebraic
system. Once we’ve done all this, we can put aside the semantic examples
(decimal expansions, Dedekind cuts, equivalence classes), and just concen-
trate on the syntactic axioms. This may seem excessively abstract, but
ultimately it focuses on the useful part. For developing abstract theorems
such as the Intermediate Value Theorem and the Maximum Value Theorem,
we are more concerned with what the real numbers do than with what they
look like. In the case of real numbers, the axioms (syntactics) give us a
more useful description or explanation than do the examples (semantics).

Actually, the usual axioms for the real numbers do not make a “first-
order theory.” Most of the axioms, such as x+y = y+x, are about numbers;
but the least upper bound property is an axiom about numbers and about

4The meaning of the term “isomorphic” varies from one part of mathe-
matics to another. In general, we say that two mathematical objects are
isomorphic if one is just a relabeling of the other — i.e., if there exists
a mapping between them that preserves all structures currently of inter-
est. The precise definition varies because different mathematicians may find
different structures to be of interest. For instance, the rational numbers
and the integers are isomorphic if we’re just interested in cardinality, but
not if we’re interested in multiplication and division.
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sets of numbers. It is not possible to describe the real numbers as a first-order
theory. One might expect that a simpler system, such as the integers, can be
fully explained by a first-order theory, but Gödel showed that even that is not
possible. See 2.34.

2.23. Formulas are expressions like π1 → (π2 ∧ π1) or π1 ∨¬π1.
The Greek letters π1, π2, . . . are propositional variable symbols. A
formula such as (for instance) π1∨¬π1 may be “valid” in a couple
of different ways:

• Semantics is concerned with values and meanings of formulas.
For instance, the expression ² π1 ∨ ¬ π1 means “the formula
π1∨¬ π1 is a tautology — i.e., it is an ‘always-true’ formula; it is
true in all the valuations (examples) in the interpretation that
we’re currently considering.”

• In a syntactic logic, ` π1∨¬π1 means “the formula π1∨¬ π1

is a theorem — i.e., it is a provable formula; it is derivable from
the assumptions of the inference system that we’re currently
considering.” (Derivations are explained in greater detail start-
ing in 12.5.) If the formula is one of those assumptions, we
would also say it is an axiom. (Thus, each axiom is a theorem;
it has a one-line derivation.)

Formula schemes are expressions like A → (B ∨ A); the let-
ters are metavariables. Each formula scheme represents infinitely
many formulas, because each metavariable can be replaced by
any formula. For instance, the formula scheme A ∨ B includes
as instances the formulas

π1 ∨ π2, (π2 → π3) ∨ (π1 ∧ ¬π5), π1 ∨ (π2 ∨ π3)

and infinitely many others. Those individual formulas are part
of the object system, but the formula scheme A∨B is at a slightly
higher level of conceptualization. Our reasoning will lead us to
draw conclusions about A∨B, but this might be best understood
as a way of summarizing conclusions drawn about the individual
formulas. See 6.27 for further discussion.

A tautology scheme or theorem scheme is a formula scheme
whose instances are all tautologies or theorems, respectively.
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2.24. At a higher level, an inference rule is an expression involv-
ing two or more formulas, related by a turnstile symbol (` or ²).
Again, inference rules come in two flavors:

• In a semantic logic, {A→B, B→C} ² A→C means that
(regardless of whether the formulas involved are tautologies)
in each valuation where the hypotheses A → B and B → C
are true, the conclusion A → C is also true. See 7.10 for
further discussion of such inference rules.

• In syntactic logic, {A→B, B→C} ` A→C means that (re-
gardless of whether the formulas involved are theorems) from
the hypotheses A → B and B → C, we can derive the con-
clusion A→C. See 12.5 for further discussion of derivations.

In this book, any inference rule must have at least one hypoth-
esis — i.e., there must be at least one formula in the set on the
left of the turnstile. That is part of this book’s definition of
“inference rule.” (Permitting inference rules with no hypotheses
— i.e., classifying tautologies and theorems as special cases of
“inference rules” — would make sense, but would complicate
some parts of our exposition.)

2.25. In addition to tautologies/theorems and inference rules, we
will also study a few higher principles, such as admissibility rules.
Here are three different levels of consequences:

Tautology
²A→B

The formula A→B is always true.

Inference A²B Whenever A is true, then B is true.

Admissibility
²A ⇒ ²B

If some substitution of formulas for metavari-
ables makes A an always-true formula, then
the same substitution makes B always-true.

Beginners grasp the semantic notions of “always true” and “when-
ever true” with little difficulty, but are more challenged by the
syntactic analogues, which are more abstract:

Theorem
`A→B

The formula A→B can be derived from noth-
ing (i.e., from just the logic’s assumptions).
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Inference A`B From formula A we can derive formula B.

Admissibility
`A ⇒ `B

If some substitution of formulas for metavari-
ables makes A into a formula that can be de-
rived from nothing, then the same substitu-
tion also makes B derivable from nothing.

