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Abstract

We prove an operator algebraic superrigidity statement for homomorphisms of ir-
reducible lattices, and also their commensurators, in certain higher-rank groups into
unitary groups of finite factors. This extends the authors’ previous work regarding
non-free measure-preserving actions, and also answers a question of Connes for such
groups.

1 Introduction

A seminal result in the theory of semisimple groups and their lattices is Margulis’ superrigid-
ity theorem [Mar75b]: Let Γ be an irreducible lattice in a center free higher-rank semisimple
group G with no compact factors, let H be a simple algebraic group over a local field and
let π : Γ → H be a homomorphism whose image is Zariski dense in H, then either π(Γ) is
precompact or else π extends to a continuous homomorphism G→ H.

Motivated by a conjecture of Selberg [Sel60], Margulis developed the superrigidity the-
orem as the central ingredient in the proof of the Arithmeticity Theorem [Mar75a] which
states that every irreducible lattice in a higher-rank semisimple Lie or algebraic group is, in
a suitable sense, the integer points of an algebraic group over a global field. Since then, the
phenomenon of superrigidity has found a wide array of applications, notably Zimmer’s or-
bit equivalence rigidity stating that if two such lattices admit probability-preserving actions
that are orbit equivalent then the ambient groups are locally isomorphic (a consequence of
the cocycle superrigidity theorem [Zim80] generalizing Margulis’ work), and Furman’s mea-
sure equivalence theorem [Fur99] stating that if a countable group is measure equivalent to
a lattice in a higher-rank simple group then that group is in fact itself also a lattice.

There is a rich analogy between the interaction of a lattice in a group Γ < G, and
the interaction between a countable group and its von Neumann algebra Γ < U(LΓ). In
both situations the “analytic” properties of G or LΓ are often reflected in corresponding
properties of Γ. For example, Connes exhibited the first rigidity phenomenon in II1 fac-
tors [Con80b] by exploiting Kazhdan’s property (T) [Kaž67] for Γ. This analogy was made
more precise when Connes introduced his theory of correspondences [Con80a, Pop86] which
provided a proper setting for the “representation theory” of a finite von Neumann algebra.
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Using this theory one is able to define analytic properties of a finite von Neumann algebra
such as amenability, property (T), the Haagerup property, etc. More importantly, by induc-
ing or restricting one is able to relate representations of the group Γ with correspondences
for LΓ and in this way show that such properties for the von Neumann algebra LΓ are
shared by Γ (e.g., [Con76a, Con76b, CJ85, Cho83]).

Based on the strong rigidity result of Mostow [Mos73], the superrigidity result of Mar-
gulis, and the cocycle version due to Zimmer, Connes suggested that the analogy could
be pursued further and that there should be a similar superrigidity phenomenon for such
groups embedded in their group von Neumann algebras. Connes further suggested that the
first difficulty is to understand the role of the Poisson boundary in the setting of operator
algebras. (See the discussion on page 86 in [Jon00]).

The first examples of lattices in higher-rank groups where this “operator algebraic su-
perrigidity” was verified were obtained by Bekka [Bek07] who showed that this holds for
the groups SLn(Z), for n ≥ 3. Further examples were found in [PT13] where the same
results were obtained for the groups SL2(A) where A = O is a ring of integers (or, more
generally, A = OS−1 a localization) with infinitely many units. Despite this initial progress,
the proofs in [Bek07] and [PT13] rely much too heavily on the structure of SLn and as such
do not generalize to arbitrary irreducible lattices. The purpose of this paper is to provide
the first examples of higher-rank groups G such that operator algebraic superrigidity holds
for arbitrary irreducible lattices.

Theorem A (Operator Algebraic Superrigidity for lattices). Suppose G is a semisimple
connected Lie group with trivial center and no compact factors, such that at least one factor
is higher-rank, and suppose H is a non-compact totally disconnected semisimple algebraic
group over a local field with trivial center and no compact factors. Let Γ < G × H be a
(strongly) irreducible lattice, and suppose π : Γ→ U(M) is a representation into the unitary
group of a finite factor M such that π(Γ)′′ = M . Then either M is finite dimensional, or
else π extends to an isomorphism LΓ

∼−→M .

An example of G and H where the hypotheses in the previous theorem are satisfied is
G = PSLn(R) and H = PSLn(Qp), for n ≥ 3 and p a prime. The theorem above actually
holds in a greater generality, e.g., in many cases G itself can also be totally disconnected
(see Section 6 for the full generality). The above superrigidity result is a consequence of a
corresponding superrigidity result for commensurators. To state this result we first recall
that if Γ < Λ is an inclusion of countable groups, then we say that Λ commensurates Γ
if [Γ : Γ ∩ λΓλ−1] < ∞, for each λ ∈ Λ. Given such an inclusion we may consider the
homomorphism of Λ into Symm(Λ/Γ) given by left multiplication. The relative profinite
completion of Λ with respect to Γ is the closure of the image of Λ in Symm(Λ/Γ) where
the latter is given the topology of pointwise convergence (see, e.g., [Sch80, SW13]). The
relative profinite completion, denoted Λ�Γ, is a totally disconnected group which is locally
compact since the image of Γ in Symm(Λ/Γ) generates a compact open subgroup.
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Theorem B (Operator Algebraic Superrigidity for commensurators). Let G be as in Theo-
rem A and suppose Λ < G is a countable dense subgroup which contains and commensurates
a lattice Γ < G such that Λ�Γ is a product of simple groups with the Howe-Moore property.

If π : Λ → U(M) is a finite factor representation such that π(Λ)′′ = M , then either
M = π(Γ)′′ is finite dimensional, or else π extends to an isomorphism LΛ

∼−→M .

These results, describing the types of homomorphisms from a lattice or commensu-
rator into the unitary group of a finite factor, should be contrasted with Popa’s rigidity
results [Pop06b, Pop06c, Pop08, Pop07a] where he shows, for example, that under certain
“malleability” conditions for a measure-preserving action, a cocycle for this action into the
unitary group of a finite von Neumann algebra is always cohomologous to a homomorphism.
Thus, combining our result with Popa’s superrigidity results (see also [PS12]) one obtains
a further rigidity statement about cocycles for such actions. For example, we obtain the
following result.

Theorem C. Let Λ and G be as in Theorem B, and consider the Bernoulli shift action
Λy[0, 1]Λ. If M is a separable finite von Neumann algebra, and α : Λ× [0, 1]Λ → U(M) is a
cocycle, then there exists a von Neumann subalgebra N ⊂M , a central projection p ∈ Z(N),
an isomorphism θ1 : LΛ → Np (if p 6= 0), and a homomorphism θ2 : Λ → U(Np⊥)
such that θ2(Λ) is precompact, and such that α is cohomologous to the homomorphism
λ 7→ θ1(uλ)p+ θ2(λ)p⊥.

As noted in [Bek07], operator algebraic superrigidity can also be described in the frame-
work of characters. A character on a discrete group Λ is a conjugation invariant function
τ which is of positive type, and is normalized so that τ(e) = 1 (or equivalently, a trace on
the full group C∗-algebra C∗Λ). If M is a finite von Neumann algebra with trace τ , and
π : Λ→ U(M) is a representation then λ 7→ τ(π(λ)) gives a character. Moreover, the GNS-
construction shows that every character arises in this way. It is also not hard to see that
M may be chosen to be completely atomic if and only if τ is almost periodic, i.e., the set
of translations {x 7→ τ(λx) | λ ∈ Λ} is precompact in `∞Λ. The space of characters forms
a Choquet simplex, and the extreme points correspond to representations which generate a
finite factor [Tho64b].

