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Abstract

We prove that any ergodic measure-preserving action of an irreducible lattice in
a semisimple group, with finite center and each simple factor having rank at least
two, either has finite orbits or has finite stabilizers. The same dichotomy holds for
many commensurators of such lattices.

The above are derived from more general results on groups with the Howe-Moore
property and property (T ). We prove similar results for commensurators in such
groups and for irreducible lattices (and commensurators) in products of at least
two such groups, at least one of which is totally disconnected.

1 Introduction

A groundbreaking result in the theory of lattices in semisimple groups is the Margulis Normal
Subgroup Theorem [Mar79],[Mar91]: any nontrivial normal subgroup of an irreducible lattice
in a center-free higher-rank semisimple group has finite index. In the case of real semisimple
Lie groups, Stuck and Zimmer [SZ94] generalized this result to ergodic measure-preserving
actions of such lattices: any irreducible ergodic measure-preserving action of a semisimple
real Lie group, each simple factor having rank at least two, is either essentially free or
essentially transitive; and any ergodic measure-preserving action of an irreducible lattice in
such a semisimple real Lie group either has finite orbits or has finite stabilizers.

More recently, Bader and Shalom [BS06] proved a Normal Subgroup Theorem for irre-
ducible lattices in products of locally compact groups: any infinite normal subgroup of an
irreducible integrable lattice in a product of nondiscrete just noncompact locally compact
second countable compactly generated groups, not both isomorphic to R, has finite index.

Our purpose is to extend this dichotomy for ergodic measure-preserving actions to ir-
reducible lattices and commensurators of lattices in semisimple groups, each factor having
higher-rank, and more generally to lattices in products of at least two groups with the
Howe-Moore property and property (T ).

The Stuck-Zimmer result follows from an Intermediate Factor Theorem, a generalization
of the Factor Theorem of Margulis, due to Zimmer [Zim82] and Nevo-Zimmer [NZ99b]. A
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key step in the work of Bader-Shalom is a similar Intermediate Factor Theorem for prod-
uct groups which they use to show: any irreducible ergodic measure-preserving action of a
product of two locally compact second countable just noncompact groups with property (T )
is either essentially free or essentially transitive. One of the main ingredients in our work
is an Intermediate Factor Theorem for relatively contractive actions which we will discuss
presently.

The methods of Bader-Shalom do not easily yield the same result for actions of irreducible
lattices in products of groups. The major issue is that inducing an action of a lattice may
yield an action of the ambient group which is not irreducible but the Bader-Shalom (and
Stuck-Zimmer) Intermediate Factor Theorems only apply to irreducible actions. The same
issue arises when attempting to apply the Stuck-Zimmer methods to lattices in semisimple
groups with p-adic parts.

Our techniques are a generalization of the Normal Subgroup Theorem for Commensura-
tors due to the first author and Shalom [CS12],[Cre11]: if Λ is a dense commensurator of a
lattice in a locally compact second countable group that is not a compact extension of an
abelian group such that Λ does not infinitely intersect any noncocompact normal subgroup
then any infinite normal subgroup of Λ contains the lattice up to finite index; the commen-
surability classes of infinite normal subgroups of such a commensurator are in a one-one onto
correspondence with the commensurability classes of open normal subgroups of the relative
profinite completion.

The difficulty for lattices does not arise using our techniques as we do not need to induce
the action of the lattice to the ambient group, but rather analyze the action directly by
treating the lattice as a commensurator in a proper subproduct. For this, we require precisely
the object that is the obstruction in the Stuck-Zimmer approach: a totally disconnected
factor. In this sense, our methods complement those of Stuck and Zimmer and combining
results we are able to handle all S-arithmetic lattices. Our methods also lead to results on
actions of commensurators and allow us to prove the corresponding generalization of the
Normal Subgroup Theorem of Bader-Shalom to actions of lattices (provided one group in
the product is totally disconnected). For this generalization, we impose the requirement of
the ambient groups having the Howe-Moore property as the measurable analogue of just
noncompactness.

1.1 Main Results

We now state the main results of the paper. Recall that an action is weakly amenable when
the corresponding equivalence relation is amenable.

Theorem (Theorem 5.1 and Corollary 8.1). Let G be a noncompact nondiscrete locally
compact second countable group with the Howe-Moore property. Let Γ < G be a lattice and
let Λ < G be a countable dense subgroup such that Λ contains and commensurates Γ and
such that Λ has finite intersection with every compact normal subgroup of G.

Then any ergodic measure-preserving action of Λ either has finite stabilizers or the re-
striction of the action to Γ is weakly amenable.

If, in addition, G has property (T ) then any ergodic measure-preserving action of Λ either
has finite stabilizers or the restriction of the action to Γ has finite orbits.

- 2 -



Stabilizers of Ergodic Actions of Lattices and Commensurators D. Creutz and J. Peterson

The result on weak amenability applies to all noncompact simple Lie groups–even those
without higher-rank–and also to automorphism groups of regular trees, both of which have
the Howe-Moore property [HM79], [LM92]. One consequence of this is that any ergodic
measure-preserving action of the commensurator on a nonatomic probability space, which is
strongly ergodic when restricted to the lattice, has finite stabilizers.

The additional assumption that the ambient group have property (T ) allows us to conclude
that any weakly amenable action of the lattice, which will also have property (T ), has, in
fact, finite orbits. This also accounts for the requirement in the Stuck-Zimmer Theorem that
each simple factor has higher-rank.

Treating lattices in products of groups, at least one of which is totally disconnected, as
commensurators of lattices sitting in proper subproducts, we obtain the following general-
ization of the Bader-Shalom Theorem to actions:

Theorem (Theorem 9.1). Let G be a product of at least two simple nondiscrete noncompact
locally compact second countable groups with the Howe-Moore property, at least one of which
has property (T ), at least one of which is totally disconnected and such that every connected
simple factor has property (T ). Let Γ < G be an irreducible lattice.

Then any ergodic measure-preserving action of Γ either has finite orbits or has finite
stabilizers.

Specializing to Lie groups:

Theorem (Corollary 10.5). Let G be a semisimple Lie group (real or p-adic or both) with
no compact factors, trivial center, at least one factor with rank at least two and such that
each real simple factor has rank at least two. Let Γ < G be an irreducible lattice. Then any
ergodic measure-preserving action of Γ on a nonatomic probability space is essentially free.

In particular, we obtain examples of groups without property (T ) having uncountably
many subgroups that admit only essentially free actions:

Theorem (Corollary 10.9). Let G be a simple algebraic group defined over a global field
K such that G has v-rank at least two for some place v and has v∞-rank at least two for
every infinite place v∞. Then every nontrivial ergodic measure-preserving action of G(K) is
essentially free.

One consequence of this fact is that results from the theory of orbit equivalence, which
often require that the actions in question be essentially free, apply to all actions of such
groups. For example, since any nonamenable group cannot act freely and give rise to the
hyperfinite II1 equivalence relation [Dye59],[Zim84]:

Corollary. Let G be a simple algebraic group defined over a global field K such that G has
v-rank at least two for some place v and has v∞-rank at least two for every infinite place v∞.
Then there is no nontrivial homomorphism of G(K) to the full group of the hyperfinite II1
equivalence relation.

The above result also holds if we replace the hyperfinite II1 equivalence relation with any
measure preserving equivalence relation which is treeable, or more generally which has the
Haagerup property (see [Jol05] and [Pop06] Theorem 5.4). More generally, if G is a simple
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algebraic group defined over Q and S is a set of primes as in the statement of Corollary
10.6 then any homomorphism of G(ZS) into the full group of the hyperfinite II1 equivalence
relation is precompact (when S is finite this also follows from Robertson [Rob93]). It seems
plausible that the above result still holds if we replace the full group of the hyperfinite II1
equivalence relation with the unitary group of the hyperfinite II1 factor (see Bekka [Bek07]
for results in this direction).

1.2 Stabilizers of Actions and Invariant Random Subgroups

The results described above can be suitably interpreted in terms of invariant random sub-
groups. Invariant random subgroups are conjugation-invariant probability measures on the
space of closed subgroups and naturally arise from the stabilizer subgroups of measure-
preserving actions. This notion was introduced in [AGV12] where it is shown that, conversely,
every invariant random subgroup arises in this way ([AGV12] Proposition 13, see also Section
3 below). From this perspective the Stuck-Zimmer Theorem [SZ94] then states that semisim-
ple real Lie groups, with each factor having higher-rank, and their irreducible lattices, admit
no nonobvious invariant random subgroups and the Bader-Shalom result states the same for
irreducible invariant random subgroups of products of nondiscrete locally compact second
countable groups with property (T ). Our results can likewise be interpreted in this context.

The study of stabilizers of actions dates back to the work of Moore, [AM66] Chapter 2,
and Ramsay, [Ram71] Section 9 (see also Adams and Stuck [AS93] Section 4). Bergeron
and Gaboriau [BG04] observed that invariant random subgroups behave similarly to normal
subgroups and this topic has attracted much recent attention: [ABB+11], [AGV12], [Bow12],
[GS12], [Gri11], [Ver11], [Ver12].

Our work, like that of Stuck and Zimmer, rules out the existence of nonobvious invariant
random subgroups for certain groups. This stands in stark contrast to nonabelian free groups,
which admit a large family of invariant random subgroups [Bow12]. Even simple groups can
admit large families of nonfree actions: Vershik showed that the infinite alternating group
admits many such actions [Ver12]. Another class of examples can be found by considering
the commutator subgroup of the topological full group of Cantor minimal systems, which
were shown to be simple by Matsui [Mat06] (and more recently to also be amenable by
Juschenko and Monod [JM12]).

The main contribution to the theory we make here is introducing a technique, based
on joinings, that allows us to formulate meaningful definitions of notions such as contain-
ment and commensuration for invariant random subgroups that extend the usual notions for
subgroups:

Definition (Definition 3.7). Two invariant random subgroups are commensurate when there
exists a joining such that almost surely the intersection has finite index in both.

The joinings technique may be of independent interest and should allow for more general
definitions of properties of invariant random subgroups akin to those of subgroups. We use
this definition to formulate a one-one correspondence:

Theorem (Theorem 10.1). Let G be a semisimple Lie group (real or p-adic or both) with
finite center where each simple factor has rank at least two. Let Γ < G be an irreducible
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lattice and let Λ < G be a countable dense subgroup such that Λ contains and commensurates
Γ and such that Λ has finite intersection with every proper subfactor of G.

Then any ergodic measure-preserving action of Λ either has finite stabilizers or the re-
striction of the action to Γ has finite orbits.

Moreover, the commensurability classes of infinite ergodic invariant random subgroups of
Λ are in one-one, onto correspondence with the commensurability classes of open ergodic
invariant random subgroups of the relative profinite completion Λ�Γ.

1.3 Relatively Contractive Maps

Strongly approximately transitive (SAT) actions, introduced by Jaworski in [Jaw94], [Jaw95],
are the extreme opposite of measure-preserving actions: an action of a group G on a proba-
bility space (X, ν), with ν quasi-invariant under the G-action, such that for any measurable
set B of less than full measure there exists a sequence gn ∈ G which “contracts” B, that is
ν(gnB) → 0.

We introduce a relative version of this property, akin to relative measure-preserving, by
saying that a G-equivariant map π : (X, ν) → (Y, η) between G-spaces with quasi-invariant
probability measures is relatively contractive when it is “contractive over each fiber” (see
Section 4 for a precise definition). This is a generalization of the notion of proximal maps,
which can also be thought of as “relatively boundary maps” in the context of stationary
dynamical systems.

Following [FG10], we say a continuous action of a group G on a compact metric space
X with quasi-invariant Borel probability measure ν ∈ P (X) is contractible when for every
x ∈ X there exists gn ∈ G such that gnν → δx in weak*. Furstenberg and Glasner [FG10]
showed that an action is SAT if and only if every continuous compact model is contractible.

We generalize this to the relative case and obtain that a G-space is a relatively contractive
extension of a point if and only if it is SAT. For this reason, we adopt the somewhat more
descriptive term contractive to refer to such spaces.

Contractive spaces are the central dynamical concept in the proof of the amenability
half of the Normal Subgroup Theorem for Commensurators [CS12], [Cre11] and have been
studied in the context of stationary dynamical systems by Kaimanovich [Kai02]. Jaworski
introduced the notion as a stronger form of the approximate transitivity property of Connes
and Woods [CW85] to study the Choquet-Deny property on groups and showed that Poisson
boundaries are contractive. The main benefit contractive spaces offer over boundaries is
greater flexibility in that one need not impose a measure on the group.

We show that relatively contractive maps are essentially unique, which is crucial for the
Intermediate Contractive Factor Theorem:

Theorem (Theorem 4.39). Let Γ < G be a lattice in a locally compact second countable
group and let Λ contain and commensurate Γ and be dense in G.

Let (X, ν) be a contractive stationary G-space and (Y, η) be a measure-preserving G-space.
Let π : (X×Y, ν× η) → (Y, η) be the natural projection map from the product space with the
diagonal action.

Let (Z, ζ) be a Λ-space such that there exist Γ-maps ϕ : (X × Y, ν × η) → (Z, ζ) and
ρ : (Z, ζ) → (Y, η) with ρ ◦ ϕ = π. Then ϕ and ρ are Λ-maps and (Z, ζ) is Λ-isomorphic to
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a G-space and over this isomorphism the maps ϕ and ρ become G-maps.

We will actually need a stronger version of the Intermediate Factor Theorem (Theorem
4.41) which can be viewed as a “piecewise” or groupoid version in line with the virtual groups
of Mackey [Mac66].

We also show that relatively contractive is orthogonal to relatively measure-preserving:
any map which is both relatively contractive and relatively measure-preserving is necessarily
an isomorphism. Extending this, we prove:

Theorem (Theorem 4.29 and Corollary 4.30). Let (X, ν) be a contractive G-space and (Y, η)
be a G-space. Then there is at most one joining such the projection to X is relatively measure-
preserving.

In particular, if (Y, η) is a measure-preserving G-space then any joining such that the
projection to X is relatively measure-preserving is the independent joining.

Relatively contractive maps also allow us to answer a question of Shalom regarding the
behavior of contractive actions restricted to lattices:

Theorem (Theorem 4.37). Let G be a locally compact second countable group and Γ < G a
lattice. Let (X, ν) be a contractive stationary G-space. Then the restriction of the G-action
to Γ makes (X, ν) a contractive Γ-space.

1.4 Outline

We now outline the structure of the paper. In the next section, we recall basic facts and
definitions about lattices and commensurators, group actions on measure spaces, the Howe-
Moore property and semisimple groups and their lattices, and state precisely the theorems of
Stuck and Zimmer, Bader and Shalom, and the first author and Shalom, mentioned above.

In Section 3, we discuss invariant random subgroups and explain the joinings technique
used to define commensurability for invariant random subgroups.

We introduce the definition of relatively contractive maps in Section 4 and prove a series of
facts about these maps. These results culminate in the proof of the Intermediate Contractive
Factor Theorem and along the way recover most known results on contractive spaces.

Having then introduced the two main ingredients, in Section 5 we prove that the restriction
of the action of a commensurator to a lattice is weakly amenable, provided the ambient
satisfies appropriate hypotheses. This is a key step that all our further results follow from.
In Section 6, we rephrase the results of Section 5 in terms of invariant random subgroups in
order to prove the one-one correspondence.