These three notions can easily be confused with one another by
students, and even by experienced logicians who are new to plu-
ralism. The distinction is not strongly supported by our lan-
guage; it requires phrasing that is sometimes awkward. That
may stem from the fact that in classical logic, the three notions
turn out to be equivalent, and so they are used interchangeably
in much of the literature. But in some other logics they are
not equivalent. Moreover, even in classical logic the proof of
equivalence (given in 22.5 and 29.15) is far from trivial; we must
not treat the notions as equivalent until after we have proceeded
through that proof.

The best way to alleviate the beginner’s confusion is to look
at several examples in different logics. We will do that in later
chapters; following is a brief preview.

• In most logics of interest, `A→B implies A `B. Thus we
can go from an implication theorem to an inference rule; we
can move A leftward past the turnstile. This is essentially just
detachment (13.2.a), an assumed inference rule in all the logics
considered in this book.

But what about moving A to the right past the turnstile? That is
the subject of three deduction principles5 listed below:

• Constructive version. A `B ⇒ `A→B. For this to hold,
constructive implication is both necessary and sufficient; we
prove that in 22.5 and 22.6.

• ÃLukasiewicz version. A ` B ⇒ ` A → (A → B) in the
three-valued ÃLukasiewicz logic; see 24.26.

• Relevant version. A ` B ⇒ ` A∨B in the comparative

5Called “Theorems” in most of the literature. See 2.18.
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and Sugihara interpretations and in relevant logic; see 8.30.c
and 23.6.

All three of these principles are valid in classical logic. Indeed,
they coalesce into one principle, since the three formulas A→B,
A→(A→B), and A ∨B are equivalent in classical logic.

2.26. Relating the two faces. After we study some syntac-
tic systems and semantic systems separately, we will study the
interaction between them. In particular, by completeness we will
mean a pairing of some syntactic system with some semantic
system such that `A ⇔ ²A. That is, these two sets of formulas
are equal:

{
theorems of the
syntactic system

}
=

{
tautologies of the
semantic system

}
.

In effect, the abstract axioms “explain” the concrete interpre-
tation, and we obtain a complete analysis of the set of truths:

any statement can be proved (P) by an abstract deriva-
tion or disproved (D) by a concrete counterexample.

That dichotomy is illustrated by the table below, which consid-
ers five syntactic logics (classical, Wajsberg, constructive, RM,
or Abelian) and the corresponding five semantic logics (two-
valued, ÃLukasiewicz, topological, Sugihara, comparative). For

syntactics class. Waj. constr. RM Abel.
25.1 24.14 22.1 23.13 26.1

semantics 2-val. ÃLuk. topol. Sugi. comp.
8.2 8.17 10.1 8.38 8.28

complete? 29.12 29.20 29.29 (23.11) (26.8)

A ∨ ¬A P D D P P
(¬¬A) → A P P D P P

(A→¬A)→¬A P D P P D
A→(B→A) P P P D D

(A ∧ ¬A)→B P D P D D
((A→B)→B)→A D D D D P
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the first three of these five pairings, completeness is proved in
this book. The last two pairings are also complete, but their
completeness proofs are too advanced for this book, and are
merely mentioned in the sections indicated by the italicized and
parenthesized numbers.

A much longer list of completeness pairings is given in the next
table below; again, italicized reference numbers indicate discus-
sion in lieu of proof.

syntactics semantics complete?

classical 25.1 two-valued 8.2 29.12
classical 25.1 powerset 9.3 11.11
classical 25.1 six-valued 9.4 11.12

constructive 22.1 all topologies 10.1 29.29
constructive 22.1 finite topologies 10.1 29.29
constructive 22.1 no finite functional 22.16
constructive 22.1 R topology 10.1 (29.29)

Dummett 22.18 upper sets 4.6.h (22.18)
relevant 23.1 Church chain 9.13 sound
relevant 23.1 Ch. diamond 9.14 sound
relevant 23.1 no finite functional 23.11.a

Brady 23.11.b crystal 9.7 (23.11.b)
RM 23.13 Sugihara 8.38 (23.11.c)
RM 23.13 no finite functional 23.11.a
implications worlds 28.1 28.13

Wajsberg 24.14 ÃLukasiewicz 8.16 29.20
Rose-Rosser 24.1 Zadeh 8.16 (24.2)

Abelian 26.1 comparative 8.28 (26.8)
not finite Dziobiak (29.31)

not findable arithmetic (2.34)

We caution the student that the pairs in this introductory
book were selected in part for their simplicity, and so are atypical;
“most” logics are more complicated. In particular, relevant logic
(23.1) is one of the most important and interesting logics stud-
ied in this book, but its characterizing semantics are algebraic
structures too complicated for us even to describe in this book.
(Those semantics can be found in Anderson and Belnap [1975]
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and Dunn [1986].) The logic RM (relevant plus mingle) is of inter-
est because it has some of the flavor of relevant logic and yet has a
very simple semantics, but the proof of that completeness pairing
is too advanced for this book to do more than state it; see 23.11.c.