Theorem B is therefore equivalent to the following rigidity result for characters which
reduces the classification to that of continuous characters on the Bohr compactification.
There is a similar statement for Theorem A.

Theorem D (Character Rigidity for commensurators). Let Λ and G be as in Theorem B.
If τ : Λ→ C is an extreme point in the space of characters then either τ is almost periodic,
or else τ = δe.

For finite or compact groups the study of characters has a long and successful history,
dating back to the work of Frobenius, Schur, Peter-Weyl, and others. Classification of char-
acters for non-compact groups goes back to Segal and von Neumann’s result in [SvN50]
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(see also [KS52]) where they show that connected simple Lie groups have no non-trivial
continuous homomorphisms into a finite factor, and hence have no non-trivial continuous
characters. For countably infinite groups the study of characters was initiated by Thoma
[Tho64b, Tho64a, Tho66] who classified extreme characters for the group of finite permuta-
tions of N. Since then, classification results for characters on non-compact groups have been
extended to a wide range of settings. The emphasis first being on more “classical” type
groups, e.g., [Kir65, Ovč71, Sku76, Voi76, VK81, VK82, Boy92, Boy93, Boy05], and then
more recently to the less “classical” setting, e.g., [DN07, DN08b, DN08a, Dud11, DM13,
DM12, EI13]. The only previous classification results focusing on lattices were obtained in
[Bek07] and [PT13].

Another consequence of operator algebraic superrigidity is that it implies a rigidity
phenomenon for the stabilizers of measure-preserving actions. Specifically, given a measure-
preserving action of the lattice Γ, one naturally obtains a homomorphism of the group into
the von Neumann algebra associated to the orbit equivalence relation [FM77] (see also
[Ver10]). Applying operator algebraic superrigidity to this setting we obtain the main
result from [CP12].

Corollary E ([CP12, Cre13]). Let Λ and G be as in Theorem B. Then any probability
measure-preserving ergodic action of Λ on a standard Lebesgue space is essentially free.

The previous corollary (which generalizes the normal subgroup theorem in [CS12]), or
rather its proof from [CP12], was the starting point for this current work.

2 Preliminaries and motivation

In this section we will recall some of the notions from ergodic theory and von Neumann
algebras which we will use in the sequel, and we will also outline our argument. For a more
detailed review of the ergodic theory of semisimple groups and von Neumann algebras we
refer the reader to [Zim84] and [Dix81].

Let N be a finite von Neumann algebra with a normal faithful trace τ . The trace on N
provides us with a positive definite inner product on N given by 〈x, y〉 = τ(y∗x), and we
denote by L2(N, τ) the Hilbert space completion of N with respect to this inner product.
We also have a norm on N given by ‖x‖1 = τ(|x|), and we denote by L1(N, τ) the Banach
space completion of N with this norm. Note that ‖x‖1 ≤ ‖x‖2 ≤ ‖x‖ and so we consider
inclusions N ⊂ L2(N, τ) ⊂ L1(N, τ), moreover, each of these spaces is an N -bimodule, the
trace extends continuously to L1(N, τ), and we may identify L1(N, τ) with the predual of
N , by considering the linear functionals N 3 x 7→ τ(xξ), for ξ ∈ L1(N, τ).

Left multiplication gives us a faithful representation of N in the space of bounded
operators on L2(N, τ), and so we will always consider N ⊂ B(L2(N, τ)). Since we are
also considering N ⊂ L2(N, τ), to avoid confusion we shall sometimes use the notation
x̂ ∈ L2(N, τ) to identify an operator x ∈ N as an element in L2(N, τ).
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Since τ is a trace it follows that conjugation x 7→ x∗ on N extends to an anti-linear
isometry J : L2(N, τ)→ L2(N, τ). Note that if x, y ∈ N then we have Jx∗Jŷ = ŷx so that
Jx∗J is multiplication on the right by x. Thus, JNJ ⊂ N ′ and in fact we have JNJ = N ′.

If Γ is a countable group and we consider the left-regular representation λ : Γ→ U(`2Γ),
then the group von Neumann algebra LΓ is the von Neumann algebra generated by this
representation, i.e., LΓ = {λ(Γ)}′′ [MvN43]. Since Γ is discrete, the group von Neumann
algebra will be a finite von Neumann algebra with a canonical normal faithful trace given
by τ(x) = 〈xδe, δe〉. As δe is a tracial and cyclic vector we may identify `2Γ with L2(LΓ, τ)
in such a way that the vector δe corresponds to the vector 1̂. Under this identification the
von Neumann algebra LΓ can then be described as the space of left-convolvers {ξ ∈ `2Γ |
ξ ∗ η ∈ `2Γ, for all η ∈ `2Γ}.

If we are given a quasi-invariant action on a probability space Γy(B, η) then we also
have an action of Γ on the space of measurable functions given by σγ(a) = a ◦ γ−1. The
Koopman representation of this action on L2(B, η) is the unitary representation given by

the formula σ0
γ(ξ) = σγ(ξ)

√
dγη
dη . Note that by considering point-wise multiplication we may

realize L∞(B, η) as a von Neumann subalgebra of B(L2(B, η)), and under this identification
the unitaries σ0

γ normalize L∞(B, η). Specifically, we have the formula σ0
γ−1aσ

0
γ = σγ(a), for

all a ∈ L∞(B, η) ⊂ B(L2(B, η)), and γ ∈ Γ. The group-measure space construction is the
von Neumann algebra L∞(B, η) o Γ ⊂ B(L2(X, η)⊗`2Γ) generated by L∞(B, η), together
with the unitary operators {σ0

γ ⊗ λ(γ) | γ ∈ Γ} [MvN37]. Note that by Fell’s absorption
principal we have a conjugacy of unitary representations σ0 ⊗ λ ∼ id ⊗ λ, hence it follows
that the von Neumann algebra {σ0

γ ⊗ λ(γ) | γ ∈ Γ}′′ is canonically isomorphic to LΓ.
If the action Γy(B, η) is measure-preserving, then the crossed product L∞(B, η) o Γ

will be finite and have a canonical normal faithful trace given by τ(x) = 〈x(1̂⊗ δe), 1̂⊗ δe〉.
A useful property for finite von Neumann algebras is that for an arbitrary von Neumann

subalgebra there always exists a normal conditional expectation [Ume54]. More specifically,
if M is a finite von Neumann algebra with normal faithful trace τ , and if N ⊂ M is a von
Neumann subalgebra, then for each x ∈ M the linear functional y 7→ τ(xy) is normal,
and hence there is a unique element E(x) ∈ L1(N, τ) such that τ(xy) = τ(E(x)y) for all
y ∈ N . Since E(x) ≥ 0 whenever x ≥ 0 it follows that E(x) ∈ N for all x ∈ M . This map
E : M → N is a conditional expectation from M to N , i.e., it is a unital completely positive
projection onto N , moreover, it is the unique such map satisfying the condition τ ◦ E = τ
(and this condition also implies that it is normal).

2.1 On the method of proof

Before discussing the outline of our proof we recall Margulis’ Normal Subgroup Theorem
[Mar78, Mar79]: If Γ is an irreducible lattice in a center free higher-rank semisimple group
G with no compact factors, then Γ is just infinite, i.e., every non-trivial normal subgroup
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has finite index.
Assuming Σ C Γ is non-trivial, Margulis’ strategy for proving that |Γ/Σ| < ∞ consists

of two “halves”. The first, showing that Γ/Σ has Kazhdan’s property (T) [Kaž67], and the
second showing that Γ/Σ is amenable. Since for countable groups amenability and property
(T) together imply finite, the result then follows. In the case when G has property (T), then
property (T) for Γ/Σ is immediate since this passes to lattices and quotients. Significantly
more difficult is the case when G has no factor with property (T), in which case property
(T) can be obtained by relating the reduced cohomology spaces of Γ/Σ to those of G as in
[Sha00].