In Section 7, we explain how the Howe-Moore property ensures that the ambient group
satisfies the necessary conditions on its actions to apply the results from Sections 5 and 6.
In Sections 8 and 9, we derive the consequences for lattices and commensurators in Howe-
Moore groups with property (T ). We conclude with Section 10, specializing to the case of
semisimple groups.
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2 Preliminaries

2.1 Commensuration

2.1.1 Commensurators of Lattices

Definition 2.1. Let G be a locally compact second countable group. A subgroup Γ < G is
a lattice when it is discrete and there exists a fundamental domain for G/Γ with finite Haar
measure. A lattice is irreducible when the projection modulo any noncocompact closed
normal subgroup is dense.

Definition 2.2. Let A and B be subgroups of a groupG. Then A andB are commensurate
when A ∩ B has finite index in both A and B.

Definition 2.3. Let G be a group. A subgroup Λ < G commensurates another subgroup
Γ < G when for every λ ∈ Λ the group Γ ∩ λΓλ−1 has finite index in both Γ and λΓλ−1.
When Γ < Λ is a subgroup of Λ we will write

Γ <c Λ

to mean that Γ is a commensurated subgroup of Λ.

Definition 2.4. Let Γ < G be a lattice in a locally compact second countable group. Then

CommG(Γ) = {g ∈ G : [Γ : Γ ∩ gΓg−1] <∞ and [gΓg−1 : Γ ∩ gΓg−1] <∞}

is the commensurator of Γ in G.

2.1.2 The Relative Profinite Completion

We recall the construction and some basic facts about the relative profinite completion of
commensurated subgroups. This construction has appeared in the study of commensurated
subgroups [Sch80], [Tza00], [Tza03], [CM09] and the reader is referred to [SW09] and [Cre11]
for more information and proofs of the following basic facts.

Definition 2.5. Let Γ <c Λ be countable groups with Λ commensurating a subgroup Γ.
Define the map τ : Λ → Symm(Λ/Γ) to be the natural mapping of Λ to the symmetry group
of the coset space. Endow Symm(Λ/Γ) with the topology of pointwise convergence. Then
Symm(Λ/Γ) is a Polish group since Λ is countable but in general is not locally compact.

The relative profinite completion of Λ over Γ is

Λ�Γ := τ(Λ).
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Theorem 2.6. Let Γ <c Λ. The relative profinite completion Λ�Γ is a totally disconnected

locally compact group and τ(Γ) is a compact open subgroup.

Proposition 2.1.1. Let Γ <c Λ. Then Λ�Γ is compact if and only if [Λ : Γ] < ∞. In
particular, Λ�Γ is finite if and only if it is compact.

Proposition 2.1.2. Let Γ <c Λ. Then Λ�Γ is discrete if and only if there exists Γ0 < Γ
such that [Γ : Γ0] <∞ and Γ0 ⊳ Λ.

Proposition 2.1.3. Let Γ <c Λ. Then τ(Λ) ∩ τ(Γ) = τ(Γ) and τ−1(τ(Γ)) = Γ.

Proposition 2.1.4. Let H be a totally disconnected locally compact group and K be a com-
pact open subgroup of H. Define τH,K : H → Symm(H/K) as before (K is necessarily
commensurated by H). Then τH,K is a continuous open map with closed range.

Moreover H�K is isomorphic to H/ ker(τH,K) and in fact ker(τH,K) is the largest normal
subgroup of H that is contained in K.

Proposition 2.1.5. Let B < A be any countable groups. Let H be a locally compact totally
disconnected group andK < H a compact open subgroup. Let ϕ : A→ H be a homomorphism
such that ϕ(A) is dense in H and ϕ−1(K) = B.

Then B <c A and B�A is isomorphic to H�K.

2.2 Group Actions on Measure Spaces

Throughout the paper, we will always assume groups are locally compact second countable
and that measure spaces are standard probability spaces (except when otherwise stated).

2.2.1 Free and Transitive Actions

Definition 2.7. A group G acts on a space X when there is a map G×X → X , written
gx, such that g(hx) = (gh)x. For ν ∈ P (X) a Borel probability measure on X , we say
that ν is quasi-invariant when the G-action preserves the measure class and invariant or
measure-preserving when G preserves ν.

We write Gy (X, ν) and refer to (X, ν) as a G-space when G acts on X and ν ∈ P (X)
is quasi-invariant and the action map G×X → X is Haar× ν-measurable.

Definition 2.8. Let Gy (X, ν). The stabilizer subgroups are written

stabG(x) = {g ∈ G : gx = x}

and when Γ < G is a subgroup we write

stabΓ(x) = {γ ∈ Γ : γx = x} = stabG(x) ∩ Γ

for the stabilizer of x when the action is restricted to Γ.

Definition 2.9. G y (X, ν) is essentially transitive when for some x ∈ X the orbit Gx
is conull in X .
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Note that an essentially transitive ergodic action of a countable group means the space is
atomic (hence, in the case of measure-preserving actions, finite).

Definition 2.10. Gy (X, ν) is essentially free when for almost every x ∈ X the stabilizer
group stabG(x) is trivial.

Definition 2.11. Gy (X, ν) has finite stabilizers when for almost every x the stabilizer
subgroup stabG(x) is finite.

Definition 2.12. G y (X, ν) has finite orbits when for almost every x the orbit Gx is
finite.

Definition 2.13. G y (X, ν) is ergodic when every G-invariant measurable set is either
null or conull.

Definition 2.14. G y (X, ν) is irreducibly ergodic or simply irreducible when every
nontrivial normal subgroup of G acts ergodically on (X, ν).

2.2.2 Factor Maps

Definition 2.15. Let G be a locally compact second countable group and π : (X, ν) → (Y, η)
a measurable map such that π∗ν = η and π(gx) = gπ(x) for all g ∈ G and almost every
x ∈ X . Such a map π is a G-map of G-spaces.

Definition 2.16. Given a measurable map π : X → Y the push-forward map π∗ :
P (X) → P (Y ), mentioned above, is defined by (π∗ν)(B) = ν(π−1(B)) forB ⊆ Y measurable.

In order to relativize properties of G-spaces to G-maps, we will need to focus on the
behavior of the disintegration measures over a G-map. Recall that:

Definition 2.17. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. Then there exist almost
surely unique measures Dπ(y), called the disintegration measures, such that Dπ(y) is
supported on π−1(y) and

∫
Dπ(y) dη(y) = ν.

Of course, the disintegration measures correspond to the conditional expectation at the
level of the function algebras: if π : (X, ν) → (Y, η) then the algebra {f ◦π : f ∈ L∞(Y, η)} is
a subalgebra of L∞(X, ν) and the disintegration measures define the conditional expectation
to this subalgebra.

2.2.3 Joinings

We will make use of the concept of joinings of G-spaces both to study relatively contractive
maps and to work with invariant random subgroups. The reader is referred to [Gla03] for
more information.

Definition 2.18. Let (X, ν) and (Y, η) be G-spaces. Let α ∈ P (X×Y ) such that (prX)∗α =
ν, (prY )∗α = η and α is quasi-invariant under the diagonal G-action. The space (X × Y, α)
with the diagonal G-action is called a joining of (X, ν) and (Y, η).

- 9 -



Stabilizers of Ergodic Actions of Lattices and Commensurators D. Creutz and J. Peterson

Definition 2.19. A joining α of G-spaces is G-invariant when α is G-measure-preserving
under the diagonal action.

Definition 2.20. Let (X, ν) and (Y, η) be G-spaces. The space (X × Y, ν × η) with the
diagonal G-action is the independent joining of (X, ν) and (Y, η).

Proposition 2.2.1. Let α ∈ P (X × Y ) be a joining of the G-spaces (X, ν) and (Y, η).
Consider the projection p : X × Y → Y . The disintegration of α over η via p is of the form
Dp(y) = αy × δy for some αy ∈ P (X) almost surely.

Definition 2.21 ([Gla03] Definition 6.9). Let (X, ν), (Y, η) and (Z, ζ) be G-spaces and let
α be a joining of (X, ν) and (Y, η) and β be a joining of (Y, ν) and (Z, ζ). Let αy ∈ P (X)
and βy ∈ P (Z) be the projections of the disintegrations of α and β over η. The measure
ρ ∈ P (X × Z) by

ρ =

∫

Y

αy × βy dη(y)

is the composition of α and β.

Proposition 2.2.2 ([Gla03] Proposition 6.10). The composition of two joinings is a joining.
If two joinings are G-invariant then so is their composition.

2.2.4 Induced Actions

We recall now the construction of the induced action from a lattice to the ambient group,
see, e.g., [Zim84].

Let Γ < G be a lattice in a locally compact second countable group and let (X, ν) be a
Γ-space. Take a fundamental domain F for G/Γ such that e ∈ F . Let m ∈ P (F ) be the
Haar measure of G restricted to F and normalized to be a probability measure on F . Define
the cocycle α : G × F → Γ by α(g, f) = γ such that gfγ ∈ F and observe that such a γ
is unique so this is well-defined. Note that α(gh, f) = α(h, f)α(g, hfα(h, f)) meaning α is
indeed a cocycle. We also remark that α(f, e) = e for f ∈ F and that α(γ, e) = γ−1 for
γ ∈ Γ. Consider now the action of G on F ×X given by

g · (f, x) = (gfα(g, f), α(g, f)−1x)

and observe that the measure m× ν is quasi-invariant under this action. So (F ×X,m× ν)
is a G-space.

Also consider the Γ-action on (G×X,Haar× ν) given by

γ · (g, x) = (gγ−1, γx)

and observe that this is quasi-invariant as well. Since the Γ-action on G/Γ is proper the
space of Γ-orbits of G×X under that action is well-defined and we denote it by G×ΓX and
write elements as [g, x]. Define a G-action on G×Γ X by h · [g, x] = [hg, x].

Define the map τ : F×X → G×ΓX by τ(f, x) = [f, x] and the map ρ : G×ΓX → F×X by
ρ([g, x]) = (gα(g, e), α(g, e)−1x). Observe that ρ is well-defined since α(gγ, e) = γ−1α(g, e).
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Clearly, τ(ρ([g, x])) = [g, x] and ρ(τ(f, x)) = (f, x) so these maps invert one another.
Moreover,

τ(g · (f, x)) = [gfα(g, f), α(g, f)−1x] = [gf, x] = g · [f, x] = g · τ(f, x)

and similarly, ρ(h·[g, x]) = h·ρ([g, x]) so τ and ρ are inverse G-isomorphisms of (F×X,m×ν)
and (G×Γ X,α) where α = τ∗(m× ν).

These isomorphisms show that the construction defined is independent of the fundamental
domain chosen and we define the induced action to G of Γ y (X, ν) to be the G-space
(G×Γ X,α).

2.2.5 Induced Maps

Let Γ < G be a lattice in a locally compact second countable group. Let π : (X, ν) → (Y, η)
be a Γ-map of Γ-spaces. Fix a fundamental domain F for G/Γ and m ∈ P (F ) as above.
Define the map Φ : (F ×X,m× ν) → (F × Y,m× η) by Φ(f, x) = (f, π(x)). Then

Φ(g · (f, x)) = (gfα(g, f), π(α(g, f)−1x)) = (gfα(g, f), α(g, f)−1π(x)) = g · Φ(f, x)

so Φ is a G-map of G-spaces. Let Π : (G×ΓX,α) → (G×Γ Y, β) be the image of Φ over the
canonical isomorphisms defined above for the induced actions.

The G-map Π between the induced G-spaces is referred to as the induced G-map from
the Γ-map π.

2.2.6 Continuous Compact Models

We will need a basic fact about the existence of compact models. This result does not appear
explicitly in the literature but the proof is essentially contained in [Zim84].

Definition 2.22. Let (X, ν) be a (measurable) G-space. A compact metric space X0 and
fully supported Borel probability measure ν0 ∈ P (X0) is a continuous compact model
of (X, ν) when G acts continuously on X0 and there exists a G-equivariant measure space
isomorphism (X, ν) → (X0, ν0).

Definition 2.23. Let π : (X, ν) → (Y, η) be a measurable G-map of (measurable) G-spaces.
Let X0 and Y0 be compact metric spaces on which G acts continuously and let π0 : X0 → Y0
be a continuous G-equivariant map. Let ν0 ∈ P (X0) and η0 ∈ P (Y0) be fully supported Borel
probability measures such that (π0)∗ν0 = η0. The map and spaces π0 : (X0, ν0) → (Y0, η0) is
a continuous compact model for the G-map π and G-spaces (X, ν) and (Y, η) when there
exist G-equivariant measure space isomorphisms Φ : (X, ν) → (X0, ν0) and Ψ : (Y, η) →
(Y0, η0) such that the resulting diagram commutes: π = Ψ−1 ◦ π0 ◦ Φ.

Lemma 2.2.3 (Varadarjan [Var63]). Let G be a locally compact second countable group and
π : (X, ν) → (Y, η) a G-map of G-spaces. Then there exists a continuous compact model for
π.

Proof. Let X be a countable collection of functions in L∞(X, ν) that separates points and let
Y be a countable collection in L∞(Y, η) that separates points. Let F = X ∪{f ◦ π : f ∈ Y}.
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Let B be the unit ball in L∞(G,Haar) which is a compact metric space in the weak* topology
(as the dual of L1).

Define X00 =
∏

f∈F B and Y00 =
∏

f∈Y B, both of which are compact metric spaces using
the product topology. Define π00 : X00 → Y00 to be the restriction map: for f ∈ Y take the
f th coordinate of π00(x00) to be the (f ◦ π)th coordinate of x00. Then π00 is continuous.

Define the map Φ : X → X00 by Φ(x) = (ϕf(x))f∈F where (ϕf(x))(g) = f(gx). Then
Φ is an injective map (since F separates points). Observe that (ϕf(hx))(g) = f(ghx) =
(ϕf(x))(gh). Consider the G-action on X00 given by the right action on each coordinate.
Then G acts on X00 continuously (and likewise on Y00 continuously) and Φ is G-equivariant.
Similarly, define Ψ : Y → Y00 by Ψ(y) = (ψf (y))f∈Y where (ψf (y))(g) = f(gy).

Let X0 = Φ(X), let ν0 = Φ∗ν, let Y0 = Ψ(Y ), let η0 = Ψ∗η and let π0 be the restriction of
π00 to X0. Then Φ : (X, ν) → (X0, ν0) and Ψ : (Y, η) → (Y0, η0) are G-isomorphisms. Since
(ψf (π(x)))(g) = f(gπ(x)) = f ◦π(gx) = (ϕf◦π(x))(g), π0(X0) = Y0 and Ψ−1 ◦π0 ◦Φ = π.

2.2.7 Stationary Spaces

Definition 2.24. Let G be a locally compact second countable group and µ ∈ P (G) a
Borel probability measure on G such that the support of µ generates G. A G-space (X, ν)
is µ-stationary when µ ∗ ν = ν. A µ-stationary G-space is referred to as a (G, µ)-space.

The main fact about stationary spaces we need is the random ergodic theorem, due to
Kakutani [Kak51] in the measure-preserving case and to Kifer [Kif86] in the general case.