Advanced books and papers on logic often use the terms “the-
orem” and “tautology” interchangeably, because they assume
that the reader is already familiar with some completeness pair-
ing. We may follow that practice in these introductory/preview
chapters; but we will cease that practice when we begin formal
logic in Chapter 6, and we will not resume it until after we prove
completeness near the end of the book.

Remarks. More precisely, the pairing `A ⇔ ²A is called weak completeness
in some of the literature. Strong completeness says that the syntactic and
semantic systems have the same inference rules; that is, S `A ⇔ S ² A
for any formula A and set of formulas S. We will consider both kinds of
completeness; see particularly 21.1.

2.27. The word “completeness” has many different meanings in math.
Generally, it means “nothing is missing — all the holes have been filled
in”; but different parts of mathematics deal with different kinds of “holes.”

For instance, the rational number system has a hole where
√

2 “ought to
be,” because the rational numbers

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

get closer together but do not converge to a rational number. If we fill
in all such holes, we get the real number system, which is the completion
of the rationals.

Even within logic, the word “completeness” has a few different meanings.
Throughout this book, it will usually have the meaning sketched in 2.26, but
some other meanings are indicated in 5.15, 8.14, and 29.14.

2.28. The two halves of completeness have their own names:

Adequacy means {tautologies} ⊆ {theorems}. That is,
our axiomatic method of reasoning is adequate for prov-
ing all the true statements; no truths are missing.

Soundness means {theorems} ⊆ {tautologies}. That
is, our method of reasoning is sound ; it proves only true
statements.
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In most pairings of interest, soundness is much easier to establish.
Consequently, soundness is sometimes glossed over, and some
mathematicians use the terms “completeness” and “adequacy”
interchangeably.

Historical perspective

2.29. Prior to the 19th century, mathematics was mostly em-
pirical. It was viewed as a collection of precise observations
about the physical universe. Most mathematical problems arose
from physics; in fact, there was no separation between math and
physics. Every question had a unique correct answer, though
not all the answers had yet been found. Proof was a helpful
method for organizing facts and reducing the likelihood of er-
rors, but each physical fact remained true by itself regardless of
any proof. This pre-19th-century viewpoint still persists in many
textbooks, because textbooks do not change rapidly, and because
a more sophisticated viewpoint may require higher learning.

2.30. Prior to the 19th century, Euclidean geometry was seen
as the best known description of physical space. Some non-
Euclidean axioms for geometry were also studied, but not taken
seriously; they were viewed as works of fiction. Indeed, most early
investigations of non-Euclidean axioms were carried out with the
intention of proving those axioms wrong : Mathematicians hoped
to prove that Euclid’s parallel postulate was a consequence of
Euclid’s other axioms, by showing that a denial of the parallel
postulate would lead to a contradiction. All such attempts were
unsuccessful — the denial of the parallel postulate merely led
to bizarre conclusions, not to outright contradictions — though
sometimes errors temporarily led mathematicians to believe that
they had succeeded in producing a contradiction.

However, in 1868 Eugenio Beltrami published a paper showing
that some of these geometries are not just fictions, but skewed
views of “reality” — they are satisfied by suitably peculiar in-
terpretations of Euclidean geometry. For instance, in “double
elliptic geometry,” any two straight lines in the plane must meet.
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This axiom is satisfied if we interpret “plane” to mean the surface
of a sphere and interpret “straight line” to mean a great circle
(i.e., a circle whose diameter equals the diameter of the sphere).

By such peculiar interpretations, mathematicians were able to
prove that certain non-Euclidean geometries were consistent —
i.e., free of internal contradiction — and thus were legitimate, re-
spectable mathematical systems, not mere hallucinations. These
strange interpretations had an important consequence for con-
ventional (nonstrange) Euclidean geometry as well: We conclude
that the Euclidean parallel postulate can not be proved from
the other Euclidean axioms.6

After a while, mathematicians and physicists realized that
we don’t actually know whether the geometry of our physical
universe is Euclidean, or is better described by one of the non-
Euclidean geometries. This may be best understood by analogy
with the two-dimensional case. Our planet’s surface appears flat,
but it is revealed to be spherical if we use delicate measuring
instruments and sophisticated calculations. Analogously, is our
three-dimensional space “flat” or slightly “curved”? And is it
curved positively (like a sphere) or negatively (like a horse sad-
dle)? Astronomers today, using radio-telescopes to study “dark
matter” and the residual traces of the original big bang, may
be close to settling those questions.