The amenability half of the proof follows by exploiting the amenability properties of
the Poisson boundary Gy(B, η) [Fur63], together with a “factor theorem” showing that
any Γ-quotient of (B, η) must actually be a G-quotient.1 More specifically, the action of Γ
on (B, η) is amenable in the sense of Zimmer [Zim78], and so there exists a Γ-equivariant
conditional expectation E : L∞(B, η)⊗`∞(Γ/Σ)→ L∞(B, η). If we consider

L∞(B, η)Σ = {f ∈ L∞(B, η) | σγ0(f) = f, for all γ0 ∈ Σ},

then this is a Γ-invariant von Neumann subalgebra of L∞(B, η) and so by Margulis’ factor
theorem it follows that L∞(B, η)Σ is also G-invariant. However, Σ acts trivially on the
corresponding Koopman representation and since G is center free, irreducibility for Γ <
G easily implies that any non-trivial representation of G must be faithful for Γ. The
conclusion is then that L∞(B, η)Σ = C, i.e., Σ acts ergodically on (B, η). However, we
have E(1 ⊗ `∞(Γ/Σ)) ⊂ L∞(B, η)Σ = C and so we conclude that the restriction of E to
1⊗ `∞(Γ/Σ) gives an invariant mean.

This general strategy of Margulis is remarkably flexible and has been employed to give
rigidity results in a more abstract setting, e.g., [BS06, CS12], and also to give classification
results beyond normal subgroups, e.g., [FSZ89] where normal subequivalence relations are
considered, or [SZ94, CP12, Cre13, HT13] where non-free measure-preserving actions are
considered.

Notions of property (T) and amenability are also of fundamental importance in the
theory of II1 factors (see, e.g., [Con76a, CJ85]), and hence it is natural to suspect that
Margulis’ strategy should have adaptations in this setting as well. This is especially the
case given the emergence and success of Popa’s deformation/rigidity theory where the major
theme is to determine the structure of a II1 factor by contrasting deformation properties
(such as amenability) with rigidity properties (such as property (T)), (see [Pop06a, Pop07b,
Vae10, Ioa12]).

Based on the ideas outlined above, if Γ < Λ < G is as in Theorem B, then our strategy
to prove operator algebraic superrigidity for Λ is to first show that if π : Λ → U(M) is a

1To avoid confusion with terminology from von Neumann algebras we refer to a Γ-equivariant map
between Γ-spaces as a Γ-quotient.
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representation which generates a finite factor M , then either π extends to an isomorphism
LΛ→ M or else the von Neumann subalgebra N = π(Γ)′′ is amenable (i.e., injective) and
has property (T). Amenability and property (T) for N then imply that N is completely
atomic. If N is completely atomic we then show there exists a continuous action of Λ�Γ
on a finite index von Neumann subalgebra of M which extends conjugation. However, Λ�Γ
is a product of non-discrete groups with the Howe-Moore property and we rule out the
possibility of such actions which are non-trivial.

Just as property (T) passes to quotients of a countable group, it also passes to finite
von Neumann algebras which the group generates [CJ85]. Thus, even in the finite factor
setting if we assume that the ambient group G has property (T) then so does π(Γ)′′ and
hence the property (T) half of Margulis’ strategy follows immediately. In the case when
G has a non-compact factor with property (T), then using the notion of resolutions from
[Cor06], in a similar fashion as in [Cre13], we show that any representation of Γ into an
amenable finite von Neumann algebra must, upon passing to a finite index subalgebra, be
given by a representation of G, which we again rule out using the Howe-Moore property.
Thus, in this case also we are reduced to the amenability half of the argument.

The case when G has no non-compact factor with property (T) appears more subtle.
(See also the related question at the end of Section 2 in [SZ94].) While a cohomological
characterization of property (T) for finite factors was obtained in [Pet09], it is less clear if
there is a characterization in terms of reduced cohomology. Consequently, it is unclear how
to adapt reduced cohomology techniques, e.g., from [Sha00], in the setting of finite factors.

In order to adapt the amenability half of Margulis’ strategy to the II1 factor setting, we
follow the suggestion of Connes by first understanding the role of the Poisson boundary in
this setting. A significant first step in this direction was achieved by Izumi [Izu02, Izu04] who
introduced the notion of a noncommutative Poisson boundary of a normal unital completely
positive map φ :M→M whereM is a von Neumann algebra. Specifically, Izumi considers
the space of “harmonic operators” H∞(M, φ) = {x ∈ M | φ(x) = x} which is a weakly
closed operator system. By fixing a free ultra-filter ω ∈ βN \ N one may construct a
completely positive projection E :M→ H∞(M, φ) by the formula

E(x) = w− lim
n→ω

1

n

n−1∑
k=0

φk(x), x ∈M.

One may then use the Choi-Effros product x · y = E(xy) [CE77] to define a unique von
Neumann algebraic structure on H∞(M, φ). (See also the Appendix to [Izu12] where the
multiplication structure on H∞(M, φ) is constructed more directly by using the minimal
dilation of φ).

As Izumi notes in [Izu04], if one starts with a countable group Γ, together with a
probability measure µ ∈ Prob(Γ), then one may consider the normal unital completely
positive map φµ : B(`2Γ) → B(`2Γ) given by φµ(T ) =

∫
ρ(γ)Tρ(γ−1) dµ(γ), and in this
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case it is not hard to compute directly that H∞(B(`2Γ), φµ) is canonically isomorphic to
L∞(B, η) o Γ where (B, η) is the commutative Poisson boundary from [Fur63].

To uncover the rigidity properties of a boundary one must not study only the crossed
product L∞(B, η)oΓ but rather the inclusion LΓ ⊂ L∞(B, η)oΓ. Thus, given an arbitrary
finite von Neumann algebraM with a faithful normal trace τ , it is natural to want a notion of
“boundary inclusions” M ⊂ B which play analogous roles to the inclusions LΓ ⊂ L∞(B, η)o
Γ in the case of group von Neumann algebras. Using Izumi’s notion of a noncommutative
Poisson boundary we will describe such inclusions, and the striking similarities to the case
for discrete groups suggest that these inclusions should be the proper objects to consider
as Poisson boundaries of the von Neumann algebra N .

The starting point for our construction is to consider the finite von Neumann algebra
N together with a normal “hyperstate” ϕ on B(L2(N, τ)), i.e., ϕ is a normal state on
B(L2(N, τ)) which restricts to the trace τ on N . Just as hypertraces are in one to one
correspondence with conditional expectations (see p. 450 in [Con76b]), there is a one to one
correspondence between (normal) hyperstates and (normal) unital N -bimodular completely
positive maps φ : B(L2(N, τ))→ B(L2(N, τ)) given by the equation

ϕ(T ) = 〈φ(T )1̂, 1̂〉, T ∈ B(L2(N, τ)).

Since φ|N = id, the noncommutative Poisson boundary B = H∞(B(L2(N, τ)), φ) con-
tains N as a von Neumann subalgebra. Note that by considering B ⊂ B(L2(N, τ)) as an
operator system, then we obtain a normal “stationary” hyperstate ϕ0 on B by restricting
the hyperstate ϕ. Conversely, if we consider N ⊂ B as an abstract inclusion, together
with the hyperstate ϕ0, then considering the GNS-representation π : B → B(H) we have a
natural inclusion L2(N, τ) ⊂ H, and if we denote e : H → L2(N, τ) the orthogonal projec-
tion then we recover the embedding of B into B(L2(N, τ)) through the “Poisson transform”
B 3 T 7→ eπ(T )e ∈ B(L2(N, τ)).