Theorem 2.25 (The Random Ergodic Theorem). Let G be a locally compact second count-
able group, µ ∈ P (G) a probability measure on G such that the support of µ generates G and
(X, ν) an ergodic (G, µ)-space. Then for f ∈ L1(X, ν) and µN-almost every (ω1, ω2, ω3, . . .) ∈
GN,

1

N

N∑

n=1

f(ωnωn−1 · · ·ω2ω1x) →

∫
f dν

where the convergence is both ν-almost everywhere and in L1(X, ν).

2.2.8 Poisson Boundaries

Poisson boundaries were introduced by Furstenberg [Fur63] and have several important prop-
erties, some of which we mention in the following sections. The Poisson boundary for G and
µ is a (G, µ)-space. We include the definition for completeness but will not need to study the
structure of such spaces. The reader is referred to [BS06] and [Cre11] for more information.

Definition 2.26. Let G be a locally compact second countable group and µ ∈ P (G) a
Borel probability measure on G such that the support of µ generates G. Let T : GN → GN

be defined by T (w1, w2, w3, . . .) = (w1w2, w3, . . .). The space of T -ergodic components of
(GN, µN) is the Poisson boundary for G and µ.
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2.3 Equivalence Relations

Definition 2.27. Let Gy (X, ν) be a measure-preserving action. The equivalence rela-
tion generated by the action is given by R where xRy when there exists g ∈ G such that
gx = y.

Definition 2.28. The equivalence relation RGy(X,ν) is amenable when there exists a se-
quence of nonnegative function ρn : R → R such that

• ρn,x ∈ ℓ1([x]) for almost every x where [x] is the equivalence class of x and ρn,x(y) =
ρn(x, y) is defined on y ∈ [x]

• ‖ρn,x‖ℓ1 = 1

• there exists a Borel R-invariant conull set X0 such that ‖ρn,x − ρn,y‖ℓ1 → 0 as n → ∞
for all xRy with x, y ∈ X0

Lemma 2.3.1. Let G y (X, ν) be a measure-preserving action such that the associated
equivalence relation is amenable. Then the equivalence relation associated to almost every
G-ergodic component of (X, ν) is amenable.

Proof. The definition of amenable equivalence relation is formulated solely in terms of the
behavior on orbits which of course each lie in a single ergodic component.

2.4 Weak Amenability of Actions

Definition 2.29 (Zimmer). Let G y (X, ν) be a measure-preserving action. Let E be a
separable Banach space and write E∗

1 for the unit ball in the dual of E. Let α : G ×X →
Iso(E) be a cocycle. Denote the dual cocycle α∗ by α∗(g, x) = (α(g, x)−1)∗. Let Ax ⊆ E∗

1 be
a closed convex nonempty set for almost every x such that α∗(g, x)Agx = Ax. Consider the
space

F (X, {Ax}) = {ϕ : X → E∗
1

∣∣ ϕ(x) ∈ Ax for a.e. x}.

This is a closed convex compact subset of L∞(X,E∗
1) which is G-invariant under the α∗-

twisted action. Such a space A = F (X, {Ax}) is called an affine G-space over (X, ν).

Definition 2.30. The cocycle α is called orbital when α(g, x) = e for all g ∈ stabG(x) for
almost every x. The affine G-space A is called an orbital affine G-space when α is orbital.

Definition 2.31. G y (X, ν) is amenable when for every affine G-space A over (X, ν)
there exists an α∗-invariant function f : X → E∗

1 such that f(x) ∈ Ax for almost every
x: α∗-invariant means f(gx) = α∗(g, x)f(x). G y (X, ν) is weakly amenable when that
condition holds for all orbital affine G-spaces over (X, ν).

Theorem 2.32 (Zimmer [Zim77]). The equivalence relation generated by the action G y
(X, ν) is amenable if and only if the action is weakly amenable.

Theorem 2.33 (Connes-Feldman-Weiss [CFW81], Stuck-Zimmer [SZ94]). Let G be a group
with property (T ) and Gy (X, ν) be an ergodic measure-preserving action. Then Gy (X, ν)
is weakly amenable if and only if Gy (X, ν) is essentially transitive.
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Proposition 2.4.1. Let Γ be a discrete countable group with property (T ) and Γ y (X, ν)
a measure-preserving action (not necessarily ergodic) that is weakly amenable. Then almost
every Γ-orbit is finite.

Proof. Since the action is weakly amenable, the associated equivalence relation is weakly
amenable by Theorem 2.32. By Lemma 2.3.1 then the equivalence relation on almost every
ergodic component is amenable. Therefore the action on almost every ergodic component
is weakly amenable by Theorem 2.32 and so by Theorem 2.33 the action on almost every
ergodic component is essentially transitive. Since Γ is discrete, for an ergodic component
(Y, η) with y ∈ Y such that η(Γy) = 1 it follows that η(γy) > 0 for some γ ∈ Γ and then by
the invariance of η that η(γy) is constant and nonzero over Γ hence Γy must be a finite set.
As this holds for almost every ergodic component then almost every Γ-orbit in X must be
finite (though the size of each orbit can vary over the ergodic components).

We will make use of the following standard facts due to Zimmer [Zim84]:

Proposition 2.4.2 (Zimmer [Zim84]). Let G be a locally compact second countable group.
Then G acts amenably on any of its Poisson Boundaries.

Proposition 2.4.3 (Zimmer [Zim84]). Let G act amenably on (X, ν) and H < G be any
closed subgroup. Then H acts amenably on (X, ν).

Proposition 2.4.4 (Zimmer [Zim84]). Let G act amenably on (X, ν) and let (Y, η) be any
G-space. Then G acts amenably on (X × Y, ν × η) (with the diagonal action).

Proposition 2.4.5 (Stuck-Zimmer [SZ94]). Let G act amenably on (Y, η) and A be an affine
G-space over a G-space (X, ν). Then there exist measurable G-maps Y × X → A → X
composing to the natural projection to X.

We include a proof since the above statement does not appear explicitly in the literature
(though it is proved implicitly in [SZ94]).

Proof. Let p : A → X be the G-map given by the projection to X : for (x, f) ∈ X ×α∗ E∗
1

let p(x, f) = x (here α is the cocycle defining the action on A). Define the cocycle β :
G × (Y ×X) → Iso(E) by β(g, y, x) = α(g, x) and set Cy,x = Ax. Then β∗(g, y, x)Cgy,gx =
α∗(g, x)Agx = Ax = Cy,x making F (Y ×X, {Cy,x}) an affine G-space over (Y ×X, η × ν).

By Proposition 2.4.4, G acts amenably on (Y × X, η × ν) hence there exists a fixed
point π : Y × X → E∗

1 such that π(y, x) ∈ Cy,x = Ax for almost every y, x and such that
β∗(g, y, x)π(gy, gx) = π(y, x) for all g ∈ G and almost every y, x. Note that p◦π : Y ×X → X
is the natural projection and therefore we have constructed the necessary maps.

2.5 The Howe-Moore Property

The Howe-Moore property was first proven for simple Lie groups by Howe and Moore [HM79].
The reader is referred to [Zim84].

Definition 2.34. A group G has the Howe-Moore property when for every irreducible
unitary representation of G on a Hilbert space the matrix coefficients vanish at infinity.
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The following is Theorem 3.6 in [Sch84]:

Theorem 2.35 (Schmidt [Sch84]). A group has the Howe-Moore property if and only if
every ergodic measure-preserving action is mixing.

A consequence of Rothman’s work on connected Howe-Moore groups and minimally al-
most periodic groups is:

Theorem 2.36 (Rothman [Rot80]). A simple connected group with the Howe-Moore property
is a Lie group.

We also make use of the following well-known facts:

Proposition 2.5.1. Any proper closed normal subgroup of a Howe-Moore group is compact.

Proposition 2.5.2. Any proper open subgroup of a Howe-Moore group is compact.

2.6 Properties of Lie and Algebraic Groups

We note the following well-known facts [HM79], [Kaz67], [Zim84], [Mar91] and [Ben04].

Theorem 2.37. Simple real and p-adic Lie groups have the Howe-Moore property.

Theorem 2.38. Higher-rank simple real and p-adic Lie groups have property (T ).

Theorem 2.39. Irreducible lattices in higher-rank semisimple real and p-adic Lie groups
(and combinations thereof) have dense commensurators.

Definition 2.40. Let G be a semisimple algebraic group over Q. Let S be a finite set of
primes. Denote by ZS the S-integers: Z adjoin 1/p for each p ∈ S. Then G(ZS) is a lattice
in

∏
p∈S∪{∞}G(Qp) where Q∞ = R (theorems of Borel and Harish-Chandra and of Borel).

Let G be a group such that φ :
∏

p∈S∪{∞}G(Qp) → G is an onto homomorphism with

compact kernel. Let Γ < G such that Γ∩φ(G(ZS)) has finite index in both Γ and φ(G(ZS)).
Then Γ is a lattice in G and is called S-arithmetic.

Theorem 2.41 (Margulis [Mar91]). Let G be a higher-rank semisimple Lie group (real and
p-adic factors allowed) with no compact factors and Γ < G an irreducible lattice. Then Γ is
S-arithmetic.

Theorem 2.42 (Margulis [Mar91]). Let K be a global field, let V be the set of places (in-
equivalent valuations) and let V∞ the infinite places (archimedean valuations in the case of a
number field). Write Kv for the completion of k over a valuation v ∈ V . Let G be a simple
algebraic group defined over K. Then G(Kv) has the Howe-Moore property for every v ∈ V
where G(Kv) is noncompact. If G has v-rank at least two then G(Kv) has property (T ) for
every v ∈ V .
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2.7 The Stuck-Zimmer Theorem

Theorem 2.43 (Stuck-Zimmer [SZ94]). Let G be a connected semisimple Lie group with
finite center such that each simple factor of G has R-rank at least two. Then any faith-
ful, irreducible, finite measure-preserving action of G is either essentially free or essentially
transitive.

Theorem 2.44 (Stuck-Zimmer [SZ94]). Let G be a connected semisimple Lie group with
finite center such that each simple factor of G has R-rank at least two. Let Γ < G be an
irreducible lattice in G. Then any finite measure-preserving action of Γ either has finite
orbits or has finite stabilizers.

We remark that this is a generalization of Margulis’ theorem since one can always con-
struct Bernoulli shift actions with the normal subgroup being the stabilizer almost surely.

2.8 The Normal Subgroup Theorem for Commensurators of Lattices

Theorem 2.45 (Creutz-Shalom [CS12]). Let G be a compactly generated locally compact
group that is not a compact extension of an abelian group. Let Γ be an integrable lattice in
G and let Λ < G be dense in G such that Γ <c Λ. Assume that for every closed normal
subgroup M of G that is not cocompact that M ∩ Λ is finite. Then for any infinite normal
subgroup N ⊳ Λ it holds that [Γ : Γ ∩N ] <∞.

Moreover, there is a one-one, onto correspondence between commensurability classes of
infinite normal subgroups of Λ and commensurability classes of open normal subgroups of the
relative profinite completion Λ�Γ.

We remark that the requirement that Γ be integrable can be dropped if the ambient group
G is known to have property (T ) since integrability is used only in the proof to handle the
case when Γ does not have property (T ) (see [CS12]). Likewise, the compact generation
assumption can be dropped since property (T ) implies it.

3 Invariant Random Subgroups

Invariant random subgroups are the natural context for the presentation of some of our
results. We recall here the definition and a basic construction, introduce a definition of
commensurability for invariant random subgroups and explain how the technique employed
can be used to define relationships between invariant random subgroups.

Definition 3.1. Let G be a group. The space of closed subgroups S(G) is a compact topo-
logical space (with the Chabauty topology) and G acts on it by conjugation. An invariant
random subgroup of G is a probability measure ν ∈ P (S(G)) that is invariant under the
conjugation action.

3.1 Measure-Preserving Actions

Let G be a group and G y (X, ν) be a measure-preserving action. Then the mapping
x 7→ stabG(x) sending each point to its stabilizer subgroup defines a Borel map X → S(G)
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([AM66] Chapter 2, Proposition 2.3). Let η be the pushforward of ν under this map. Observe
that stabG(gx) = g stabG(x)g

−1 so the mapping is a G-map and therefore η is an invariant
measure on S(G). Hence G y (X, ν) gives rise in a canonical way to an invariant random
subgroup of G defined by the stabilizer subgroups.

3.2 Invariant Random Subgroups Always Arise From Actions

In fact the converse of this is also true: any invariant random subgroup can be realized as
the stabilizer subgroups of some measure-preserving action:

Theorem 3.2 (Abert-Glasner-Virág [AGV12]). Let η ∈ P (S(G)) be an invariant random
subgroup of a countable group G. Then there exists a measure-preserving G-space (X, ν)
such that η is the invariant random subgroup that arises from the stabilizers of the action.

In our setting, we consider invariant random subgroups of nondiscrete locally compact
groups and so we need to generalize the result of Abert, Glasner and Virág to the locally
compact case. We make use of the Gaussian action construction: for a separable Hilbert space
H one can associate a probability space (YH , νH) and an embedding ρ : H → L2(YH , νH) such
that for any orthogonal T : H → K between Hilbert spaces there is a measure-preserving
map VT : (YH, νH) → (YK , νK) such that ρ(T (ξ)) = ρ(ξ) ◦ V −1

T and that for T : H → K
and S : K → L, VS ◦ VT = VS◦T almost everywhere for each fixed pair S, T . The reader is
referred to Schmidt [Sch96] for details.

Theorem 3.3. Let G be a locally compact second countable group. Given an invariant
random subgroup (S(G), η) there exists a measure-preserving G-space (X, ν) such that the
G-equivariant mapping x 7→ stabG(x) pushes ν to η.

Proof. Decompose S(G) into into the conjugation invariant Borel sets S1 = {H < G :
H is cocompact in G} and S2 = S(G) \S1. For each H ∈ S1 let (YH , ηH) be YH = G/H and
ηH the Haar measure normalized to be a probability measure. For each H ∈ S2 let (YH , ηH)
be the Gaussian probability space corresponding to L2(G/H). Let Y = ((YH , ηH))H∈S(G) be
the field of measure spaces just constructed.

Define the cocycle α : G × S(G) → Y such that α(g,H) ∈ Aut(YH, YgHg−1) as follows:
for H ∈ S1 define α(g,H)(kH) = kg−1(gHg−1) and for H ∈ S2 define α(g,H) to be the
measure-preserving isomorphism from YH to YgHg−1 induced by the orthogonal operator Tg,H
given by (Tg,Hf)(kgHg

−1) = f(kgH). For each g, h ∈ G, the cocycle identity holds almost
everywhere by the nature of the Gaussian construction. Define the measure space

(X, ν) =
(⊔

YH ,

∫
ηH dη(H)

)

equipped with the measure-preserving cocycle action of G coming from α. By Mackey’s point
realization [Mac62] (see Appendix B of [Zim84]), as G is locally compact second countable
by removing a null set we may assume, the cocycle identity holds everywhere.

For each fixed H ∈ S(G) the map g 7→ α(g,H) defines an action of the normalizer NG(H)
of H in G modulo H on YH which is essentially free (Proposition 1.2 in [AEG94]). For g ∈ G
and (H, x) ∈ X we see that g(H, x) = (gHg−1, α(g,H)x) and therefore (H, x) = g(H, x)
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if and only if g ∈ NG(H) and α(g,H)x = x hence if and only if g ∈ H . That is to say,
stabG(H, x) = H for almost every (H, x). Therefore the G-action on (X, ν) gives rise to the
invariant random subgroup η as required.