2.31. The formalist revolution. Around the beginning of the
20th century, because of Beltrami’s paper and similar works,
mathematicians began to change their ideas about what is math-
ematics and what is truth. They came to see that their sym-
bols can have different interpretations and different meanings,
and consequently there can be multiple truths. Though some
branches of math (e.g., differential equations) continued their
close connections with physical reality, mathematics as a whole
has been freed from that restraint, and elevated to the realm

6These consistency results are actually relative, not absolute. They show
that if Euclidean geometry is free of contradictions, then certain non-
Euclidean geometries are also free of contradictions, and the parallel pos-
tulate cannot be proved from the other Euclidean axioms.
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of pure thought.7 Ironically, most mathematicians — even those
who work regularly with multiple truths — generally retain a
Platonist attitude: They see their work as a human investigation
of some sort of objective “reality” which, though not in our physi-
cal universe, nevertheless somehow “exists” independently of that
human investigation.

In principle, any set of statements could be used as the axioms
for a mathematical system, though in practice some axiom sys-
tems might be preferable to others. Here are some of the criteria
that we might wish an axiom system to meet, though generally we
do not insist on all of these criteria. The system should be:

Meaningful. The system should have some uses, or represent
something, or make some sort of “sense.” This criterion is ad-
mittedly subjective. Some mathematicians feel that if an idea
is sufficiently fundamental — i.e., if it reveals basic notions of
mathematics itself — then they may pursue it without regard
to applications, because some applications will probably become
evident later — even as much as a century or two later. This
justification-after-the-theory has indeed occurred in a few cases.

Adequate (or “complete”). The axioms should be sufficient
in number so that we can prove all the truths there are about
whatever mathematical object(s) we’re studying. For instance, if
we’re studying the natural number system, can we list as ax-
ioms enough properties of those numbers so that all the other
properties become provable?

Sound. On the other hand, we shouldn’t have too many ax-
ioms. The axioms should not be capable of proving any false
statements about the mathematical object(s) we’re studying.

Independent. In another sense, we shouldn’t have too many
axioms: They should not be redundant; we shouldn’t include any
axioms that could be proved using other axioms. This criterion
affects our efficiency and our aesthetics, but it does not really
affect the “correctness” of the system; repetitions of axioms are
tolerable. Throughout most of the axiom systems studied in this
book, we will not concern ourselves about independence. This

7Or reduced to a mere game of marks on paper, in the view of less op-
timistic mathematicians.
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book is primarily concerned with comparing different logics, but
an axiom that works adequately in studying several logics is not
necessarily optimal for the study of any of them.

Consistent. This is still another sense in which we shouldn’t
have too many axioms: Some mathematicians require that the
axioms do not lead to a contradiction. In some kinds of logic,
a contradiction can be used to prove anything, and so any one
contradiction would make the notion of “truth” trivial and worth-
less. In paraconsistent logics, however, a contradiction does not
necessarily destroy the entire system; see discussion in 5.16.

Recursive. This means, roughly, that we have some algorithm
that, after finitely many steps, will tell us whether or not a given
formula is among our axioms. (Nearly every logic considered
in this book is defined by finitely many axiom schemes, and so
it is recursive.)

2.32. Over the last few centuries, mathematics has grown, and
the confidence in mathematical certainty has also grown. During
the 16th–19th centuries, that growth of certainty was part of
a wider philosophical movement known as the Enlightenment or
the Age of Reason. Superstitions about physical phenomena were
replaced by rational and scientific explanations; people gained
confidence in the power of human intellect; traditions were ques-
tioned; divine-right monarchies were replaced by democracies.
Isaac Newton (1643–1727) used calculus to explain the motions
of the celestial bodies. Gottfried Wilhelm von Leibniz (1646–
1716) wrote of his hopes for a universal mathematical language
that could be used to settle all disputes, replacing warfare with
computation.

The confidence in mathematics was shown at its peak in David
Hilbert’s famous speech8 in 1900. Here is an excerpt from the
beginning of that speech:

8Hilbert (1862–1943) was the leading mathematician of his time. In his
address to the International Congress of Mathematicians in 1900, he de-
scribed 23 well-chosen unsolved problems. Attempts to solve these famous
“Hilbert problems” shaped a significant part of mathematics during the 20th
century. A few of the problems still remain unsolved.
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This conviction of the solvability of every mathemati-
cal problem is a powerful incentive to the worker. We
hear within us the perpetual call: There is the problem.
Seek its solution. You can find it by pure reason, for
in mathematics there is no “unknowable.”

Hilbert was the leader of the formalists. He advocated working to
put all of mathematics on a firm axiomatic foundation; this plan
is now known as Hilbert’s program. He and other mathematicians
were encouraged by some successes in the 1920s, and particularly
by Gödel’s proof of completeness of first-order logic in 1930.

2.33. In 1931, however, Gödel proved his Incompleteness Prin-
ciples (discussed below), thereby demolishing Hilbert’s program:
Gödel proved that, in fact, mathematics does have some “un-
knowable” propositions. At nearly the same time, Heisenberg
formulated his Uncertainty Principle of particle physics. Evi-
dently, there are inherent limitations on what we can know, in
any field of investigation. However, these discoveries mark only a
boundary, not a refutation, of the Enlightenment. Despite its
limitations, reason remains a powerful tool.