Note that by construction of the boundary, there exists a completely positive projection
E : B(L2(N, τ)) → B, and so B is always injective [Arv69, CE77]. In the trivial case
when φ = id we have that B = B(L2(N, τ)). The more interesting case however is when
H∞(B(L2(N, τ)), φ) ∩ N ′ = Z(N) in which case we have N ′ ∩ B = Z(N ) (this is related
to the fact that commutative groups have only trivial Poisson boundaries). In particular,
if in addition we have that N is a factor, then B will also be a factor and N will be an
irreducible subfactor.

An example of particular interest in the sequel is the following generalization of the
crossed product example given above. Suppose Γ is a countable group and N is a finite von
Neumann algebra with normal faithful trace τ . Suppose further that π : Γ → U(N) is a
homomorphism such that π(Γ)′′ = N . If we are given a probability measure µ ∈ Prob(Γ)
then as before we may consider the unital completely positive map φµ : B(L2(N, τ)) →
B(L2(N, τ)) given by φµ(T ) =

∫
(Jπ(γ)J)T (Jπ(γ−1)J) dµ(γ). Since JNJ = N ′ we have

that φµ is N -bimodular, thus we have a corresponding boundary inclusion N ⊂ B.
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If Γy(B, η) is the commutative Poisson boundary corresponding to the measure µ then
it is not hard to check that we have a completely isometric order isomorphism (and hence
also a von Neumann algebra isomorphism) of B onto

BN = {σ0
γ ⊗ (Jπ(γ)J) | γ ∈ Γ}′ ∩ (L∞(B, η)⊗B(L2(N, τ))), (?)

with inverse map
∫
⊗ id.

The inclusion N ⊂ BN (which we consider as a “noncommutative Γ-quotient” of (B, η))
is defined for any quasi-invariant action of Γ and it is useful to think of BN as the space of
essentially bounded Γ-equivariant functions from (B, η) to B(L2(N, τ)) where the action on
the latter is via conjugation by Jπ(γ)J . It follows from Theorem 5.1 in [Zim77] that BN is
injective whenever the action Γy(B, η) is amenable.

To finish the analogy with Margulis’ normal subgroup theorem we have left to discuss
the factor theorem for boundary actions. For this we strengthen the factor theorems for
commensurators in [CS12] and [CP12] to the setting of II1 factors. The key feature of
boundaries we use here is that they are contractive (or SAT), i.e., for each measurable
set F ⊂ B we have infγ∈Γ η(γF ) ∈ {0, 1}. This property was introduced by Jaworski
[Jaw94, Jaw95], and we exploit this property to show in Theorem 3.2 that the inclusion
of von Neumann algebras N ⊂ BN is extremely rigid. For example, it follows that the
only normal unital N -bimodular map from BN to itself is the identity map. This rigidity
theorem is a natural extension of Theorem 4.34 in [CP12] and allows us to show that the
“noncommutative Γ-quotient” BN is also invariant under the action of Λ (Proposition 5.1).
If in addition we have that π does not extend to an isomorphism LΛ→M , then we use an
averaging argument together with the density of Λ in G to conclude that BN must in fact
be in the commutant of the action of G (Theorem 4.4). From this it follows easily that in
fact BN = N and hence N is injective, i.e., amenable.

3 Operator algebraic rigidity for contractive actions

Throughout this section Γ will be a countable group, Γ0 < Γ will be a finite index subgroup,
Γy(B, η) will be a contractive action, N will be a finite von Neumann algebra with normal
faithful trace τ , and π : Γ→ U(N) will be a homomorphism such that N = π(Γ)′′. We let
BN be the corresponding boundary as defined by (?).

Since Γy(B, η) is contractive, it is easy to show that for any f ∈ L∞(B, η), with f ≥ 0,
there exists a sequence γn ∈ Γ such that σγn(f) → ‖f‖ in the strong operator topology.
Moreover, if f̃ ∈ L∞(B, η) is another function, then we can choose the sequence in such a
way that σγn(f̃) converges strongly to a scalar. The following is an analogue of this fact for
the noncommutative situation.

Lemma 3.1. Using the notation above, for x ∈ BN , ‖x‖ ≤ 1, f ∈ L∞(B, η), f ≥ 0, and
ε > 0, there exists sequences {gn} ⊂ Γ0, {pn} ⊂ P(N), with τ(pn) > 1 − ε, for all n, and
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{yn} ⊂ N , such that {yn} is uniformly bounded, σgn(f) converges strongly to ‖f‖∞, and
π(gn)(pnx− yn)π(g−1

n ) converges strongly to 0.

Proof. Let Fn ⊂ Γ be an increasing sequence of finite sets such that e ∈ F1, and ∪nFn =
Γ. For each n ∈ N there exists a measurable subset E ⊂ B with positive measure such
that for b ∈ E we have ‖f‖∞ − f(b) < 1/n, and such that for all b1, b2 ∈ E we have
‖(x(b1)− x(b2))1̂‖2 ≤ 1/n.

Since the action of Γ0 on (B, η) is contractive [CS12] there exists g ∈ Γ0 such that
η(∩γ∈Fnγ

−1gE) > 1 − 1/n. Fix a point b0 ∈ E, and set y0 = x(b0)1̂ ∈ L2(N, τ). Since
‖y∗0‖2 = ‖y0‖2 ≤ ‖x‖ ≤ 1, if we set p = 1[0,ε−1/2](|y∗0|) then by Chebyshev’s inequality we

have τ(p) > 1− ε, and if y = py0, then ‖y‖ ≤ ε−1/2.
For h ∈ Fn, b ∈ ∩γ∈Fnγ

−1gE, we have ‖f‖∞ − σg(f)(b) < 1/n, and

‖(π(g)(px− y)π(g−1))(b)π(h)1̂‖2 = ‖(Jπ(g−1h)J)(px(b)− y)(Jπ(h−1g)J)1̂‖2
= ‖(px(g−1hb)− y)1̂‖2
= ‖p(x(g−1hb)− x(b0))1̂‖2 < 1/n

Since the bounds ‖x‖ ≤ 1, and ‖y‖ ≤ ε−1/2 are independent of n, and as the span of
π(Γ)1̂ is dense in L2(N, τ) it follows that by setting gn = g, pn = p, and yn = y we have
that σgn(f) converges to ‖f‖∞ strongly, and π(gn)(pnx− yn)π(g−1

n ) converges strongly to
0.

The following rigidity theorem for contractive actions strengthens Theorem 4.34 from
[CP12].

Theorem 3.2. Using the notation above, suppose P ⊂ BN is a von Neumann subalgebra
which contains N , set

B̃N = {σ0
γ ⊗ (Jπ(γ)J) | γ ∈ Γ0}′ ∩ (L∞(B, η)⊗B(L2(N, τ))),

so that N ⊂ P ⊂ BN ⊂ B̃N . If Φ : P → B̃N is a normal N -bimodular unital map, then
Φ = id.