3.3 Ergodic Invariant Random Subgroups

Definition 3.4. An invariant random subgroup ν ∈ P (S(G)) is ergodic when ν is an
ergodic measure.

We remark that ergodic invariant random subgroups are precisely the same as the extremal
invariant measures in the (weak*) compact convex set of invariant random subgroups.

Proposition 3.3.1. Let G be a locally compact second countable group. Given an ergodic in-
variant random subgroup (S(G), η) there exists an ergodic measure-preserving G-space (X, ν)
such that the G-equivariant mapping x 7→ stabG(x) pushes ν to η.

Proof. Let (Z, ζ) be the G-action constructed in Theorem 3.3 such that z 7→ stabG(z) pushes
ζ to η. Consider the ergodic decomposition π : (Z, ζ) → (W, ρ). Then G acts trivially on
(W, ρ) and almost every fiber (π−1(w), Dπ(w)) is an ergodic G-space. Observe that

∫

W

stab∗Dπ(w) dρ(w) = stab∗

∫

W

Dπ(w) dρ(w) = stab∗ζ = η.

Since η is ergodic, it is extremal in the set of invariant random subgroups. The above convex
combination of invariant random subgroups must then almost surely be constantly equal to
η. That is, stab∗Dπ(w) = η for ρ-almost every w ∈ W . Let (X, ν) be one such fiber. Then
(X, ν) is an ergodic G-space with the required properties.

3.4 Compact and Open Invariant Random Subgroups

Definition 3.5. An invariant random subgroup ν ∈ P (S(G)) is a finite (compact) in-
variant random subgroup when ν is supported on the finite (compact) subgroups of G
and is an infinite (noncompact) invariant random subgroup when it is supported on
the infinite (noncompact) subgroups of G.

We remark that in the case of ergodic invariant random subgroups, infinite is equivalent
to not finite.

Definition 3.6. An invariant random subgroup ν ∈ P (S(G)) is an open invariant random
subgroup when ν is supported on the open subgroups of G.

3.5 Commensurate Invariant Random Subgroups

Recall that two subgroups are commensurate when their intersection has finite index in
each. We introduce a definition of commensurability for invariant random subgroups that
generalizes this notion to invariant random subgroups. We remark that one regains the usual
definition in the case when the invariant random subgroups are point masses.
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Definition 3.7. Let G be a group and η1 and η2 be invariant random subgroups of G. If
there exists a G-invariant joining α ∈ P (S(G)× S(G)) of η1 and η2 such that for α-almost
every H,L ∈ S(G) × S(G) the subgroup H ∩ L has finite index in both H and L then η1
and η2 are commensurate invariant random subgroups.

Theorem 3.8. The property of being commensurate is an equivalence relation on the space
of invariant random subgroups.

Proof. Let η1, η2, η3 be invariant random subgroups of G such that η1 and η2 are commensu-
rate and η2 and η3 are commensurate. Let α be a joining of η1 and η2 and β be a joining of
η2 and η3 witnessing the commensuration. Let D be the disintegration of α over η2. Then
for almost every K ∈ S(G) we have that D(K) = αK × δK for some αK ∈ P (S(G)) and
likewise the disintegration of β over η2 is of the form δK × βK for some βK ∈ P (S(G)).

Let ρ ∈ P (S(G)×S(G)) be the composition of the joinings α and β (see Glasner [Gla03]):

ρ =

∫

S(G)

αK × βK dη2(K).

Then ρ is a joining of η1 and η3 (Proposition 2.2.2) and for ρ-almost every (H,L) we have
that for η2-almost every K the subgroup H∩K has finite index in H andK and the subgroup
K∩L has finite index in both K and L. Then H ∩K∩L has finite index in H , K and L and
so H ∩L has finite index in H and L (that is, commensurability is an equivalence relation on
subgroups). Therefore ρ makes η1 and η3 commensurate invariant random subgroups.

Definition 3.9. Let G be a group. The commensurability classes of invariant random
subgroups of G are the classes of invariant random subgroups equivalent under commen-
suration.

3.6 Relationships Between Invariant Random Subgroups

We now outline an approach to defining the usual properties of subgroups of groups for
invariant random subgroups similar to the above. The joinings technique used for com-
mensuration should allow, in general, the definition of the usual properties of subgroups for
invariant random subgroups. We point out a few now but opt not to include all the details
here, and instead leave them to the reader, as we will not make explicit use of these notions
in what follows.

Definition 3.10. Let ν, η ∈ P (S(G)) be invariant random subgroups of G. Then ν is a
subgroup of η, written ν < η, when there exists a G-invariant joining α of ν and η such
that for α-almost every (H,L) ∈ S(G)× S(G), H is a subgroup of L.

Definition 3.11. A subgroup ν of an invariant random subgroup η has finite index when
there exists a G-invariant joining of ν and η such that for almost every (H,L) ∈ S(G)×S(G),
H has finite index in L.

Theorem 3.12. The relation < of being a subgroup is a transitive relation on invariant
random subgroups that is antisymmetric–if ν < η and η < ν then ν = η–and if {να}α∈I is
a decreasing (respectively increasing) net of invariant random subgroups, then there exists a
weak*-limit ν∞ such that ν∞ < να (respectively ν∞ > να) for all α.
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Proof. Let ν, η, ζ be invariant random subgroups such that ν < η and η < ζ . Let α be a
joining of ν and η such that for α-almost every (H,L), H < L, and let β be a joining of η
and ζ such that for β-almost every (L,K), L < K. Take ρ = α ◦ β to be the composition
joining of α and β which is a joining of ν and ζ . Then for ρ-almost every (H,L) we have
that H < K and K < L for η-almost every K so H < L. Hence the relation is transitive.

Let d : G×G→ R be a metric on G compatible with the Haar measure algebra. Extend
d to a distance function on S(G) × G as usual: d(H, g) = inf{d(h, g) : h ∈ H}. Given an
invariant random subgroup ν, define the functions ϕn,ν : G→ [0, 1] for each n ∈ N by

ϕn,ν(g) = ν{H ∈ S(G) : d(H, g) <
1

n
}.

Note that ϕn,ν is a bounded Borel function since d is compatible with the topology of G.
Let η be an invariant random subgroup such that ν < η and let α be a joining witnessing
this fact. Then for α-almost every (H,L) we have that H < L and therefore for any g ∈ G,
d(H, g) ≥ d(L, g). Therefore

ϕn,η(g) = η{L ∈ S(G) : d(L, g) <
1

n
} ≥ ν{H ∈ S(G) : d(H, g) <

1

n
} = ϕn,ν(g)

for each n.
Moreover, if ν < η and ν 6= η then for a joining ρ witnessing ν < η we have that

ρ{(H,L) ∈ S(G) × S(G) : H < L,H 6= L} > 0, and hence by considering a countable
dense subset of G we see that there must be some g ∈ G and n ∈ N such that ρ{(H,L) ∈
S(G)× S(G) : H < L, d(H, g) ≥ 1

n
, and d(L, g) < 1

n
} > 0. Thus for this g and n we have

ϕn,η(g) > ϕn,ν(g). Therefore if ν < η and η < ν then in fact ν = η.
Now let {να}α∈I be a decreasing net of invariant random subgroups. Since P (S(G)) is

compact, there exists a subnet I0 such that {νβ}β∈I0 has a weak*-limit point ν∞. If I1 is
another subnet such that {να}α∈I1 has a weak*-limit point η∞, then for each α ∈ I1 there
exists β ∈ I0 such that α < β and hence there exists a joining ρβ,α of νβ and να such that
for ρβ,α-almost every (H,L) we have H < L. If we take ρ∞ an accumulation point of {ρβ,α}
then we have that ρ∞ is a joining of η∞ and ν∞ such that for ρ∞-almost every (H,L) we
have H < L. Therefore η∞ < ν∞, and by symmetry we have ν∞ < η∞. Hence η∞ = ν∞
from above, and therefore {ηα}α∈I has a unique accumulation point showing that the limit
exists.

Now νβ < να for α < β so for every pair α < β there exists a joining ρβ,α of νβ and
να such that for ρβ,α-almost every (H,L) we have H < L. Hold α fixed and let ρ∞,α be a
weak*-accumulation point of {ρβ,α}β>α. Then ρ∞,α is a joining of ν∞ and να witnessing that
ν∞ < να. Hence ν∞ < να for all α ∈ I.

The case of increasing nets follows from a similar argument.

Theorem 3.13. The property of having finite index is a transitive relation on invariant
random subgroups.
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4 Relatively Contractive Maps

We now introduce the notion of relatively contractive maps and develop the machinery
needed to study actions of commensurators and lattices. We first spend some time developing
basic facts about relatively contractive maps which we then use to recover most known results
about contractive actions. We also take a short detour to study joinings of contractive spaces
and show that relatively contractive is indeed the opposite of relatively measure-preserving
in some very strong senses.

We will always assume the group G is locally compact second countable in what follows.

Definition 4.1 (Jaworski [Jaw94]). A G-space (X, ν) is contractive, also called SAT
(strongly approximately transitive), when for all measurable sets B ⊆ X of less than
full measure and all ǫ > 0 there exists g ∈ G such that

ν(gB) < ǫ.

4.1 Conjugates of Disintegration Measures

The principal notion in formulating the idea of relatively contractive maps is to “conjugate”
the disintegration measures. For a G-map of G-spaces π : (X, ν) → (Y, η), the disintegration
of ν over η can be summarized as saying that for almost every y ∈ Y there is a unique measure
Dπ(y) ∈ P (X) such that Dπ(y) is supported on the fiber over y and

∫
Y
Dπ(y) dη(y) = ν.

For g ∈ G and y ∈ Y , we have that Dπ(gy) is supported on the fiber over gy, that is, on
π−1(gy) = gπ−1(y), and that for any Borel B ⊆ X , we have that gDπ(y)(B) = Dπ(y)(g

−1B)
meaning that gDπ(y) is supported on gπ−1(y). Therefore we can formulate the following:

Definition 4.2. Let π : (X, ν) → (Y, ρ) be a G-map of G-spaces. The conjugated disin-
tegration measure over π at a point y ∈ Y by the group element g ∈ G is

D(g)
π (y) = g−1Dπ(gy).

The preceding discussion shows thatD
(g)
π (y) is supported on g−1gπ−1(y) = π−1(y). Hence:

Proposition 4.1.1. Let π : (X, ν) → (Y, η) be a G-map of G-spaces and fix y ∈ Y . The
conjugated disintegration measures

Dy = {g−1Dπ(gy) : g ∈ G}

are all supported on π−1(y).

Another approach to the conjugates of disintegration measures is to observe that:

Proposition 4.1.2. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. For any g ∈ G
then π : (X, g−1ν) → (Y, g−1η) is also a G-map of G-spaces. Let Dπ : Y → P (X) be the

disintegration of ν over η. Then D
(g)
π is the disintegration of g−1ν over g−1η.

Proof. To see that π maps (X, g−1ν) to (Y, g−1η) follows from π being G-equivariant.
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We have already seen that g−1Dπ(gy) is supported on π−1(y) so to prove the proposition
it remains only to show that

∫
g−1Dπ(gy) dg

−1η(y) = g−1ν. This is clear as
∫

Y

g−1Dπ(gy) dg
−1η(y) = g−1

∫

Y

Dπ(gg
−1y) dη(y)

= g−1

∫

Y

Dπ(y) dη(y) = g−1ν

since Dπ disintegrates ν over η.

A basic fact we will need in what follows is that the conjugated disintegration measures
are mutually absolutely continuous to one another (over a fixed point y of course, as y varies
they have disjoint supports):

Proposition 4.1.3. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. For almost every y
the set

Dy = {g−1Dπ(gy) : g ∈ G}

is a collection of mutually absolutely continuous probability measures supported on π−1{y}.

Proof. For g ∈ G write

Ag = {y ∈ Y : Dπ(y) and g
−1Dπ(gy) are not in the same measure class}.

Then Ag is a Borel set for each g ∈ G since Dπ : Y → P (X) is a Borel map and the
equivalence relation on P (X) given by α ∼ β if and only if α and β is in the same measure
class is Borel.

Since g−1Dπ(gy) is the disintegration of g−1ν over g−1η and g−1ν is in the same measure
class as ν, Lemma 4.1.4 (following the proof) gives that η(Ag) = 0 for each g ∈ G. Therefore

η(
⋃

g∈G0

Ag) = 0

where the union is taken over a countable dense subset G0 (the existence of such a subset is
a consequence of the second countability of G). When G is itself countable the claim is then
proven.

Suppose now that there is some g such that η(Ag) > 0. Take a continuous compact model
for π via Lemma 2.2.3. Define the sets, for g ∈ G and ǫ > 0 and f ∈ C(X) with f ≥ 0,

Ag,ǫ,f = {y ∈ Y : Dπ(y)(f) = 0, D(g)
π (y)(f) ≥ ǫ}.

These sets are Borel since y 7→ Dπ(y)(f) is Borel. Now Ag =
⋃
ǫ>0,f Ag,ǫ,f and since η(Ag) >

0, (taking a countable sequence ǫ → 0 and a countable dense set of C(X)) there is some
ǫ > 0 and f ∈ C(X) with f ≥ 0 such that

η(Ag,ǫ,f) > 0.

But now for fixed ǫ > 0 and f ∈ C(X) with f ≥ 0 we see that

g−1ν(f) ≥

∫

Ag,ǫ,f

D(g)
π (y)(f) dg−1η(y) ≥ g−1η(Ag,ǫ,f)ǫ > 0
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by the quasi-invariance of η.
Consider the function F : G→ R given by

F (h) =

∫

Ag,ǫ,f

D(h)
π (y)(f) dh−1η(y) = h−1ν(1π−1(Ag,ǫ,f )f).

Then F (g) > 0 by the above. Now F is continuous since f ∈ C(X) and Gy X continuously.
Hence there is some open neighborhood U of g in G such that F (u) > 0 for all u ∈ U .

For g0 ∈ G0, however, we know that g−1
0 ν(f) = 0 and so, as f ≥ 0, then F (g0) = 0. But

U ∩ G0 6= ∅ since G0 is dense and U is open, leading to a contradiction. Hence when G is
locally compact second countable the claim also holds.

Lemma 4.1.4. Let (X, ν) be a probability space and π : (X, ν) → (Y, π∗ν) a measurable map
to a probability space. Let α be a probability measure in the same measure class as ν. Let
D(y) denote the disintegration of ν over π∗ν via π and let D′(y) denote the disintegration of
α over π∗α via π. Then for almost every y ∈ Y , D(y) and D′(y) are in the same measure
class.

Proof. Since α and ν are in the same measure class, the Radon-Nikodym derivative dα
dν

exists

and is in L1(X, ν). Likewise, π∗α and π∗ν are in the same measure class so dπ∗ν
dπ∗α

exists in

L1(X, π∗ν).
For y ∈ Y , define the measure αy by, for B ⊆ X measurable,

αy(B) =

∫

B

dα

dν
(x) dD(y)(x)

dπ∗ν

dπ∗α
(y).