2.34. Gödel’s First Incompleteness Principle is a result of ap-
plied (first-order) logic, not propositional logic, so its detailed
explanation is beyond the scope of this book; but we will de-
scribe it briefly:

It is not possible to specify a set of axioms that specify
precisely the truths of N.

By “the truths of N” we mean facts about the positive integers,
including advanced facts about prime numbers.

A subtlety must be pointed out here: “not possible to specify”
is not the same thing as “there does not exist.” For instance, for
our set of axioms, we could simply use the set of all true state-
ments about N. That set exists, but we can’t actually find it. A
set of axioms that we can “specify” means a recursive set — a set
that is finite, or an infinite set of axioms, for which membership
or nonmembership can be determined by some explicit algorithm.
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The system N is particularly important because most parts of
mathematics can be expressed in countable languages — i.e., only
a sequence of symbols is needed. Consequently, most statements
of mathematics can be encoded as statements about N. (Indeed,
statements could be encoded in terms of sequences of 0’s and
1’s; that is the language used inside modern electronic comput-
ers.) If we could axiomatize N, then we could axiomatize most of
mathematics.

After Gödel’s work, other examples of incompleteness were
found — i.e., mathematical theories which, if viewed as semantic
systems, could not be suitably axiomatized. In the late 20th
century, Gregory Chaitin showed that most of mathematics can-
not be suitably axiomatized — that mathematics is riddled with
holes. As Chaitin himself put it,

most of mathematics is true for no particular reason.

Thus, a reasonable goal for mathematicians is not to explain
everything (Hilbert’s program, discussed in 2.32), but just to
find some parts of mathematics that can be explained and that
have some usefulness or other interest.

2.35. Gödel’s Second Incompleteness Principle was concerned
with consistency, mentioned in 2.31 as a minimal requirement
for an axiom system. Hilbert hoped to prove that each of the
main axiom systems of mathematics was consistent. This was
in fact accomplished for some elementary axiom systems.

Any proofs about a logical “inner” system depend on the use
of other mathematics in the “outer” system (see terminology in
2.17), but Hilbert hoped that such proofs could be arranged so
that the outer mathematics used in the proof was more elemen-
tary than the inner system whose consistency was being proved.
Thus we could “bootstrap” our way up, from systems so sim-
ple that they were obviously consistent, to more complicated
systems. Gödel himself is credited with one of the most suc-
cessful of these bootstrapping operations: In 1931 he proved
the consistency of first-order logic, assuming only much more
elementary and more obvious systems.
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But Gödel’s Second Incompleteness Principle showed limita-
tions in this bootstrapping process: It cannot be applied to some
axiomatic systems a bit higher than first-order logic. For some
of those systems, consistency can only be proved by assuming the
consistency of other systems that are at least as complicated and
as subject to doubt. Thus an absolute proof of consistency is
not possible.

One of the axiomatic systems to which Gödel’s incompleteness
result is applicable is set theory, the “foundation” of the objects of
modern mathematics. Set theory is empirically consistent: It is
now over a century old; if it had any contradictions, probably
we would have found one by now. But we’re still not certain
of that, and Gödel has made it clear that we never will be. Even
a mathematician must accept some things on faith or learn to live
with uncertainty.

2.36. Though Gödel demonstrated the impossibility of Hilbert’s
program, Hilbert’s style of formalism and formalizability contin-
ued to spread throughout mathematics, and it remains dominant
to this day. One of the last branches of mathematics to em-
brace the formalist revolution was logic itself. Just as “geometry”
meant “Euclidean geometry” until near the end of the 19th cen-
tury, so too logic was dominated by a classical-only viewpoint
until late in the 20th century.

Early in the 20th century, a few pioneering mathematicians
began to investigate nonclassical logics. The resulting proofs have
the same ironclad certainty as any other mathematical results,
but the investigators themselves were motivated by philosoph-
ical beliefs. Many of them were not pluralists (espousing many
logics), but were enamored of one particular nonclassical logic,
and advocated it as “the one true logic,” the one correct ap-
proach to thinking. Fighting against the majority view made
them controversial figures.

One particularly interesting example was constructivism, in-
troduced briefly in 2.42 and in greater detail in later chapters. Er-
rett Bishop’s book, Foundations of Constructive Analysis [1967],
was not actually a book on logic — in fact, it barely mentioned
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formal logic — but it was nevertheless a radical breakthrough af-
fecting logic. The book presented a substantial portion of analysis
(a branch of mathematics) at the level of an advanced undergrad-
uate or beginning graduate course, covering fairly standard mate-
rial but in a constructivist style. This had never been done before,
nor had previous mathematicians even believed it could be done.