Proof. Fix x ∈ P , and ε > 0. By Lemma 3.1 there exists sequences gn ∈ Γ0, pn ∈ P(N)
with τ(pn) > 1 − ε, and yn ∈ N such that σgn(|〈(Φ(x) − x)1̂, 1̂〉|) ∈ L∞(B, η) converges
strongly to ‖〈(Φ(x)− x)1̂, 1̂〉‖∞, and π(gn)(pnx− yn)π(g−1

n ) converges strongly to 0.
Since Φ is normal and N -bimodular we then have

lim
n→∞

Φ(π(gn)pnxπ(g−1
n ))− π(gn)pnxπ(g−1

n ) = lim
n→∞

Φ(π(gn)ynπ(g−1
n ))− π(gn)ynπ(g−1

n ) = 0,
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where the limit is in the weak operator topology. Thus, using that Φ(x)− x ∈ B̃N we have

‖〈(Φ(x)− x)1̂, 1̂〉‖∞ = lim
n→∞

∣∣∣∣∫ σgn(〈(Φ(x)− x)1̂, 1̂〉) dη
∣∣∣∣

= lim
n→∞

∣∣∣∣∫ 〈(Jπ(g−1
n )J)(Φ(x)− x)(Jπ(gn)J)1̂, 1̂〉 dη

∣∣∣∣
= lim

n→∞

∣∣∣∣∫ 〈π(gn)(Φ(x)− x)π(g−1
n )1̂, 1̂〉 dη

∣∣∣∣
= lim

n→∞

∣∣∣∣∫ 〈(Φ(π(gn)xπ(g−1
n ))− π(gn)xπ(g−1

n ))1̂, 1̂〉 dη
∣∣∣∣

= lim
n→∞

∣∣∣∣∫ 〈(Φ(π(gn)(1− pn)xπ(g−1
n ))− π(gn)(1− pn)xπ(g−1

n ))1̂, 1̂〉dη
∣∣∣∣

≤ lim sup
n→∞

‖Φ(x)− x‖∞‖1− pn‖2 < ‖Φ(x)− x‖∞
√
ε.

Since ε > 0 was arbitrary, we conclude that 〈(Φ(x)− x)1̂, 1̂〉 is identically 0.
If a, b ∈ N , it then follows

‖〈(Φ(x)− x)a1̂, b1̂〉‖∞ = ‖〈(Φ(b∗xa)− b∗xa)1̂, 1̂〉‖∞ = 0,

and since N ⊂ L2(N, τ) is dense we then have Φ(x) = x, and so Φ = id since x was
arbitrary.

Corollary 3.3. Using the notation above, we have J(π(Γ0)′ ∩ N)J ⊂ B′N . In particular,
BN ⊂ Z(N)′ ∩ L∞(B, η)⊗B(L2(N, τ)).

Proof. It is enough to show that each projection p ∈ J(π(Γ0)′∩N)J ⊂ L∞(B, η)⊗B(L2(N, τ)),
commutes with BN . Consider the map BN 3 x 7→ Φ(x) = pxp+ (1− p)x(1− p). Then Φ is
a normal unital completely positive map which restricts to the identity on N and hence is
N -bimodular. Moreover, Φ(x) ∈ {σ0

γ ⊗ (Jπ(γ)J) | γ ∈ Γ0}′ since p ∈ P(J(π(Γ0)′ ∩ N)J).
Hence, by Theorem 3.2 we have Φ = id, i.e., p ∈ B′N .

4 Actions of Howe-Moore groups on finite von Neumann al-
gebras

Recall, that an automorphism θ of a von Neumann algebra M is properly outer if there is no
non-zero element v ∈M such that θ(x)v = vx for all x ∈M . An action α : Λ→ Aut(M, τ)
of a countable group Λ is properly outer if αλ is properly outer for each λ ∈ Λ.

Proposition 4.1. Let G be a locally compact group, suppose that Λ < G is a countable
dense subgroup such that either

11



(i) G is a product of non-compact connected simple groups with the Howe-Moore property,
and the Λ intersection with any proper subproduct of G is trivial; or

(ii) G is a simple group with the Howe-Moore property, and Λ commensurates a lattice
Γ < G, which has a non-torsion element.

Suppose α : G → Aut(M0, τ) is a continuous ergodic, trace preserving action of G on a
non-trivial finite von Neumann algebra M0 with normal faithful trace τ , then the restriction
of α to Λ is properly outer.

Proof. Suppose g ∈ G, and v ∈ M0 such that αg(x)v = vx for all x ∈ M0, then it follows
that |v| ∈ Z(M0) and so replacing v with the partial isometry in its polar decomposition
we may assume that v is a partial isometry, and that v∗v ∈ Z(M0).

We then have v = vv∗v = v∗vv, and so v∗v ≥ vv∗. As M0 is finite we must have
v∗v = vv∗, and so αg(v

∗v)vv∗ = v(v∗v)v∗ = vv∗ = v∗v. Thus, αg(v
∗v) ≥ v∗v and as α is

trace preserving we then have αg(v
∗v) = v∗v.

Moreover, if q ∈ Z(M0) such that q ≤ v∗v = vv∗ then we have αg(q) = αg(q)vv
∗ =

vqv∗ = q. Therefore αg acts trivially on Z(M0)v∗v. Hence, if Λ does not act properly
outerly, and if Z(M0) 6= C then the restriction of the Λ-action to Z(M0) is not free, which
would contradict Theorem 7.2 in case (i), and Theorem 7.7 in case (ii) from [CP12]. Thus,
we have left to consider the case when M0 is a factor.

In this case, suppose h ∈ G and v ∈M0 is non-zero partial isometry such that

αh(x)v = vx, (1)

for all x ∈M0. Then since M0 is a factor we have v∗v = 1, and so v is a unitary. If g ∈ G,
then replacing x with αg(x) and applying αg−1 to (1) gives

αg−1hg(x)αg−1(v) = αg−1(v)x, (2)

for all x ∈M0.
If we assume by contradiction that the action restricted to Λ is not properly outer, then

we have that H = {h ∈ G | αh ∈ Inn(M0)} is a normal subgroup of G which has non-trivial
intersection with Λ, and hence by hypothesis must be dense.

We now focus on cases (i) and (ii) separately. In case (i), by projecting down to the
quotient G/ ker(α) we may assume that the action is faithful (note that by hypothesis we
have that Λ ∩ ker(α) = {e}). If G0 < G is a non-trivial simple factor of G, then we denote
by H0 the subgroup of H consisting of those elements h ∈ H such that the unitary v in (1)
is fixed by G0. It follows easily from (2) that H0 is a normal subgroup of G. Note that if we
take the intersection over all such subgroups H0 as we vary the factor, then by ergodicity
we obtain the trivial group. Thus, we may choose a factor G0, so that H 6= H0.
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We may decompose G as G = Ĝ0 × G0, and if h ∈ H \H0, and v ∈ U(M0) such that

αh(x)v = vx for all x ∈M0, then writing h as (g1, g2) ∈ Ĝ0 ×G0 we have

αh(x)αg−1
2

(v) = αg−1
2

(αh(αg2(x))v) = αg−1
2

(vαg2(x)) = αg−1
2

(v)x,

for all x ∈ M0. Combining this with (1) then gives v∗αg−1
2

(v) ∈ Z(M0) = C, and so we

have αg(v) ∈ Tv for all g ∈ 〈g2〉. As G0 has the Howe-Moore property and h 6∈ H0 it

then follows that 〈g2〉 is compact. Since the projection of H \H0 onto G0 is dense (H0 is
normal and so either the projection of H0 to G0 is trivial, or else the projection is dense
and so a non-trivial H0 coset will project densely) it then follows that G0 has a dense set
of elements which generate precompact subgroups. This then gives a contradiction since
G0 is connected and is a product of groups with the Howe-Moore property it must be a
connected real Lie group [Rot80], and Theorem 3 in [Pla65] shows that there then cannot
be a dense set of g ∈ G0 such that 〈g0〉 is compact.