Note that the Radon-Nikodym derivatives are always positive so these are positive measures.
Also αy(X) = 1 since

dπ∗α

dπ∗ν
(y) =

∫

X

dα

dν
(x) dD(y)(x)

which can be verified directly (using the uniqueness of the Radon-Nikodym derivative).
Now the support of αy is contained in the support of D(y) which is contained in π−1(y),

hence αy is supported on π−1(y). For B ⊆ X measurable,
∫

Y

αy(B) dπ∗α(y) =

∫

Y

∫

B

dα

dν
(x) dD(y)(x)

dπ∗ν

dπ∗α
(y) dπ∗α(y)

=

∫

Y

∫

X

1B(x)
dα

dν
(x) dD(y)(x) dπ∗ν(y)

=

∫

X

1B(x)
dα

dν
(x) dν(x)

=

∫

X

1B(x) dα(x) = α(B).

Therefore, by uniqueness of disintegration, D′(y) = αy for almost every y.
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Suppose that D(y)(B) = 0 for some y and some measurable B ⊆ X . Then

αy(B) =

∫

B

dα

dν
(x) dD(y)(x)

dπ∗ν

dπ∗α
(y) = 0

since D(y)(B) = 0. So αy is absolutely continuous with respect to D(y).
Therefore D′(y) is absolutely continuous with respect to D(y) for almost every y ∈ Y .

The symmetric argument (reversing the roles of ν and α) shows that D(y) is also absolutely
continuous with respect to D(y) almost everywhere.

4.2 Definition of Relatively Contractive Maps

We now define relatively contractive factor maps, which are the counterpart of relatively
measure-preserving factor maps.

4.2.1 Relatively Measure-Preserving

We first recall the definition of relative measure-preserving:

Definition 4.3. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. Then π is rela-
tively measure-preserving when for almost every y ∈ Y the disintegration map Dπ is
G-equivariant: Dπ(gy) = gDπ(y).

In terms of conjugating disintegration measures, relative measure-preserving means that

D
(g)
π (y) = Dπ(y) almost surely.
We also remark that a G-space (X, ν) is measure-preserving if and only if the map from

(X, ν) to the trivial (one-point) space is relatively measure-preserving (the disintegration
over the trivial space is D(g)(0) = g−1D(g · 0) = g−1D(0) = g−1ν).

4.2.2 Relatively Contractive

Definition 4.4. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. We say π is relatively
contractive when for almost every y ∈ Y and any measurable B ⊆ X with Dπ(y)(B) < 1
and any ǫ > 0 there exists g ∈ G such that g−1Dπ(gy)(B) < ǫ.

This is also stated as saying that (X, ν) is a relatively contractive extension or
contractive extension of (Y, η) or that (Y, η) is a relatively contractive factor or just
a contractive factor of (X, ν).

We have the following easy reformulation of the above definition:

Proposition 4.2.1. A G-map π : (X, ν) → (Y, η) of G-spaces is relatively contractive if and
only if for almost every y and any measurable B ⊆ Y with Dπ(y)(B) > 0 we have

sup
g∈G

D(g)
π (y)(B) = 1.
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4.2.3 Contractive Extensions of a Point

We now show that contractive can be defined in terms of relatively contractive extensions of
a point (just as measure-preserving can be defined as being a relatively measure-preserving
extension of a point).

Theorem 4.5. A G-space (X, ν) is contractive if and only if it is a relatively contractive
extension of a point.

Proof. In the case where (Y, η) = 0 is the trivial one point system, the disintegration measure
is always ν and so being a relatively contractive extension reduces to the definition of con-

tractive: g−1Dπ(g · 0) = g−1ν for all g ∈ G since g · 0 = 0 and therefore supgD
(g)
π (0)(B) = 1

implies supg g
−1Dπ(0)(B) = 1 so supg g

−1ν(B) = 1 for all measurable B with ν(B) > 0.

4.3 The Algebraic Characterization

Generalizing Jaworksi [Jaw94], we characterize relatively contractive maps algebraically:

Theorem 4.6. Let π : (X, ν) → (Y, ρ) be a G-map of G-spaces. Then π is relatively

contractive if and only if the map f 7→ D
(g)
π (y)(f) is an isometry between L∞(X,Dπ(y)) and

L∞(G,Haar) for almost every y ∈ Y (here D
(g)
π (y)(f) is a function of g).

Proof. Assume π is relatively contractive. Take y in the measure one set where the disin-
tegration measures are relatively contractive. Let f be any simple function f =

∑
an1Bn

with Bn ⊆ π−1(y). Choose N such that |aN | = maxn |an| = ‖f‖∞. For ǫ > 0 choose g ∈ G

such that D
(g)
π (y)(BN) > 1 − ǫ. Then D

(g)
π (y)(BC

N) < ǫ and since the Bn are disjoint then

D
(g)
π (y)(Bn) < ǫ for n 6= N . This means that

∣∣D(g)
π (y)(f)− aN

∣∣ =
∣∣∑

n

anD
(g)
π (y)(Bn)− aN

∣∣ ≤
∑

n 6=N

|an|ǫ+ |aN ||1− ǫ− 1| = ǫ
∑

n

|an|

and since ǫ > 0 was arbitrary then supg |D
(g)
π (y)(f)| = |aN | = ‖f‖. As simple functions are

uniformly dense in L∞(X,Dπ(y)) and the map is a contraction this proves one direction.
Conversely, assume the map is an isometry for almost every y. For such a y, let B ⊆ π−1(y)

with Dπ(y)(B) > 0 and then 1 = ‖1B‖∞ = supgD
(g)
π (y)(B) so π relatively contractive.

Note that π is relatively measure-preserving if and only if the map that would be isometric

for relatively contractive, f 7→ D
(g)
π (y)(f), is simply the map f 7→ Dπ(y)(f) which is the

projection to the “constants” on each fiber.
We remark that in effect there is a zero-one law for relatively contractive extensions.

Namely, if π : (X, ν) → (Y, η) is a G-map of ergodic G-spaces then the set of y such

that D
(g)
π (y) induces an isometry L∞(X,Dπ(y)) → L∞(G,Haar) has either measure zero or

measure one. This follows from the fact that the set of such y must be G-invariant and hence

follows by ergodicity: if D
(g)
π (y) induces an isometry then for any h ∈ G and f ∈ L∞(X, ν)

sup
g∈G

∣∣D(g)
π (hy)(f)

∣∣ = sup
g∈G

∣∣D(gh)
π (y)(h · f)

∣∣ = sup
g∈G

∣∣D(g)
π (y)(h · f)

∣∣ = ‖h · f‖ = ‖f‖.
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Specializing to the case of a contractive extension of the trivial one point system we
obtain:

Corollary 4.7 (Jaworski [Jaw94]). A G-space (X, ν) is contractive if and only if the mapping
L∞(X, ν) → L∞(G,Haar) by f 7→ gν(f) is an isometry.

One can also characterize relatively contractive maps in terms of convex combinations of
measures:

Theorem 4.8. A G-map of G-spaces π : (X, ν) → (Y, η) is relatively contractive if and only
if for almost every y ∈ Y the space of absolutely continuous measures L1

1(π
−1(y), Dπ(y)) ⊆

conv Dy.

Proof. An immediate consequence of Theorem 4.12 (in the following subsection).

Specializing to the one point system:

Corollary 4.9 (Jaworski [Jaw94]). A G-space (X, ν) is contractive if and only if the space
of absolutely continuous measures L1

1(X, ν) ⊆ conv Gν.

4.4 Relatively Contractible Spaces

Definition 4.10 (Furstenberg-Glasner [FG10]). A continuous compact model (X0, ν0) of
a G-space (X, ν) is contractible when for every x ∈ X0 there exists gn ∈ G such that
gnν0 → δx in weak*.

Definition 4.11. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. A continuous compact
model π0 : (X0, ν0) → (Y0, η0) for this map is relatively contractible when for η0-almost
every y ∈ Y0 and every x ∈ X0 such that π0(x) = y there exists a sequence gn ∈ G such that

D
(gn)
π0 (y) → δx in weak*.

Theorem 4.12. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. Then π is relatively
contractive if and only if every continuous compact model of π is relatively contractible.

Proof. Recall that a continuous compact model for π means compact models for X and Y
such that Gy X and Gy Y are continuous and the map π is continuous (Lemma 2.2.3).

Assume that π is relatively contractive. By Theorem 4.6, there is a measure one set of

y such that f 7→ D
(g)
π (y)(f) is an isometry between L∞(X,Dπ(y)) and L

∞(G,Haar). Fix y
in that set and let x ∈ X such that π(x) = y. Choose fn ∈ C(X) such that 0 ≤ fn ≤ 1,
‖fn‖ = 1 and fn → 1{x} (possible since C(X) separates points) and such that fn+1 ≤ fn.

Since π is relatively contractive, supgD
(g)
π (y)(fn) = 1 for each n. Choose gn ∈ G such that

1−
1

n
< D(gn)

π (y)(fn)

and observe then that, since fn+1 ≤ fn,

1−
1

n+ 1
< D(gn+1)

π (y)(fn+1) ≤ D(gn+1)
π (y)(fn)
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and therefore limm→∞D
(gm)
π (fn) = 1 for each fixed n.

Now P (X) is compact so there exists a limit point ζ ∈ P (X) such that ζ = limj D
(gnj

)
π (y)

along some subsequence. Now ζ(fn) = 1 for each n by the above and fn → 1{x} is pointwise
decreasing so by bounded convergence ζ({x}) = lim ζ(fn) = 1. This means that for almost
every y, the conclusion holds for all x ∈ π−1(y).

For the converse, first consider any continuous compact model such that for almost every

y ∈ Y and every x ∈ π−1(y) there exists a sequence {gn} such that D
(gn)
π (y) → δx. Let

f ∈ C(X). Then the supremum of f on π−1(y) is attained at some x ∈ π−1(y) since π−1(y)
is a closed, hence compact, set. Take gn such that g−1

n Dπ(gny) → δx. Then g
−1
n Dπ(gny)(f) →

f(x) = ‖f‖L∞(π−1(y)). Hence for f ∈ C(X) the map is an isometry.
Now assume that for every continuous compact model for π and for almost every y and

every x ∈ π−1(y) there is a sequence gn ∈ G such that g−1
n Dπ(gny) → δx.

Suppose that π is not relatively contractive. Then there exists a measurable set A ⊆ X
with ν(A) > 0 and 1 > δ > 0 such that

B = {y ∈ Y : Dπ(y)(A) > 0 and sup
g

D(g)
π (y)(A) ≤ 1− δ} > 0

has η(B) > 0.
Fix ǫ > 0. Let ψn ∈ Cc(G) be an approximate identity (ψn are nonnegative continuous

functions with
∫
ψndm = 1 where m is a Haar measure on G such that the compact supports

of the ψn are a decreasing sequence and ∩nsupp ψn = {e}; the reader is referred to [FG10]
Corollary 8.7). Define fn = 1A ∗ψn =

∫
G
1A(hx)ψn(h) dm(h). Then the fn are G-continuous

functions by [FG10] Lemma 8.6.
By Proposition 4.4.1 (below),

lim
n

‖1A ∗ ψn‖L∞(X,Dπ(y)) = 1

for all y ∈ B.
There then exists a set B1 ⊆ B with η(B1) > η(B)−ǫ and N ∈ N such that for all y ∈ B1

and all n ≥ N , ‖1A ∗ ψn‖L∞(X,Dπ(y)) > 1 − ǫ. Let V be a compact set neighborhood of the
identity in G such that |η(B1 ∩ h

−1B1)− η(B1)| < ǫ for all h ∈ V (possible as the G-action
is continuous on the algebra of measurable sets). Choose n ≥ N such that the support of
ψ = ψn is contained in V .

Set f = 1A ∗ ψ. Since f is G-continuous there exists a continuous compact model on
which f ∈ C(X) by [FG10] Theorem 8.5. Hence, for almost every y ∈ Y ,

sup
g

D(g)
π (y)(f) = ‖f‖L∞(X,Dπ(y)).

Removing a null set from B1, then for all y ∈ B1 there exists gy ∈ G such that

D(gy)
π (y)(f) > ‖f‖L∞(X,Dπ(y)) − ǫ > 1− 2ǫ.

Observe that

(1− 2ǫ)η(B1) ≤

∫

B1

D(gy)
π (f) dη(y)
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=

∫

B1

∫

X

f(g−1
y x) dDπ(gyy)(x) dη(y)

=

∫

B1

∫

X

∫

G

1A(hg
−1
y x)ψ(h) dm(h) dDπ(gyy) dη(y)

=

∫

G

∫

B1

Dπ(gyy)(gyh
−1A) dη(y)ψ(h) dm(h)

=

∫

G

∫

hB1

Dπ(gyh
−1y)(gyh

−1A) dhη(y)ψ(h) dm(h)

=

∫

G

∫

hB1

D(gyh−1)
π (y)(A) dhη(y)ψ(h) dm(h)

≤

∫

G

∫

hB1

sup
g

D(g)
π (y)(A) dhη(y)ψ(h) dm(h)

=

∫

G

(∫

hB1\B1

sup
g

D(g)
π (y)(A) dhη(y)

+

∫

hB1∩B1

sup
g

D(g)
π (y)(A) dhη(y)

)
ψ(h) dm(h)

≤

∫

G

(
hη(hB1 \B1) + (1− δ)hη(hB1 ∩ B1)

)
ψ(h) dm(h)

=

∫

G

(
hη(hB1)− δhη(hB1 ∩ B1)

)
ψ(h) dm(h)

= η(B1)− δ

∫

G

η(B1 ∩ h
−1B1)ψ(h) dm(h).

Now the support of ψ is contained in V and |η(B1 ∩ h−1B1) − η(B1)| < ǫ for all h ∈ V .
Therefore

−2ǫη(B1) ≤ −δ

∫

G

(η(B1)− ǫ)ψ(h) dm(h) = −δη(B1) + δǫ.

Hence
δη(B1) ≤ ǫ(2η(B1) + δ).

Then
δη(B) ≤ δ(η(B1) + ǫ) ≤ 2ǫ(η(B1) + δ) ≤ 2ǫ(η(B) + δ).

Since δ is fixed and this holds for all ǫ > 0, η(B) = 0 contradicting that π is not relatively
contractive.

Specializing to the case of a relatively contractive extension of a point, we obtain as a
consequence the result of Furstenberg and Glasner mentioned above:

Corollary 4.13 (Furstenberg-Glasner [FG10]). A G-space is contractive if and only if every
continuous compact model of the space is contractible.

The following fact was used in the above proof and is step by step equivalent to the proof
of [FG10] Proposition 8.8 but relativized over a G-map:
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Proposition 4.4.1. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. Let ψn ∈ Cc(G) be an
approximate identity (the ψn are nonnegative continuous functions with decreasing compact
supports Vn such that ∩Vn = {e} and

∫
ψndm = 1 for m a Haar measure on G). Then for

any measurable set A ⊆ X and almost every y ∈ Y such that Dπ(y)(A) > 0,

lim
n

‖1A ∗ ψn‖L∞(X,Dπ(y)) = 1.

Proof. Take a continuous compact model for π. Let

B = {y ∈ Y : Dπ(y)(A) > 0}.

Fix δ > 0 and choose ǫy > 0 for each y ∈ B such that ǫy <
1
4
δDπ(y)(A).