Most of Bishop’s book was just mathematics — objective
and indisputable. However, Bishop explained his unconventional
viewpoint in a preface titled “A Constructivist Manifesto.” This
told not only how his methods of reasoning worked (an objective,
mathematical matter) but also why he felt these methods were
preferable (a more subjective matter). Here is one of the more
colorful passages:

Mathematics belongs to man, not to God. We are not
interested in properties of the positive integers that have
no descriptive meaning for finite man. When a man
proves a positive integer to exist, he should show how
to find it. If God has mathematics of his own that needs
to be done, let him do it himself.

(See the footnote in 29.2 for an example of God’s mathematics.)
During the last decades of the 20th century, logic finally ac-

cepted the formalist revolution. Mathematical logic became a
respectable subject in its own right, no longer dependent on phi-
losophy or even particularly concerned about it. Researchers
saw different logics merely as different types of abstract alge-
braic structures. (For instance, the rules in 7.5.c(ii) show that
a functional valuation J K is nothing other than a homomorphism
from the algebra of formulas to the algebra of semantic values.)
With this philosophy-free view, it was inevitable that research
logicians would become pluralists; the many-logic viewpoint is
now taken for granted in the research literature of logic. But
that replacement of philosophy with algebra also made the re-
search literature less accessible to beginners. Textbooks lagged
behind, continuing to emphasize classical logic.

So far, only a few textbooks have been written with the plu-
ralist approach; this book is one of them. Though pluralistic
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in content, this book is old-fashioned in style: It is intended for
beginners, so we use philosophy for motivation and we attempt to
keep the algebra to a minimum.

Pluralism

2.37. How can there be different kinds of logics? Isn’t logic
just common sense? No, it’s not that simple. Different situations
may call for different kinds of reasoning. As we already indicated
in 2.26, different logics have different truths (i.e., theorems or tau-
tologies). They also have different inference rules and higher-level
principles, as indicated in the table below. We may understand
these principles better if we study the contrasts between the dif-
ferent logics; that is one of the chief strategies of this book. Some
of our main logics are briefly introduced in the next few pages.

property Excluded Deduction If `A→B Explosion
→ middle or a principle: with A,B of some

logic ↓ variant of it If A`B . . . unrelated sort

relevant ` A ∨ A ` A ∨B can’t be none

integer- ` A ∨ A ` A ∨B `A and `(A∧A)

valued `B →(B∨B)

Wajs- `A∨A∨A
∼ ` A→ no conse- A ∧ A

berg (A → B) quences ` B

con- (`A∨B) ⇒ ` A → B `A or `B ` (A ∧ A)
structive (`A or `B) → B

classical ` A ∨ A all of the `A or `B ` (A ∧ A)
above → B

2.38. So-called classical logic is the logic developed by Frege,
Russell, Gödel, and others. Among commonly used logics, it is
computationally the simplest, and it is adequate for the needs of
most mathematicians. In fact, it is the only logic with which
most mathematicians (other than logicians) are familiar. The
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main ideas of propositional classical logic can be summarized
by the simple true/false table given here; a similar table can

inputs outputs
P Q ¬P P ∧Q P ∨Q P → Q

0 0 1 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 1 0 1 1 1

be found as early as the works of Philo of Megara, one of the
Greek Stoics (approximately 200 B.C.). For compatibility with
other parts of this book, we shall abbreviate 0 = “false” and
1 = “true.”

We emphasize that P → Q is considered to be true (1) in all
cases except the case where P is true (1) and Q is false (0).
Some noteworthy corollaries are

(a) a false statement implies anything;

(b) anything implies a true statement; and

(c) P → Q is true precisely when P ≤ Q.

Exercise. Extend the table, giving output columns for the three
formulas Q→P , (P→Q)∨(Q→P ), and (P→Q)→(Q→P ).

Remarks. The “noteworthy corollary” (c) will generalize to most of the
nonclassical logics in this book, but (a) and (b) may fail in logics that have
several kinds of “true” or several kinds of “false.” An example is examined in
detail in 2.40.

2.39. Aristotle objected to the Megarian approach. He pointed
out that if every statement — even a statement about a future
event — is already either “true” or “false” (perhaps without our
knowing which), then the future is predetermined. For instance,
one of these statements is true, and the other is false:

• There will be a sea-battle tomorrow.

• There will not be a sea-battle tomorrow.
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ÃLukasiewicz (1878–1956; pronounced woo-kah-sheay-vitch) ex-
tended this objection; if the future is predetermined then we
have no free will. So in the 1920s he began studying multivalued
logics . His earliest work involved only three semantic values —
true (1), false (0), and indeterminate (1/2) — but later he consid-
ered quantitative logics with a whole range of values, e.g., all the
numbers in the interval [0, 1]. A statement such as

most old men are mostly bald

is mostly true. We can make this precise by assigning numbers
between 0 and 1 to “old,” “bald,” and the three most ’s.