For case (ii) we are assuming that Λ commensurates a lattice Γ which has a non-torsion
element. By [CS12] we must have that H∩Γ has finite index in Γ (since H∩Λ is non-trivial
and hence dense in G) and so must contain a non-torsion element γ0. Thus there exists
v ∈ U(M0) \ T such that σγ(x)v = vx for all γ ∈ 〈γ0〉, and so σγ(v) = v for all γ ∈ 〈γ0〉
showing that the action restricted to Γ is not mixing. But since G has the Howe-Moore
property, the action must be mixing, and hence must be mixing when restricted to Γ, giving
a contradiction.

We remark that in the proof in part (i) of the previous theorem we did not actually
need that Λ was dense. Thus, in this case if α : G → Aut(M0, τ) is a continuous, ergodic,
trace preserving action on a non-trivial finite von Neumann algebra M0, then αg is properly
outer for any g ∈ G which is not contained in a proper subproduct of G.

Part (i) in the previous theorem also generalizes a result by Segal and von Neumann who
showed that a simple real Lie group cannot embed continuously into a finite von Neumann
algebra [SvN50]. While we will not use it in the sequel, we show here that Segal and
von Neumann’s result also holds in general for non-discrete groups with the Howe-Moore
property.

Theorem 4.2. Let G be a non-discrete totally disconnected simple group with the Howe-
Moore property. Then there is no non-trivial continuous homomorphism of G into the
unitary group of a finite von Neumann algebra.

Proof. By [Tho64b] it is enough to consider the case when G generates a finite factor, and so
suppose M is a finite factor with trace τ , and π : G→ U(M) is a continuous homomorphism
such that π(G)′′ = M . If we let K < G be a compact open subgroup, then we have that
π ⊗ πop has a non-trivial K-invariant vector ξ ∈ L2(M, τ)⊗L2(M, τ). If we let K be the
closed G-invariant subspace generated by ξ, then as (π ⊗ πop)(G)′′ ⊂ M⊗Mop is again
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finite, it follows that there exists a unit tracial vector η ∈ K⊗`2N for (π⊗πop⊗ id)(G), i.e.,
for all g, h ∈ G we have

〈(π ⊗ πop ⊗ id)(gh)η, η〉 = 〈(π ⊗ πop ⊗ id)(hg)η, η〉.

We may then consider a unit vector η0 in the algebraic span sp{π(G)ξ} ⊗ `2N such that
‖η−η0‖2 < 1/4. Thus, the function of positive type ϕ(g) = 〈(π⊗πop⊗ id)(g)η0, η0〉 satisfies
|ϕ(gh) − ϕ(hg)| < 1/2 for all g, h ∈ G. Moreover, we have that ϕ is identically 1 on some
compact open subgroup K0 < G.

Since G is non-discrete and simple, and since K0 is commensurated by G, Theorem 3
in [BL89] shows that the set of indices {[K0 : K0 ∩ gK0g

−1] | g ∈ G} is unbounded, and
from this it is not hard to see that E = ∪g∈GgK0g

−1 has infinite Haar measure. However,
|1 − ϕ(h)| < 1/2 for all h ∈ E and hence it follows that π ⊗ π ⊗ id is not mixing. By the
Howe-Moore property there must then exist a non-zero invariant vector, showing that π has
a finite dimensional invariant subspace, and again using the Howe-Moore property it follows
that π has an invariant vector. If p ∈ P(M) is the projection onto the space of G-invariant
vectors, then p ∈ Z(M) = C and so p = 1, hence π is the trivial homomorphism.

If G is a Polish group, Λ is a countable group, and we have a homomorphism ι : Λ→ G
with dense image, then given a representation π : Λ → U(M) into a finite von Neumann
algebra we may consider

M0 = {x ∈M | ‖π(λn)xπ(λ−1
n )− x‖2 → 0 whenever ι(λn)→ e in G}.

Note that M0 ⊂ M is a von Neumann subalgebra such that π(λ)M0π(λ−1) = M0 for
all λ ∈ Λ. We therefore obtain a continuous action α : G → Aut(M0, τ) by defining
αg(x) = limι(λ)→g,λ∈Λ π(λ)xπ(λ−1). We will call M0 the G-algebra (with respect to the
map ι : Λ→ G) of the representation π.

Lemma 4.3. Let G be a Polish group, suppose that Λ < G is a countable dense subgroup
such that any trace preserving ergodic action of G on a finite von Neumann algebra is
properly outer when restricted to Λ. Then for any representation π : Λ → U(M) into a
finite factor M , such that π(Λ)′′ = M , the G-algebra of π is C.

Proof. Let M0 ⊂ M be the G-algebra of π, and let α : G → Aut(M0, τ) be the associated
continuous action as described above. Note that this is ergodic since M is a factor. We
denote by E0 the trace preserving conditional expectation from M to M0. If M0 6= C, then
by assumption we have that the action α restricted to Λ is properly outer. If x ∈M0, and
λ ∈ Λ then we have αλ(x)E0(π(λ)) = E0(αλ(x)π(λ)) = E0(π(λ)x) = E0(π(λ))x, and hence
since the action of Λ is properly outer we must have E0(π(λ)) = 0 for each λ ∈ Λ \ {e}.
Since M = π(Λ)′′ we would then have M0 = E0(M) = C, giving a contradiction.
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Theorem 4.4. Let G be a Polish group, and Λ < G a countable dense subgroup such that
each proper closed normal subgroup of G intersects trivially with Λ. Suppose Gy(Y, η) is
ergodic, and π : Λ → U(M) is a representation into a finite factor such that M = π(Λ)′′,
and such that the G-algebra with respect to π is C. If N ⊂M is a von Neumann subalgebra,
and π is not the left regular representation then

{σ0
λ ⊗ (JEN (π(λ))J) | λ ∈ Λ}′ ∩ L∞(Y, η)⊗B(L2N) = 1⊗N.

Proof. Set Q = {σ0
λ ⊗ (JEN (π(λ))J) | λ ∈ Λ}′′. As π is not the left regular representation

fix λ0 ∈ Λ \ {e} such that |τ(π(λ0))| > 0. For each non-empty open set O ⊂ G we
define KO = co{π(hλ0h

−1) | h ∈ Λ ∩ O} where the closure is taken in the ‖ · ‖2-topology
(which is equal to the closure in the weak operator topology since KO is convex). We let
K = ∩O∈N (e)KO, where N (e) is the space of all open neighborhoods of the identity in G.

Since K is a ‖·‖2-closed convex set it has a unique element x ∈ K which minimizes ‖·‖2,
and note that x 6= 0 since τ(y) = τ(π(λ0)) 6= 0 for each y ∈ K. If {λn} ⊂ Λ is a sequence
such that λn → e in G, then as π(λn)Kλ−1

n Oπ(λ−1
n ) = KO, we have that for each O ∈ N (e),

there is large enough N ∈ N such that π(λn)xπ(λ−1
n ) ∈ KO for all n ≥ N . Consequently, if

y is any weak operator topology cluster point of the sequence {π(λn)xπ(λ−1
n )}, then y ∈ K,

and ‖y‖2 ≤ ‖x‖2 which implies y = x by uniqueness.
Therefore π(λn)xπ(λn) converges to x in the weak operator topology and hence

‖π(λn)xπ(λn)− x‖22 = 2‖x‖22 − 2<(〈π(λn)xπ(λn), x〉)→ 0.