For each y ∈ B, let Cy ⊆ A ⊆ Uy such that Cy is closed and Uy is open and Dπ(y)(Uy \
Cy) < ǫy (possible since Dπ(y) is regular). Let Vy be a symmetric compact neighborhood of
the identity in G such that Dπ(y)(hCy△Cy) < ǫy and such that hCy ⊆ Uy for all h ∈ Vy
(possible since the G-action is continuous). Then 1Cy

(hx) = 0 for all x /∈ Uy and h ∈ Vy.
Let Ny ∈ N such that supp ψn ⊆ Vy for all n ≥ Ny. For n ≥ Ny, set fy,n = 1Cy

∗ ψn.
Then fy,n(x) = 0 for x /∈ Uy. So

Dπ(y)(fy,n) =

∫

X

∫

G

1Cy
(hx)ψn(h) dm(h) dDπ(y)(x)

=

∫

G

Dπ(y)(h
−1Cy)ψn(h) dm(h)

≥

∫

G

(Dπ(y)(Cy)− ǫy)ψn(h) dm(h)

= Dπ(y)(Cy)− ǫy.

Define
Ey,n = {x ∈ U : fy,n(x) < 1− δ}.

Then

Dπ(y)(Cy)− ǫy ≤

∫

X

fy,n(x) dDπ(y)(x)

=

∫

Uy

fy,n(x) dDπ(y)(x)

=

∫

Ey,n

fy,n(x) dDπ(y)(x) +

∫

Uy\Ey,n

fy,n(x) dDπ(y)(x)

≤ (1− δ)Dπ(y)(Ey,n) +Dπ(y)(Uy \ Ey,n)

= Dπ(y)(Uy)− δDπ(y)(Ey,n).

Therefore
δDπ(y)(Ey,n) ≤ Dπ(y)(Uy \ Cy) + ǫy < 2ǫy

Hence Dπ(y)(Ey,n) < 2ǫyδ
−1 < 1

2
Dπ(y)(A). So, for x ∈ Uy \ Ey,n, fy,n(x) ≥ 1 − δ and

Dπ(y)(Uy \ Ey,n) ≥
1
2
Dπ(y)(A) > 0.
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Therefore
(1A ∗ ψn)(x) ≥ (1Cy

∗ ψ(x)) ≥ 1− δ

for all x in a Dπ(y)-positive measure set. Hence for n ≥ Ny, ‖1A ∗ ψn‖L∞(X,Dπ(y)) ≥ 1 − δ.
As this holds for all δ > 0,

lim
n

‖1A ∗ ψn‖L∞(X,Dπ(y)) = 1

for all y ∈ B.

4.5 Relatively Contractive Maps and Dense Subgroups

In general, the map g 7→ D
(g)
π (y) is not continuous (however, it can be shown to be continuous

almost everywhere for almost every y) which can be seen by considering an induced action
from a lattice to a locally compact second countable group. This fact accounts for the
difficulty in the proof of the following statement.

Theorem 4.14. Let π : (X, ν) → (Y, η) be a relatively contractive G-map of G-spaces. Let
G0 be a countable dense subgroup of G. Then π is a relatively contractive G0-map.

Proof. Suppose that π is not G0-relatively contractive. By the proof of Theorem 4.12, there
then exists a continuous compact model for π : X → Y , a positive measure set A ⊆ Y , a
nonnegative continuous function f ∈ C(X) and δ > 0 such that for all y ∈ A,

sup
g0∈G0

D(g0)
π (y)(f) ≤ ‖f‖L∞(X,Dπ(y)) − δ.

Let ǫ > 0 such that η(A) > ǫ. Since π is G-relatively contractive, there is a conull Borel

set Y00 such that for every y ∈ Y00, supgD
(g)
π (y)(f) = ‖f‖L∞(X,Dπ(y)).

Consider the set

E = {(g, y) ∈ G× Y00 : D
(g)
π (y)(f) ≥ ‖f‖L∞(X,Dπ(y)) − ǫ}.

Since Dπ is a Borel map, this is a Borel set. By the von Neumann Selection Theorem
(Theorem A.9 in [Zim84]) there then exists a conull Borel set Y0 ⊆ Y00 such that the map
prY : E → Y00 admits a Borel section on Y0. Choose a Borel section gy ∈ G for y ∈ Y0 such

that D
(gy)
π (y) ≥ ‖f‖L∞(X,Dπ(y)) − ǫ.

Consider the Borel function Y → P (X) given by y 7→ Dπ(gyy). By Lusin’s Theorem,
there exists a measurable set D ⊆ Y with η(D) > 1−ǫ and a continuous map F : Y → P (X)
such that F (y) = Dπ(gyy) for y ∈ D.

For y ∈ Y0, choose {gn} in G0 such that gn → gy. Then ‖gy · f − gn · f‖∞ → 0 since
G acts continuously on C(X) and F (g−1

y gny) → F (y) in weak* hence F (g−1
y gny)(gy · f) →

F (y)(gy · y). Therefore
∣∣F (y)(gy · f)− F (g−1

y gny)(gn · f)
∣∣

≤
∣∣F (y)(gy · f)− F (g−1

y gny)(gy · f)
∣∣+

∣∣F (g−1
y gny)(gy · f)− F (g−1

y gny)(gn · f)
∣∣

≤
∣∣F (y)(gy · f)− F (g−1

y gny)(gy · f)
∣∣+

∫

X

∣∣f(g−1
y x)− f(g−1

n x)
∣∣ dF (g−1

y gny)(x)
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≤
∣∣F (y)(gy · f)− F (g−1

y gny)(gy · f)
∣∣+ ‖gy · f − gn · f‖∞ → 0.

Observe that for y ∈ D,

F (y)(gy · f) = Dπ(gyy)(gy · f) = D(gy)
π (y)(f) > ‖f‖L∞(X,Dπ(y)) − ǫ.

Consider the set D′
n = {y ∈ A : g−1

y gny ∈ D}. Then for y ∈ D′
n,

F (g−1
y gny)(gn · f) = Dπ(gyg

−1
y gny)(gn · f) = D(gn)

π (y)(f) ≤ ‖f‖L∞(X,Dπ(y)) − δ.

Consider the sets En = D ∩D′
n. Since gn → gy, η(En) → η(D ∩ A) > 0. For y ∈ En,

∣∣F (y)(gy · f)− F (g−1
y gny)(gn · f)

∣∣ ≥ δ − ǫ.

But
∣∣F (y)(gy · f)−F (g−1

y gny)(gn · f)
∣∣ → 0 as n→ ∞ for every y. This contradiction means

that π is relatively contractive for G0.

4.6 Examples of Relatively Contractive Maps

Let (X, ν) and (Y, η) be contractive G-spaces. In general it need not hold that (X×Y, ν×η)
is contractive (with the diagonal G-action), however:

Theorem 4.15. Let (X, ν) be a contractive G-space and (Y, η) be a G-space. The map
prY : (X × Y, ν × η) → (Y, η) is relatively contractive (X × Y has the diagonal G-action).

Proof. The disintegration measures Dπ(y) are supported on X × δy and have the form
Dπ(y) = ν × δy. Clearly

D(g)
π (y) = g−1(ν × δgy) = g−1ν × δy

and since (X, ν) is contractive then π is relatively contractive.

More generally, the following holds:

Theorem 4.16. Let π : (X, ν) → (Y, η) be a relatively contractive G-map of G-spaces. Let
(Z, ζ) be a G-space. The map π× id : (X×Z, ν×ζ) → (Y ×Z, η×ζ) is relatively contractive
(where X × Z and Y × Z have the diagonal G-action).

Proof. Since the disintegration of the identity is point masses, for almost every (y, z) ∈ Y ×X ,

D
(g)
π×id(y, z) = D

(g)
π (y) × δz. Then π being relatively contractive implies π × id is relatively

contractive.

4.6.1 Inducing Actions and Relatively Contractive Maps

Theorem 4.17. Let Γ < G be a lattice in a locally compact second countable group. Let
(X, ν) be a contractive Γ-space and p : G ×Γ X → G/Γ be the G-map that is the natural
projection from the induced G-space over (X, ν) to G/Γ. Then p is a relatively contractive
G-map.
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Proof. First, assume (X, ν) is a contractive Γ-space. Treat G×ΓX as (F ×X,m× ν) for F
a fundamental domain for G/Γ with cocycle α : G× F → Γ. Consider p : F ×X → F the
projection. The disintegration Dp(f) of m × ν over m is of the form Dp(f) = δf × ν. For
g ∈ G,

D(g)
p (f) = g−1Dp(gfα(g, f)) = g−1(δgfα(g,f) × ν) = δf × α(g, f)ν.

Fix (f0, x0) ∈ F × X and choose γn ∈ Γ such that γnν → δx0 . Set gn = γ−1
n f−1

0 . Then

α(gn, f0) = γn so D
(gn)
p (f0) = δf0 × γnν → δf0 × δx0 meaning p is relatively contractive.

4.6.2 Proximal Maps are Contractive

Proximal maps are the relative version of Poisson boundaries; the reader is referred to
Furstenberg and Glasner [FG10] and to Furman [Fur00] for more information.

Definition 4.18. Let (X, ν) be a (G, µ)-space, meaning that (X, ν) is a G-space and that
µ is a probability measure on G such that µ ∗ ν = ν. A G-map of (G, µ)-spaces π : (X, ν) →
(Y, η) is proximal when for µN-almost every ω ∈ GN the map π : (X, νω) → (Y, ηω) is an
isomorphism.

Recall that νω = limω1 · · ·ωnν is the limit measure which exists almost surely by the
Martingale Convergence Theorem.

Theorem 4.19. Let π : (X, ν) → (Y, η) be a proximal G-map of (G, µ)-spaces. Then π is
relatively contractive.

Proof. Let ω ∈ GN such that π : (X, νω) → (Y, ηω) is an isomorphism. Let Dπ,ω be the
disintegration of νω over ηω. Set gn = (ω1 · · ·ωn)

−1. Then g−1
n ν → νω and g−1

n η → ηω.

Now D
(gn)
π disintegrates g−1

n ν over g−1
n η and therefore D

(gn)
π (y) → Dπ,ω(y). Since π is an

isomorphism of νω to ηω for each x in the support of νω, set y = π(x) and we have that

Dπ,ω(y) = δx. Hence D
(gn)
π (y) → δx. Now the union of the supports of the νω is the support

of ν which is all of X and therefore π is relatively contractive.

Corollary 4.20 (Jaworski [Jaw94],[Jaw95]). Let (X, ν) be a (G, µ)-boundary. Then (X, ν)
is a contractive G-space.

Proof. Since (X, ν) is a boundary the map (X, ν) → 0 to the trivial system is a proximal
map because νω is a point mass almost surely is one of the equivalent definitions of being a
boundary.

4.7 Factorization of Contractive Maps

We now prove that if a composition of G-maps is relatively contractive then each of the maps
is also relatively contractive. This fact will be an important ingredient in the proof of the
uniqueness of relatively contractive maps.

Lemma 4.7.1. Let π : (X, ν) → (Y, η) and ϕ : (Y, η) → (Z, ρ) be G-maps of G-spaces. Then
for almost every z ∈ Z,

π∗Dϕ◦π(z) = Dϕ(z) and Dϕ◦π(z) =

∫

Y

Dπ(y) dDϕ(z)(y)
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Proof. Observe that the support of π∗Dϕ◦π(z) is

π((ϕ ◦ π)−1(z)) = π(π−1(ϕ−1(z))) = ϕ−1(z).

Also for f ∈ L∞(Y, η), using the definition of disintegration over ϕ ◦ π,
∫

Z

∫

Y

f(y) dπ∗Dϕ◦π(z)(y) dζ(z) =

∫

Z

∫

X

f(π(x)) dDϕ◦π(z)(x) dζ(z)

=

∫

X

f(π(x)) dν(x) =

∫

Y

f(y) dπ∗ν(y) =

∫

Y

f(y) dη(y)

and therefore by uniqueness of disintegration the first claim is proved.
Similarly, the support of

∫
Y
Dπ(y) dDϕ(z)(y) is

⋃

y∈ϕ−1(z)

π−1(y) = π−1(ϕ−1(z)) = (ϕ ◦ π)−1(z)

and also for f ∈ L∞(X, ν), using the definition of disintegration,
∫

Z

∫

X

f(x) d
(∫

Y

Dπ(y) dDϕ(z)(y)
)
(x) dζ(z)

=

∫

Z

∫

Y

∫

X

f(x) dDπ(y)(x) dDϕ(z)(y) dζ(z)

=

∫

Y

∫

X

f(x) dDπ(y)(x) dη(y) =

∫

X

f(x) dν(x)

and therefore by uniqueness the second claim holds.

Theorem 4.21. Let π : (X, ν) → (Y, η) and ϕ : (Y, η) → (Z, ρ) be G-maps of G-spaces. If
ϕ ◦ π is relatively contractive then both ϕ and π are relatively contractive.

Proof. We use Theorem 4.12 and take a continuous compact model for π to do so. First

observe, for all g ∈ G and almost every z, that π∗D
(g)
ϕ◦π(z) = D

(g)
ϕ (z). For such z where also

conv {D
(g)
ϕ◦π(z)} = P ((ϕ ◦ π)−1(z)) and every x such that ϕ(π(x)) = z there is gn ∈ G such

that D
(gn)
ϕ◦π (z) → δx. Therefore

D(gn)
ϕ (z) = π∗D

(gn)
ϕ◦π (z) → π∗δx = δπ(x)

and so for every y such that ϕ(y) = z the point mass δy is a limit point of D
(g)
ϕ (z). Hence ϕ

is relatively contractive.
Suppose that π is not relatively contractive. Then, by the proof of Theorem 4.12, there

exists a continuous compact model for π : X → Y such that f 7→ |D
(g)
π (y)(f)| is not an

isometry from C(X) to L∞(G) for a positive measure set of y ∈ Y .
Observe that if the map is an isometry on a countable dense set C0 ⊆ C(X) then for any

f ∈ C(X) there exists fn ∈ C0 with fn → f in sup norm, hence

|D(g)
π (y)(f)| = |D(g)

π (y)(f − fn) +D(g)
π (fn)| ≥ |D(g)

π (y)(fn)| − ‖f − fn‖∞.

- 33 -



Stabilizers of Ergodic Actions of Lattices and Commensurators D. Creutz and J. Peterson

For ǫ > 0, choose n such that ‖f−fn‖∞ < ǫ. Then choose g such that |D
(g)
π (y)(fn)| > ‖fn‖−ǫ.

Then
|D(g)

π (y)(f)| > ‖fn‖ − ǫ− ǫ > ‖f‖ − 3ǫ

and so the map is an isometry for f as well.

Therefore, there is a positive measure set of y such that the map f 7→ |D
(g)
π (y)(f)| is

not an isometry on C0. Hence, since C0 is countable, there is some f ∈ C0 and a positive

measure set of y such that supg |D
(g)
π (y)(f)| < ‖f‖L∞(X,Dπ(y)). So there is some δ > 0 and a

measurable set A ⊆ Y with η(A) > 0 such that supg |D
(g)
π (y)(f)| < ‖f‖L∞(X,Dπ(y)) − δ for all

y ∈ A. We may assume (by taking a subset) that A is closed. Since η is a Borel measure, it
is regular, hence we may assume A is closed (by taking a subset).