Closely related to ÃLukasiewicz’s logics are the fuzzy logics
studied by L. A. Zadeh in the 1960s. Zadeh observed that me-
chanical sensory devices such as thermostats cannot supply in-
formation with perfect precision, and even high precision is pro-
hibitively expensive. In the real world, data are unavoidably
imprecise. Thus, the circuits using that information must be
designed to make the best precise use of imprecise data. Fuzzy
logics are now used in the design of control circuitry in dish-
washers, clothes dryers, automobile cruise controls, and other
devices.

The term “fuzzy” may be unfortunate, for it has picked up
a rather negative connotation in our society in recent years; a
person who uses “fuzzy thinking” is a person who does not think
clearly. But the two notions are nearly opposites: Fuzzy thinking
is unnecessarily imprecise reasoning, while fuzzy logic is precise
reasoning about imprecise information.

Fuzzy logic is investigated further in 8.16–8.26, Chapter 24,
and 29.16–29.20.

2.40. Aristotle also mentioned a type of comparative logic that is
incompatible with classical logic. He wrote9

(a) if there are two things both more desirable than some-
thing, the one which is more desirable to a greater

9This can be found in Topics III, 3, 118b2–3 of Aristotle [1984]. The
analysis given here is modified from Casari [1989]; our development of this
logic later in this book is based largely on Meyer and Slaney [1989, 2002].
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degree is more desirable than the one more desirable
to a less degree.

That’s admittedly a bit hard to parse, but an example may be
easier. Suppose that I’m serving coffee, tea, and punch. Then

(a′) if “the coffee is hotter than the punch” is more true
than “the tea is hotter than the punch,” then the coffee
is hotter than the tea.

How can we restate this mathematically?
Assume that I’ve picked some particular temperature, and

I call anything above that temperature “hot.” This “hot” cutoff
is a sort of absolute mark on our temperature scale, but it is
a sliding absolute: We only use it temporarily, and our reasoning
ultimately will not depend on where we put this cutoff point. Our
reasoning will depend only on the differences in temperatures —
i.e., how the coffee, tea, and punch stand relative to each other.
(This explanation may justify the use of the word “relativity”
in 20.2.)

Now, let us abbreviate the three propositions:

C = “the coffee is hot,”
T = “the tea is hot,”
P = “the punch is hot.”

As in 2.38(c), we understand that a less true statement implies a
more true statement. For instance, saying that

(b) the coffee is hotter than the punch

is the same as saying that, no matter what we have chosen for the
cutoff temperature in our definition of “hot,”

(b′) if the punch has a high enough temperature to be
called “hot,” then the coffee also has a high enough
temperature to be called “hot,”

or, in other words,

(b′′) P → C.
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Similarly, “the tea is hotter than the punch” can be restated
as P → T . Putting these statements together, since a less true
statement implies a more true statement, “P → C is more true
than P → T” can be restated as (P → T ) → (P → C). Finally,
condition (a′) can be restated as

(a′′)
[
(P → T ) → (P → C)

] → (T → C).

This “prefix cancellation” formula is always true in comparative
logic, a mathematical logic developed further in 8.28–8.37 and
Chapters 20 and 26.

But the prefix cancellation formula is not always true in classi-
cal logic — i.e., classical logic cannot be used to compare bev-
erages in the fashion indicated above. For instance, suppose that
the tea is hot, and the punch and coffee are not. Then T = 1 and
P = C = 0. In two-valued classical logic, this yields

[
(P → T )︸ ︷︷ ︸

1

→ (P → C)︸ ︷︷ ︸
1

]

︸ ︷︷ ︸
1 (∗)

→ (T → C)︸ ︷︷ ︸
0

︸ ︷︷ ︸
0

so prefix cancellation is false. Evidently, classical logic is not
a good method for analyzing statements such as (a′).

How does classical logic go astray? The error first appears at
the step marked by the asterisk (∗) in the evaluation above. The
statements P → T and P → C are both true, so classical logic
calls (P → T ) → (P → C) true. But P → T is more true
than P → C, so comparative logic calls (P → T ) → (P → C)
false.

2.41. In classical logic, P → Q is true whenever at least one of P
or Q is true — regardless of how P and Q are related. Thus,

if the earth is square then today is Tuesday

is true to a classical logician (since the earth is not square); but
it is nonsense to anyone else. Relevant logic is designed to avoid
implications between unrelated clauses.
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Most mathematicians believe that they are using classical
logic in their everyday work, but that is only because they are
unfamiliar with relevant logic. Here is an example:

A new Pythagorean theorem. If limθ→0 θ csc θ = 1, then
the sides of a right triangle satisfy a2 + b2 = c2.

A theorem of this type would not be accepted for publication
in any research journal. The editor or referee might respond that
“one of the hypotheses of the theorem has not been used,” or
might use much stronger language in rejecting the paper. A
superfluous hypothesis does not make the theorem false (clas-
sically), but it does make the theorem unacceptably weak; to
even think of publishing such a theorem would be in very poor
taste. Most mathematicians, not being familiar with relevant
logic, do not realize that it describes much of their “good taste.”