Hence x is in the G-algebra of π, which is C by hypothesis, and so x = τ(π(λ0)) ∈ C.
We will now prove that σ0

λ0
⊗ 1 ∈ Q. Indeed, suppose ε > 0, and we have vec-

tors ξ1 ∈ L2(Y, η), and ξ2 ∈ N ⊂ L2M , such that ‖ξ1‖2, ‖ξ2‖∞ ≤ 1. Then by conti-
nuity of the G action on (Y, η) there exists an open neighborhood O ∈ N (e) such that
‖σ0

gλ0g−1(ξ1)− σ0
λ0

(ξ1)‖2 < ε for all g ∈ O. And from above, there exists a convex combina-

tion
∑n

j=1 αjπ(λjλ0λ
−1
j ) such that λj ∈ O for all 1 ≤ j ≤ n, and ‖

∑n
j=1 αjπ(λjλ0λ

−1
j ) −

τ(π(λ0))‖2 < ε. Hence,

‖(σ0
λ0 ⊗ τ(π(λ0))−

n∑
j=1

αjσ
0
λjλ0λ

−1
j
⊗ EN (π(λjλ0λ

−1
j )))(ξ1 ⊗ ξ2)‖2

≤
n∑
j=1

αj‖(σ0
λ0 − σ

0
λjλ0λ

−1
j

)(ξ1)‖2‖ξ2‖2

+ ‖σ0
λ0 ⊗ (τ(π(λ0))−

n∑
j=1

αjEN (π(λjλ0λ
−1
j )))(ξ1 ⊗ ξ2)‖2

< ε+ ‖EN (τ(π(λ0))−
n∑
j=1

αjπ(λjλ0λ
−1
j ))ξ2‖2 < ε+ ε‖ξ2‖∞ ≤ 2ε.
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As the operators above are uniformly bounded, and the span of vectors of the form ξ1 ⊗ ξ2

is dense in L2(Y, η)⊗L2N , we then have that σ0
λ0
⊗ τ(π(λ0)) (and hence also σ0

λ0
⊗ 1 since

τ(π(λ0)) 6= 0) is in the strong operator closure of {σ0
λ ⊗ (JEN (π(λ))J) | λ ∈ Λ}.

We have therefore shown that σ0
g ⊗ 1 ∈ Q whenever g ∈ Λ such that τ(π(g)) 6= 0. As

the set of such g ∈ Λ is preserved under conjugation, we then have that the non-trivial
subgroup Λ0 < Λ they generate is normal, and since the Λ intersection with any proper
subproduct of G is trivial we then have Λ0 = G showing that σ0

g ⊗ 1 ∈ Q for all g ∈ G, and
hence we have 1⊗ (JEN (π(λ))J) ∈ Q, for all λ ∈ Λ.

By ergodicity of the G action on (Y, η) it follows that Q′ ∩ L∞(Y, η)⊗B(L2N) ⊂ 1 ⊗
B(L2N), since σ0

g ⊗ 1 ∈ Q for all g ∈ G. Also, since π(Λ)′′ = M we have that {EN (π(λ)) |
λ ∈ Λ} spans a strong operator topology dense subset of N , hence Q′ ∩ 1 ⊗ B(L2N) ⊂
1⊗ (JNJ)′ = 1⊗N .

5 Finite factor representations restricted to the lattice

Proposition 5.1. Suppose G is a second countable locally compact group, and Γ < Λ < G
where Γ < G is a lattice, and Λ < G is a countable dense subgroup which contains and
commensurates Γ. Suppose also that π : Λ → U(M) is a finite von Neumann algebra
representation such that π(Λ)′′ = M , and set N = π(Γ)′′. Let Gy(B, η) be a quasi-invariant
action which is contractive when restricted to Γ. Then we have

{σ0
γ ⊗ (JEN (π(γ))J) | γ ∈ Γ}′ ∩ L∞(B, η)⊗B(L2(N, τ))

={σ0
λ ⊗ (JEN (π(λ))J) | λ ∈ Λ}′ ∩ L∞(B, η)⊗B(L2(N, τ)).

Proof. Fix λ ∈ Λ and consider the polar decomposition EN (π(λ)) = vλ|EN (π(λ))|. If we
set Γ0 = Γ ∩ λΓλ−1, then we have EN (π(λ−1))EN (π(λ)) ∈ π(λ−1Γ0λ)′ ∩ N , and hence
|EN (π(λ))| ∈ π(λ−1Γ0λ)′ ∩N . Thus, for γ ∈ Γ0 we have π(γ)vλ = vλπ(λ−1γλ), and taking
adjoints then also gives v∗λπ(γ−1) = π(λ−1γ−1λ)v∗λ. If we define pλ = vλv

∗
λ ∈ P(N), then

we have pλ ∈ π(Γ0)′ ∩N , and hence by Corollary 3.3, JpλJ, J |EN (π(λ))|J ∈ B′N . Similarly,
if we define qλ = v∗λvλ then we also have JqλJ ∈ B′N .

Define the map Φ : BN → L∞(B, η)⊗B(L2(N, τ)), by

Φ(x) = σλ ⊗Ad(JvλJ)(x) + (1− JpλJ)x.

It is easy to see that Φ is N -bimodular normal unital completely positive and if γ ∈ Γ0,
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and x ∈ BN then we have

σγ ⊗Ad(Jπ(γ)J)(Φ(x))

= σγλ ⊗Ad(Jπ(γ)vλJ)(x) + σγ ⊗Ad(Jπ(γ)J)((1− JpλJ)x)

= σλ ⊗Ad(JvλJ)(σλ−1γλ ⊗Ad(Jπ(λ−1γλ)J)(x))

+ (1− JpλJ)σγ ⊗Ad(Jπ(γ)J)(x)

= Φ(x).

Hence Φ : BN → B̃N = {σ0
γ ⊗ (JEN (π(γ))J) | γ ∈ Γ0}′ ∩ L∞(B, η)⊗B(L2(N, τ)), and by

Theorem 3.2 we then have Φ = id.
Hence, for x ∈ BN we have σ0

λ⊗ (JvλJ)xσ0
λ−1 ⊗ (Jv∗λJ) = JpλJx = xJpλJ . Multiplying

on the right by σ0
λ ⊗ JvλJ , and using that JqλJ ∈ B′N , we then have σ0

λ ⊗ (JvλJ)x =
xσ0

λ ⊗ (JvλJ). As, J |EN (π(λ))|J ∈ B′N , the result then follows.

Theorem 5.2. Suppose G is a locally compact group which is a product of simple groups with
the Howe-Moore property, and Λ < G is a countable dense subgroup which commensurates
a (strongly) irreducible lattice Γ < G, which in the case G is totally disconnected is not
a torsion group. Suppose also that π : Λ → U(M) is a finite factor representation such
that π(Λ)′′ = M , and set N = π(Γ)′′. If π is not the left regular representation then N is
injective.

Proof. If we take any Poisson boundary (B, η) of G then Gy(B, η) is amenable and con-
tractive, thus the restriction to Γ is again amenable and contractive. Since Γy(B, η) is
amenable, Theorem 5.1 in [Zim77] shows that BN is injective.

By Proposition 5.1, we have that BN ⊂ {σ0
λ ⊗ (JEN (π(λ))J) | λ ∈ Λ}′, and so by

combining Lemma 4.3, with Proposition 4.1, and Theorem 4.4, if π is not the left regular
representation then BN ⊂ 1⊗N , and hence 1⊗N = BN is then injective.