Now there exists a positive measure set B ⊆ Z on which Dϕ(z)(A) > 0 for z ∈ B. For
z ∈ B such that z is in the measure one set on which ϕ ◦ π contracts to point masses,

D(g)
ϕ◦π(z)(f)

=

∫

ϕ−1(z)

D(g)
π (y)(f) dD(g)

ϕ (z)(y)

=

∫

ϕ−1(z)∩A

D(g)
π (y)(f) dD(g)

ϕ (z)(y) +

∫

ϕ−1(z)\A

D(g)
π (y)(f) dD(g)

ϕ (z)(y)

≤

∫

ϕ−1(z)∩A

‖f‖L∞(X,Dπ(y)) − δ dD(g)
ϕ (z)(y) +

∫

ϕ−1(z)\A

‖f‖L∞(X,Dπ(y)) dD
(g)
ϕ (z)(y)

≤ ‖f‖L∞(X,Dϕ◦π(z)) − δD(g)
ϕ (z)(A).

Now for any x ∈ (ϕ ◦ π)−1(z), there exists gn such that D
(gn)
ϕ◦π (z) → δx. Hence also

D
(gn)
ϕ (z) → δπ(x). Choose x ∈ π−1(A) ∩ (ϕ ◦ π)−1(z) such that f(x) = ‖f‖L∞(X,Dϕ◦π(z))

(possible since π−1(A) ∩ (ϕ ◦ π)−1(z) is closed, hence compact, and f is continuous). Then

f(x) = lim
n
D(gn)
ϕ◦π (z)(f) ≤ lim

n
‖f‖L∞(X,Dϕ◦π(z)) − δD(gn)

ϕ (z)(A)

= ‖f‖L∞(X,Dϕ◦π(z)) − δδπ(x)(A) = ‖f‖L∞(X,Dϕ◦π(z)) − δ

is a contradiction. Hence π is relatively contractive.

The above statement is the analogue of one direction of the similar well-known fact about
relative measure-preserving:

Theorem 4.22. Let π : (X, ν) → (Y, η) and ϕ : (Y, η) → (Z, ζ) be G-maps of G-spaces
such that ϕ ◦ π : (X, ν) → (Z, ζ) is relatively measure-preserving. Then π and ϕ are both
relatively measure-preserving. Conversely, if π and ϕ are relatively measure-preserving then
so is ϕ ◦ π.

Corollary 4.23. Any G-factor of a contractive G-space is a contractive G-space. Any G-
factor of a measure-preserving G-space is a measure-preserving G-space.

Proof. Let (X, ν) be a contractive G-space and π : (X, ν) → (Y, η) be a G-map of G-spaces.
Take ϕ : (Y, η) → 0 to be the G-map to the trivial one-point space. Then ϕ ◦ π : (X, ν) → 0

- 34 -



Stabilizers of Ergodic Actions of Lattices and Commensurators D. Creutz and J. Peterson

is relatively contractive since (X, ν) is contractive and therefore ϕ is relatively contractive
since its composition with π is and so (Y, η) is contractive. The same argument applied to
relative measure-preserving maps shows the second statement.

4.8 Relatively Measure-Preserving and Relatively Contractive

We now show that relatively measure-preserving extensions are orthogonal to relatively con-
tractive extensions.

Theorem 4.24. Let π : (X, ν) → (Y, ρ) be a G-map between G-spaces. If π is both relatively
contractive and relatively measure-preserving then π is an isomorphism.

Proof. Since π is relatively contractive for almost every y there exists a sequence gn ∈ G

such that D
(gn)
π (y) → δx for some x ∈ X such that π(x) = y. Since π is relatively measure-

preserving, for almost every y and any g ∈ G we have D
(g)
π (y) = Dπ(y). Therefore for almost

every y
Dπ(y) = D(gn)

π (y) → δx

meaning that Dπ(y) = δx. Therefore π must be an isomorphism since Dπ are (almost) all
point masses.

Corollary 4.25. Let (X, ν) be a contractive G-space and π : (X, ν) → (Y, η) be a G-map to
a G-space (Y, η). If π is relatively measure-preserving then π is an isomorphism.

Proof. The mapping (X, ν) → (Y, η) → 0 where 0 is the one point system is a composition
of maps which compose to a relatively contractive map. Therefore each map is relatively
contractive. Hence π is both relatively measure-preserving and relatively contractive and is
therefore an isomorphism.

Akin to the previous result, we show that relative contractive and relative measure-
preserving are orthogonal in the sense of products.

Corollary 4.26. Let (X, ν) be a G-space such that π : (X, ν) → (Y, η) is a relatively
contractive G-map of G-spaces and ϕ : (X, ν) → (Z, ζ) is a relatively measure-preserving
G-map of G-spaces. Then π×ϕ : (X, ν) → (Y ×Z, (π×ϕ)∗ν) by (π× ϕ)(x) = (π(x), ϕ(x))
is a G-isomorphism.

Proof. Consider the G-map prY ◦ (π × ϕ) = π. Since π is relatively contractive then both
the projection map to Y and π × ϕ are relatively contractive (Theorem 4.21). Likewise
prZ ◦ (π × ϕ) = ϕ is relatively measure-preserving so the projection to Z and π × ϕ are
relatively measure-preserving. By the previous theorem then π × ϕ is an isomorphism.

4.9 Uniqueness of Relatively Contractive Maps

Theorem 4.27. Let (X, ν) be a contractive G-space and (Y, η) be a measure-preserving G-
space. Let ψ : (X × Y, ν × η) → (Y, η) be the natural projection map (treating (X × Y, ν × η)
as G-space with the diagonal action). Let π : (X×Y, ν×η) → (Z, α) be a G-map of G-spaces
and let π′ : (X × Y, ν × η) → (Z, β) be a G-map of G-spaces such that α is in the same
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measure class as β. Let ϕ : (Z, α) → (Y, η) and ϕ′ : (Z, β) → (Y, η) be G-maps such that
ϕ ◦ π = ψ and ϕ′ ◦ π′ = ψ. Assume that the disintegrations Dϕ(y) of α over η via ϕ and
the disintegrations Dϕ′(y) of β over η via ϕ′ have the property that Dϕ(y) and Dϕ′(y) are
in the same measure class almost surely. Then π = π′ almost everywhere, ϕ = ϕ′ almost
everywhere and α = β.

Proof. First we consider ϕ and ϕ′. Define the Borel set

B = {z ∈ Z : ϕ(z) 6= ϕ′(z)}.

Then for every y ∈ Y , it holds that B ∩ ϕ−1(y) ∩ (ϕ′)−1(y) = ∅. Since Dϕ(y) is in the same
measure class as Dϕ′(y) almost everywhere and since Dϕ′(y)((ϕ′)−1(y)) = 1, for almost every
y it holds that

Dϕ(y)(B) = Dϕ(y)(B ∩ ϕ−1(y)) = Dϕ(y)(B ∩ ϕ−1(y) ∩ (ϕ′)−1(y)) = Dϕ(y)(∅) = 0.

Therefore ζ(B) = 0. Likewise, ζ ′(B) = 0. Hence ϕ = ϕ′ almost everywhere.
Now we consider π and π′. Suppose that

ν × η({(x, y) ∈ X × Y : π(x, y) 6= π′(x, y)}) > 0.

Fix compact models for X , Y and Z and let d be a compatible metric on Z and observe that

{(x, y) ∈ X × Y : π(x, y) 6= π′(x, y)} =
⋃

δ>0

{(x, y) ∈ X × Y : d(π(x, y), π′(x, y)) ≥ δ}

which is a decreasing union and therefore there is some δ > 0 such that

ν × η({(x, y) ∈ X × Y : d(π(x, y), π′(x, y)) > δ}) > 0.

By Fubini’s Theorem there is then some x0 ∈ X such that

A = {y ∈ Y : d(π(x0, y), π
′(x0, y)) > δ}

has η(A) > 0.
Since (X, ν) is contractive, there exists a sequence {gn} in G such that g−1

n ν → δx0 .
Observe that for almost every y ∈ Y ,

D(gn)
ϕ (y) = π∗D

(gn)
ψ (y) = π∗(g

−1
n (ν × δgny)) = π∗(g

−1
n ν × δy) → π∗(δx0 × δy) = δπ(x0,y)

and likewise that
D

(gn)
ϕ′ (y) → δπ′(x0,y).

Define the set

U = {z ∈ Z : d(π(x0, ϕ(z)), z) <
1

2
δ} ∩ ϕ−1(A).

Note that U ∩ ϕ−1(y) is open in ϕ−1(y) for all y ∈ A since d is compatible. Moreover, for
each y ∈ A ∩ ϕ(U), it holds that π(x0, y) is in the interior of U . Observe that for z ∈ U we
have that d(π(x0, ϕ(z)), z) <

1
2
δ and

d(π(x0, ϕ(z)), π
′(x0, ϕ(z))) > δ
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(using that ϕ = ϕ′) meaning that d(π′(x0, ϕ(z)), z) >
1
2
δ and therefore we conclude that

π′(x0, y) ∈ (U)C for every y ∈ A. Therefore U is a continuity set for δπ(x0,y) and δπ′(x0,y) for
all y ∈ A.

Then for almost every y ∈ A,

D(gn)
ϕ (y)(U) → δπ(x0,y)(U) = 1

and
D

(gn)
ϕ′ (y)(U) → δπ′(x0,y)(U) = 0

since U is a continuity set.
For ǫ > 0, define the Borel sets

Aǫ,n = {y ∈ A : for all m ≥ n, D(gm)
ϕ (y)(U) > 1− ǫ and D

(gm)
ϕ′ (y)(U) < ǫ}.

The sets Aǫ,n increase with n for a fixed ǫ and, up to a null set,

A =
∞⋃

n=1

Aǫ,n

and therefore, for each ǫ > 0 there exists n such that η(Aǫ,n) > η(A)− ǫ.
Now, using that η is measure-preserving, for every ǫ > 0,

α(gnU) =

∫

Y

Dϕ(y)(gnU) dη(y)

=

∫

gnA

Dϕ(y)(gnU) dη(y)

=

∫

A

D(gn)
ϕ (y)(U) dη(y)

≥

∫

An,ǫ

D(gn)
ϕ (y)(U) dη(y)

≥ (1− ǫ)η(An,ǫ) ≥ (1− ǫ)(η(A)− ǫ).

Similarly,

β(gnU) ≤

∫

An,ǫ

D
(gn)
ϕ′ (y)(U) dη(y) + η(A)− η(An,ǫ) ≤ ǫη(An,ǫ) + ǫ ≤ 2ǫ.

By Lemma 4.9.1 (following the proof), then α and β are not in the same measure class,
a contradiction. Therefore we conclude that π = π′ almost everywhere and so α = π∗ν =
(π′)∗ν = β.

Lemma 4.9.1. Let Z be a compact metric space and α, β ∈ P (Z) be Borel probability
measures on it. If there exists δ > 0 such that for every ǫ > 0 there exists a Borel set Bǫ ⊆ Z
such that α(Bǫ) < ǫ and β(Bǫ) > (1− ǫ)δ then α is not absolutely continuous with respect to
β.
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Proof. Observe that

α(

∞⋂

n=1

⋃

m=n+1

B2−m) ≤ lim sup
n→∞

∞∑

m=n+1

α(B2−m) ≤ lim sup
n→∞

∞∑

m=n+1

2−m = 0

but that

β(
∞⋂

n=1

⋃

m=n+1

B2−m) ≥ lim inf
n→∞

β(B2−n−1) = lim inf
n→∞

(1− 2−n−1)δ = δ > 0.

Corollary 4.28 (Creutz-Shalom [CS12]). Let (X, ν) be a contractive G-space and let π :
(X, ν) → (Y, η) and π′ : (X, ν) → (Y, η′) be G-maps of G-spaces such that η and η′ are in
the same measure class. Then π = π′ almost surely and η = η′.

Proof. Consider the composition of maps ϕ ◦ π : (X, ν) → 0 where ϕ : (Y, η) → 0 is the map
to the trivial system. Since (X, ν) is contractive, the preceding theorem gives the result.

4.10 Joinings With Contractive Spaces

Theorem 4.29. Let (X, ν) be a contractive G-space and let (Y, η) be a G-space. Then
there is at most one joining (X × Y, α) of (X, ν) and (Y, η) such that the projection to X is
relatively measure-preserving.

Proof. Let f ∈ L∞(Y, η) and define

F (x) = DprX (x)(f ◦ prY ).

Taking compact models for X and Y such that π is continuous makes clear that F is a
bounded Borel function on X . Then for any g ∈ G we have that, using that DprX is
relatively measure-preserving,

gν(F ) =

∫

X

F (gx) dν(x)

=

∫

X

∫

X×Y

f(prY (z, y)) dDprX (gx)(z, y) dν(x)

=

∫

X

∫

X×Y

f(gprY (z, y)) dDprX (x)(z, y) dν(x)

=

∫

X×Y

f(gprY (z, y)) dα(z, y)

=

∫

X×Y

f(gy) d(prY )∗α(y) =

∫

Y

f(gy) dη(y) = gη(f).

Suppose now that (X×Y, α1) and (X×Y, α2) are both joinings such that prX is relatively
measure-preserving. Fix f ∈ L∞(Y, η) and let F1(x) = D1

prX
(x)(f ◦ prY ) and F2(x) =
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D2
prX

(x)(f ◦ prY ) where D
j
prX

is the disintegration of αj over ν. Set F (x) = F1(x) − F2(x).

Then F is a bounded Borel function on X and by the above we have that gν(F ) = gν(F1)−
gν(F2) = gη(f) − gη(f) = 0 for all g ∈ G. Since (X, ν) is contractive we also know that
‖F‖L∞(X,ν) = supg |gν(F )| = 0. Therefore F (x) = 0 almost surely and so F1(x) = F2(x)
almost surely. As this holds for all f ∈ L∞(Y, η) we conclude that

(prY )∗D
1
prX

(x) = (prY )∗D
2
prX

(x)

for almost every x ∈ X . The conclusion now follows from the next Lemma applied to
prX × prY .

Lemma 4.10.1. Let (X, ν1), (Y, η) and (Z, ζ) be probability spaces and let ν2 ∈ P (X).
Let π : X → Y and ϕ : X → Z be measurable maps defined almost everywhere such that
π∗νj = η for both j = 1, 2. Let Dj

π denote the disintegration of νj over η. Define the map
π×ϕ : X → Y ×Z by (π× ϕ)(x) = (π(x), ϕ(x)). If ϕ∗D

1
π(y) = ϕ∗D

2
π(y) for almost every y

then (π × ϕ)∗ν1 = (π × ϕ)∗ν2.

Proof. Observe that for any f a bounded Borel function on Y × Z,

(π × ϕ)∗νj(f) =

∫

X

f(π(x), ϕ(x)) dνj(x)

=

∫

Y

∫

X

f(π(x), ϕ(x)) dDj
π(y)(x) dη(y)

=

∫

Y

∫

X

f(y, ϕ(x)) dDj
π(y)(x) dη(y)

=

∫

Y

∫

Z

f(y, z) dϕ∗D
j
π(y)(z) dη(y)

and therefore, by the hypothesis that ϕ∗D
1
π = ϕ∗D

2
π, we have that (π × ϕ)∗ν1(f) = (π ×

ϕ)∗ν2(f) for all f which means that (π × ϕ)∗ν1 = (π × ϕ)∗ν2.