Relevant logic is investigated further in 5.29, 8.31, 8.43, 8.44,
9.12, and Chapters 23 and 28.

2.42. In the classical viewpoint, mathematics is a collection
of statements; but to constructivists,10 mathematics is a col-
lection of procedures or constructions. The rules for combin-
ing procedures are slightly different from the rules for combining
statements, so they require a different logic.

For instance, in classical logic, A ∨ ¬A is always true (as
evidenced by the truth table in 2.38); either a thing is or it is
not. That is known as the Law of the Excluded Middle. Thus,
most mathematicians would agree that

Goldbach’s conjecture is true or the negation of Gold-
bach’s conjecture is true.

But constructivists feel that it is meaningless to talk about the
truthfulness of Goldbach’s conjecture separately from the proof of
Goldbach’s conjecture. They point out that it is not presently
true that

10The student is cautioned not to confuse these similar-sounding words:
converse (5.25), contrapositive (5.27), contradiction (5.35), contraction
(15.4.c), and constructive (2.42 and 22.1).
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we know how to prove Goldbach’s conjecture or we know
how to disprove Goldbach’s conjecture.

Thus the formula A ∨ ¬A does not always represent a construc-
tion, and so it is not a theorem of constructive logic.

Constructivism (or the lack of it) is illustrated further by
Jarden’s example (2.44–2.46), by the notion of inhabited sets
(3.10), and by the Axiom of Choice (3.33). Constructive logic
is investigated further in Chapters 10, 22, and 27–29.

2.43. Goldbach’s Conjecture, mentioned in the preceding example, is a
question of number theory, not logic; but as an unsolved problem it is useful
for illustrating certain ideas of logic. It involves the prime numbers (2, 3,
5, 7, 11, 13, . . .) — that is, the integers greater than 1 that are evenly
divisible by no positive integers other than themselves and one. In 1742
Goldbach observed that

4 = 2+2, 6 = 3+3, 8 = 3+5, 10 = 3+7, 12 = 5+7, . . . .

He conjectured that this sequence continues — i.e., that every even number
greater than 2 can be written as the sum of two primes in at least one way. In
a quarter of a millennium, Goldbach’s Conjecture has not yet been proved or
disproved, despite the fact that it is fairly simple to state.

Jarden’s example (optional)

2.44. Prerequisites for Jarden’s proof
a. The number

√
2 is irrational. Proof. Assume (for contradiction) that√

2 is rational; say
√

2 = p/q where p and q are positive integers. Choose
p as small as possible — i.e., let p be the smallest positive integer whose
square is equal to twice a square. Then p2 = 2q2, hence p > q. Also
then, p2 is even, hence p is even, hence p = 2r for some positive integer
r. But then q2 = 2r2. Thus q’s square is twice a square — i.e., q is
smaller than p but satisfies the condition for which p was supposed to
be smallest.

b. The number log2 9 is irrational. Proof. Assume that log2 9 = p/q where
p and q are positive integers. Then algebra yields 9q = 2p. But the left
side of that equation is a product of 3’s and is not divisible by 2; the
right side is a product of 2’s and is not divisible by 3.
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2.45. Jarden’s theorem. There exist positive, irrational numbers
p and q such that qp is rational.

Jarden’s nonconstructive proof. Consider two cases:

(a) If
√

2
√

2
is rational, use p = q =

√
2.

(b) If
√

2
√

2
is irrational, use p =

√
2 and q =

√
2
√

2
.

Then a bit of algebra shows that qp is a rational num-
ber. (Exercise. Find that number.)

In either case we have demonstrated the existence of p and q.

2.46. Discussion of Jarden’s proof. The proof in the preceding
paragraph is peculiar: After you read the proof, you may feel
convinced that the desired numbers p and q exist, but you still
don’t know what they are. (More precisely, you don’t know what
q is.) We have not constructed the pair (p, q).

This peculiarity stems from the fact that we know
√

2
√

2
is

rational or irrational, but we don’t know which. Take A to be
the statement that

√
2
√

2
is rational; then Jarden’s proof relies on

the fact that (classically) we know A∨A, the Law of the Excluded
Middle, even though we do not know A and we do not know A.

It is only Jarden’s proof, not his theorem, that is nonconstruc-
tive. Some assertions (such as 3.33) are inherently nonconstruc-
tive, but for other theorems such as Jarden’s a nonconstructive
proof can be replaced by a (often longer) constructive proof. For
instance, it can actually be shown that

√
2
√

2
is irrational, using

the Gel’fond-Schneider Theorem (a very advanced theorem whose
proof will not be given here); hence we can use case (b) of Jarden’s
proof. Or, for a more elementary proof, use p = log2 9 and q =

√
2

it is easy to show that those numbers are irrational (see 2.44) and
a bit of freshman algebra yields the value of qp, which turns out to
be a rational number. (Exercise. Find that number.)
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