If, in addition, G has property (T) then the conclusion of the previous theorem can be
strengthened. In the sequel we will see that using the notion of resolutions from [Cor06] this
is also the case when G has one non-compact factor with property (T) (see also [Cre13]).

Corollary 5.3. Suppose Γ < Λ < G is as in the hypotheses of Theorem 5.2 and in addition
G has property (T). Suppose also that π : Λ→ U(M) is a finite factor representation such
that π(Λ)′′ = M , and set N = π(Γ)′′. If π is not the left regular representation then N is a
direct sum of matrix algebras.

Proof. If π is not the left regular representation then by Theorem 5.2 we have that N is
injective. Since G has property (T) so does Γ, and hence it then follows from Theorem C in
[Rob93] that π(Γ) ⊂ U(N) is precompact in the strong operator topology. Thus, it follows
from the Peter-Weyl theorem that N is a direct sum of matrix algebras.
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6 Operator algebraic superrigidity for commensurators

Proposition 6.1. Suppose G is a second countable locally compact group, H CG a closed
normal subgroup, and Γ < G a lattice such that the image of Γ is dense in G/H. Suppose
also that π : Γ → U(M) is a homomorphism into the unitary group of a finite factor
M such that π(Γ)′′ = M . For any compact neighborhood of the identity U ⊂ G/H set
ΓU = {γ ∈ Γ | γH ∈ U}.

If π(ΓU ) ⊂ U(M) is precompact in the strong operator topology for some compact neigh-
borhood of the identity U ⊂ G/H, then the G/H-algebra M0 ⊂ M (with respect to the
quotient map Γ→ G/H) is finite index.

Proof. For each compact neighborhood of the identity U ⊂ G/H let KU be the strong
operator topology closure of π(ΓU ), and set K be the intersection of all KU , and set N = K ′′.
By hypothesis K is compact, hence N = K ′′ is completely atomic. If γ ∈ Γ then we have
π(γ)KUπ(γ−1) = KγUγ−1 and hence it follows that π(γ)Nπ(γ−1) = N for all γ ∈ Γ.

If p ∈ P(N) is a minimal central projection then we have ∨γ∈Γπ(γ)pπ(γ−1) is a non-
zero projection which is central since π(Γ)′′ = M . Thus ∨γ∈Γπ(γ)pπ(γ−1) = 1, and since
π(γ1)pπ(γ−1

1 ) and π(γ2)pπ(γ−1
2 ) are either equal or orthogonal for all γ1, γ2 ∈ Γ, it then

follows that Z(N) is finite dimensional and hence so is N .
We set M0 = N ′ ∩M which is then a finite index von Neumann subalgebra of M . If

{γn} ⊂ Γ is a sequence such that γn → e in G/H, then by hypothesis we have that {π(γn)}
is precompact in the strong operator topology and hence for any subsequence {π(γnk

)}
of {π(γn)} there exists a unitary u ∈ U(N) which is a strong operator topology cluster
point, and hence for x ∈ M0 we have that x = uxu∗ is a strong operator topology cluster
point of {π(γnk

)xπ(γ−1
nk
}. As the subsequence {π(γnk

)} was arbitrary it then follows that
π(γn)xπ(γ−1

n ) → x in the strong operator topology. Thus, we have shown that the finite
index subalgebra M0 ⊂M is contained in the G/H-algebra.

Proposition 6.2. Suppose G and H are non-compact non-discrete second countable locally
compact groups such that H is a product of non-compact non-discrete groups with the Howe-
Moore property, suppose also that Γ < G×H is a (strongly) irreducible lattice, such that in
the case when G is totally disconnected there is an element γ0 ∈ Γ with the projection of 〈γ0〉
to G being unbounded, and π : Γ → U(M) is a representation into a finite von Neumann
algebra with π(Γ)′′ = M and such that either

1. G has property (T) and M has the Haagerup property, or

2. π(Γ ∩ (G× U)) is precompact for all compact neighborhoods of the identity U ⊂ H,

then M is completely atomic.
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Proof. By considering the integral decomposition of M into factors it is enough to treat the
case when M is a factor [Tho64b]. For the first case, since G has property (T) it follows
from Theorem 1.8 and Proposition 1.11 in [Cor06] that the subset ΓU = Γ ∩ (G × U) ⊂ Γ
has relative property (T) for some (and hence all) compact neighborhood of the identity
U ⊂ H. The same argument in [CJ85] for the case of property (T) groups then implies that
π(ΓU ) is precompact in the strong operator topology (see also [Rob93]), and hence we have
reduced the problem to the second case.

For the second case we may then apply Proposition 6.1 to conclude that the G-algebra
M0 ⊂M is finite index. However, by Proposition 4.1 and Lemma 4.3 we must have M0 = C,
and hence M is finite dimensional.

Theorem 6.3. Suppose G is a locally compact group which is a product of simple groups
with the Howe-Moore property, and at least one factor having property (T), suppose also
that Λ < G is a countable dense subgroup which commensurates a (strongly) irreducible
lattice Γ < G, which in the case G is totally disconnected is not a torsion group, and such
that Λ�Γ is a product of simple groups with the Howe-Moore property.

If π : Λ→ U(M) is a finite factor representation such that π(Λ)′′ = M , and if π is not
the left regular representation, then M is finite dimensional, and M = π(Γ)′′.

Proof. If we set N = π(Γ)′′ then by Theorem 5.2 we have that N is injective and hence
also has the Haagerup property. By Proposition 6.2 we then have that N is a direct sum
of matrix algebras.

If we consider, as in Theorem 9.2 in [CP12], the diagonal lattice embedding Λ → G ×
(Λ�Γ), then applying Proposition 6.2 a second time gives the result.

The previous theorem easily implies Theorem B from the introduction.

Corollary 6.4. Suppose Γ < Λ < G is as in the hypotheses of Theorem 6.3. Then any
probability measure-preserving ergodic action of Λ on a standard Lebesgue space is free.

Proof. Since every representation generating a finite factor must either be the left-regular,
or finite dimensional, and since there are only countably many finite dimensional represen-
tations (Theorem 10.3 in [Sha00]), this follows directly from Theorem 2.11 in [DM12] or
Theorem 3.2 in [PT13].

Corollary 6.5. Let G be a locally compact group which is a product of at least two simple
groups with the Howe-Moore property. Suppose that at least one factor of G has property
(T), at least one factor is totally disconnected, and if there exists connected factors then
at least one should have property (T). Moreover, assume that Γ is not a torsion group in
the case when G is totally disconnected. Let Γ < G be a (strongly) irreducible lattice. If
π : Γ→ U(M) is a finite factor representation such that π(Γ)′′ = M , and if π is not the left
regular representation, then M is finite dimensional. Moreover, Γ has at most countably
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many finite dimensional irreducible representations, and any probability measure-preserving
ergodic action of Γ on a standard Lebesgue space is free.

Proof. If we write G = G1×G2 where Gi are non-trivial, with G1 having property (T), and
G2 being totally disconnected, then we can consider a compact open subgroup K < G2, and
if we set Γ0 = Γ∩G1×K, then Γ0 projects down to a lattice in G1, which is commensurated
by the projection of Γ. As in Section 10 of [CP12], the result then follows from Theorem 6.3
and Corollary 6.4 by considering the inclusion Γ0 < Γ < G1.

The previous corollaries easily imply Theorem A and Corollary E from the introduction.
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389–402.

[Tho66] , Invariante positiv definite Klassenfunktionen und ergodische Masse, Math. Ann.
162 (1965/1966), 172–189.

[Ume54] Hisaharu Umegaki, Conditional expectation in an operator algebra, Tôhoku Math. J. (2)
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