Corollary 4.30. Let (X, ν) be a contractive G-space and let (Y, η) be a measure-preserving
G-space. Then any joining of (X, ν) and (Y, η) such that prX is relatively measure-preserving
is the independent joining.

Proof. Observe that the independent joining (X × Y, ν × η) is a joining and that DprX (x) =
δx × η. Since (Y, η) is measure-preserving,

DprX (gx) = δgx × η = (gδx)× η = (gδx)× (gη) = g(δx × η) = gDprX (x)

so prX is relatively measure-preserving. By the previous theorem then the independent
joining is the unique such joining.

Corollary 4.31. Let (X, ν) be a G-space such that π : (X, ν) → (Y, η) is a relatively
measure-preserving G-map of G-spaces and ϕ : (X, ν) → (Z, ζ) is a relatively contractive
G-map of G-spaces where (Y, η) is a contractive G-space and (Z, ζ) is a measure-preserving
G-space. Then (X, ν) is G-isomorphic to (Y × Z, η × ζ).
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Proof. By Corollary 4.26 the map π×ϕ is a G-isomorphism of (X, ν) with (Y ×Z, (π×ϕ)∗ν).
Now (prY )∗(π×ϕ)∗ν = π∗ν = η and likewise (prZ)∗(π×ϕ)∗ν = ζ so this is a joining of (Y, η)
and (Z, ζ). Since π is relatively measure-preserving and π = prX ◦ (π×ϕ) we have that prX
is relatively measure-preserving. The previous corollary then says that it is the independent
joining.

Corollary 4.32. Let (X, ν) be a contractive G-space and π : (X, ν) → (Y, η) a G-map of G-
spaces. Then the only joining of (X, ν) and (Y, η) such that the projection to X is relatively
measure-preserving is the joining (X × Y, π̃∗ν) where π̃(x) = (x, π(x)).

Proof. Let D(x) be the disintegration of π̃∗ν over ν. Then D(x) is supported on {x} × Y ∩
supp π̃∗ν = {(x, π(x))}. Therefore D(x) = δ(x,π(x)). So D(gx) = δ(gx,π(gx)) = δg(x,π(x)) =
gδ(x,π(x)) = gD(x). By the previous theorem this is then the unique joining with projection
to X being relatively measure-preserving.

More generally:

Theorem 4.33. Let (X, ν) be a contractive G-space and π : (X, ν) → (Y, η) a G-map of G-
spaces. Let ζ ∈ P (X×Y ) be a joining of (X, ν) and (Y, η′) for some η′ absolutely continuous
with respect to η such that the projection to X of ζ to ν is relatively measure-preserving.
Then ζ = π̃∗ν where π̃(x) = (x, π(x)) and in particular, η′ = η.

Proof. Let D be the disintegration of ζ over ν. Then D(x) = δx × ζx for some ζx ∈ P (Y )
for almost every x. Note that D(gx) = gD(x) for g ∈ G since the projection is relatively
measure-preserving and therefore ζgx = gζx for all g ∈ G. Let f ∈ C(Y ). Define F ∈
L∞(X, ν) by

F (x) = f(π(x))− ζx(f).

Let ǫ > 0 and take x0 ∈ X such that |F (x0)| > ‖F‖L∞(X,ν)−ǫ. Since (X, ν) is contractive,
there exists gn ∈ G such that gnν → δx0 . Observe that, using that ζgx = gζx,

gnν(F ) =

∫

X

f(π(gnx))− ζgnx(f) dν(x)

=

∫

X

f(gnπ(x))− gnζx(f) dν(x)

= gnη(f)− gnη
′(f)

since
∫
X
ζx dν(x) = η′.

Now η′ is absolutely continuous with respect to η and gnη = π∗gnν → π∗δx0 = δπ(x0).
Since (Y, η) is contractive, being a factor of a contractive space, by Corollary 4.28 (the proof
of which goes through even when η′ is only absolutely continuous with respect to and not
necessarily in the same measure class as η), gnη′ → δπ(x0) also. Therefore

gnν(F ) = gnη(f)− gnη
′(f) → f(π(x0))− f(π(x0)) = 0

since f ∈ C(Y ). So we have that ‖F‖ < ǫ. This holds for all ǫ > 0 so F (x) = 0 almost surely.
As this holds for all f ∈ C(Y ) we then have that ζx = δπ(x) almost surely. This means that
D(x) = δx × δπ(x) = δπ̃(x) almost surely so ζ = π̃∗ν as claimed. Since projY π̃∗ν = π∗ν = η,
then η′ = projY ζ = η.
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We also obtain a special case of a result of Furstenberg and Glasner. Proposition 3.1 in
[FG10] states that there is a unique stationary joining between a G-boundary and an arbi-
trary G-space; we obtain another proof of this fact when the G-space is measure-preserving:

Corollary 4.34 (Furstenberg-Glasner [FG10]). Let G be a group and µ ∈ P (G) a probability
measure on G. Let (B, β) be the (G, µ)-boundary and (X, ν) a measure-preserving G-space.
Then the only joining (B×X,α) of (B, β) and (X, ν) such that µ∗α = α is the independent
joining.

Proof. Let π : GN → B be the boundary map (see [BS06] section 2), meaning that βω =
limn ω1 · · ·ωnβ = δπ(ω) µ

N-almost surely and π∗µ
N = β. Since α is µ-stationary, α =∫

αω dµN(ω). Now (projB)∗αω = βω = δπ(ω) and (projX)∗αω = νω = ν since (X, ν) is
measure-preserving. Therefore αω = δπ(ω) × ν and since π∗µ

N = β then the disintegration
of α over β is D(b) = δb × ν which is G-equivariant. Hence the projection to B is relatively
measure-preserving so the claim follows by the previous corollaries.

For completeness, we point out an example showing that there can in fact be no joining
at all with the projection to the contractive factor being relatively measure-preserving. A
concrete example of this can be found in the case when G = PSL3(R) in which case the
boundaries (under any admissible measure) are of the form G/P , 0 and G/Q where Q is a
parabolic subgroup containing P (see Furstenberg’s work [Fur63] for details).

Let (Y, η) be G/P , the Poisson boundary of G, let (X, ν) be G/Q, a proper factor of Y and
let π : (Y, η) → (X, ν) be the natural factor map. Suppose that (X×Y, α) is a joining of (X, ν)
and (Y, η) such that the projection to X is relatively measure-preserving. Take continuous
compact models for the spaces and let y0 ∈ Y be arbitrary and set x0 = π(y0). Since (Y, η) is
contractive there exists gn ∈ G such that gnη → δy0 and therefore gnν = π∗gnη → π∗δy0 = δx0 .

Since the projection to X is relatively measure-preserving,

gnα =

∫

X

gnDprX (x) dν(x) =

∫

X

DprX (x) dgnν(x) → DprX (x0)

but on the other hand
(prY )∗gnα = gnη → δy0

and therefore (prY )∗DprX (x0) = δπ(x0) meaning that DprX (x0) = δx0 × δπ(x0). This yields a
map X → Y which is clearly G-equivariant forcing Y to be a factor of X but this is ruled
out by the choice of X and Y .

4.11 The Operator Algebraic Formulation

We pause here to note that properties of relatively contractive maps can be alternatively
formulated in the language of operator algebras. Thus, there may be similar phenomena
occurring in the noncommutative setting. For example, we can restate Theorem 4.33 as:

Theorem 4.35. Let (X, ν) be a contractive G-space. If B ⊆ L∞(X, ν) is a G-invariant von
Neumann subalgebra and Φ : B → L∞(X, ν) is a G-equivariant normal unital (completely)
positive map then Φ = id.
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The above should be compared to Proposition 3 in [Oza07]. The other results in this
section can be similarly rephrased; this is another indication of the greater flexibility allowed
by contractive actions over boundary actions: the operator algebraic formulations are much
more straightforward and easier to work with.

4.12 Relatively Contractive Maps and Finite Index Subgroups

Theorem 4.36. Let G be a locally compact second countable group and H < G be a finite
index subgroup. Let π : (X, ν) → (Y, η) be a relatively contractive G-map of ergodic G-spaces.
Then, restricting the actions to H makes π a relatively contractive H-map.

Proof. Fix continuous compact models of X , Y and π. Let ℓ1, ℓ2, . . . , ℓN be a system of
representatives for H\G. Define the set

Q = {x ∈ X : there exists {hn} in H such that D(hn)
π (π(x)) → δx }.

By Theorem 4.12, for every x ∈ X there exists {gn} in G such that D
(gn)
π (π(x)) → δx. Write

gn = hnℓjn for hn ∈ H and jn ∈ {1, 2, . . . , N}. Since N is finite, there exists a subsequence
{nt} along which gnt

= hnt
ℓ for some fixed ℓ in the system of representatives. Define the

sets, for j = 1, 2, . . . , N ,

Cj = {x ∈ X : there exists {gn} such that gn ∈ Hℓj for all n and D(gn)
π (y) → δx }.

Then X = ∪Nj=1Cj by the above.

Let x ∈ Cj. Then, writing gn = hnℓj, it holds that ℓ
−1
j D

(hn)
π (ℓjπ(x)) = D

(hnℓj)
π (π(x)) → δx

and so D
(hn)
π (π(ℓjx)) → ℓjδx = δℓjx. Therefore ℓjx ∈ Q and so we have that

N⋃

j=1

ℓjCj ⊆ Q.

Since X = ∪jCj , there is some j such that ν(Cj) > 0. So ν(Q) ≥ ν(ℓjCj) > 0 as ν is
quasi-invariant.

Now let x ∈ Q and h ∈ H . There exists {hn} in H such that D
(hn)
π (π(x)) → δx and

therefore

D(hnh−1)
π (π(hx)) = hD(hn)

π (h−1π(hx)) = hD(hn)
π (π(x)) → hδx = δhx

meaning that hx ∈ Q. Since (X, ν) is G-ergodic, it is also H-ergodic (H being finite index)
and therefore ν(Q) = 1 meaning precisely that π is a relatively contractive H-map.

4.13 Contractive Actions and Lattices

The following is a generalization of Proposition 3.7 in [CS12] (which shows the same result
only for Poisson boundaries):

Theorem 4.37. Let G be a locally compact second countable group and Γ < G a lattice. Let
(X, ν) be a contractive (G, µ)-space for some µ ∈ P (G) such that the support of µ generates
G. Then the restriction of the G-action to Γ makes (X, ν) a contractive Γ-space.
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Proof. Let B ⊆ X be a measurable set such that ν(B) < 1. Let U be an open neighborhood
of the identity in G such that ν(UB) < 1 where UB = {ux : u ∈ U, x ∈ B} (the existence
of such an open set is a standard consequence of the continuity and the proof is left to the
reader). Let ǫ > 0 such that m(UΓ) > ǫ where m is the Haar probability measure on G/Γ.
Note that m(UΓ) > 0 since U is open. Since (X, ν) is contractive, there exists g ∈ G such
that ν(gUB) < ǫ2.

By the Random Ergodic Theorem (Theorem 2.25), there exists Q0 ⊆ GN with µN(Q0) = 1
such that for all (ω1, ω2, . . .) ∈ Q0,

lim
N→∞

∫
1

N

N∑

n=1

1gUB(ωn · · ·ω1x) dν(x) = ν(gUB).

So for all (ω1, . . .) ∈ Q0,

1

N

N∑

n=1

ν(ω−1
1 · · ·ω−1

n gUB) → ν(gUB) < ǫ2.

Therefore, for all (ω1, . . .) ∈ Q0,

lim sup
N→∞

1

N
#{n ≤ N : ν(ω−1

1 · · ·ω−1
n gUB) > ǫ} ≤ ǫ.

Also by the Random Ergodic Theorem, there exists Q1 ⊆ GN with µN(Q1) = 1 such that for
all (ω1, . . .) ∈ Q1 and almost every y ∈ G/Γ,

lim
N→∞

1

N

N∑

n=1

1gUΓ(ωn · · ·ω1y) = m(gUΓ) = m(UΓ).

Therefore, for all (ω1, . . .) ∈ Q1 and almost every y ∈ G/Γ,

lim inf
N→∞

1

N
#{n ≤ N : y ∈ ω−1

1 · · ·ω−1
n gUΓ} ≥ m(UΓ).

And so we conclude that for all (ω1, . . .) ∈ Q1 and almost every h ∈ G,

lim inf
N→∞

1

N
#{n ≤ N : there exists γ ∈ Γ with hγ ∈ ω−1

1 · · ·ω−1
n gU } ≥ m(UΓ).

Combining these facts, for (ω1, . . .) ∈ Q0 ∩Q1 and almost every h ∈ G,

lim inf
N→∞

1

N
#{n ≤ N : there exists γ ∈ Γ with hγ ∈ ω−1

1 · · ·ω−1
n gU

and ν(ω−1
1 · · ·ω−1

n gUB) < ǫ } ≥ m(UΓ)− ǫ.

As m(UΓ) > ǫ, the above sets are nonempty, so for almost every h ∈ G there exists γ ∈ Γ,
u ∈ U and ω1, . . . , ωn ∈ G (for infinitely many choices of n) such that hγ = ω−1

1 · · ·ω−1
n gu

and ν(ω−1
1 · · ·ω−1

n gUB) < ǫ. Then

ν(hγB) = ν(ω−1
1 · · ·ω−1

n guB) ≤ ν(ω−1
1 · · ·ω−1

n gUB) < ǫ.
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This holds for all 0 < ǫ < m(UΓ) and so for almost every h ∈ G, there exists {γn} in Γ such
that ν(hγnB) → 0.

Fix such an h ∈ G and let {γn} such that ν(hγnB) → 0. For each m ∈ N, let nm such
that ν(hγnm

B) < 2−m. Then

ν
(
h

∞⋃

ℓ=1

∞⋃

m=ℓ+1

γnm
B
)
≤ lim

ℓ→∞

∞∑

m=ℓ+1

ν(hγnm
B) ≤ lim

ℓ→∞

∞∑

m=ℓ+1

2−m = 0.

Since ν is quasi-invariant,

lim sup
m→∞

ν(γnm
B) ≤ lim sup

ℓ→∞
ν
( ∞⋃

m=ℓ+1

γnm
B
)
= ν

( ∞⋂

ℓ=1

∞⋃

m=ℓ+1

γnm
B
)
= 0

meaning that (X, ν) is Γ-contractive.

4.14 Inducing Relatively Contractive Maps

Theorem 4.38. Let Γ < G be a lattice in a locally compact second countable group. Let
π : (X, ν) → (Y, η) be a Γ-map of Γ-spaces and let Π : G ×Γ X → G ×Γ Y be the induced
G-map of G-spaces. Then π is a relatively contractive Γ-map if and only if Π is a relatively
contractive G-map.

Proof. Assume first that Π is relatively contractive. Fix a fundamental domain (F,m) for
G/Γ as in the induced action construction (see Section 2.2.4) and let α : G× F → Γ be the
associated cocycle for the G-action on F ×X . Let Φ : (F ×X,m× ν) → (F × Y,m× η) by
Φ = id×π. Then Φ is isomorphic to Π over the canonical isomorphisms G×ΓX ≃ F×X and
G ×Γ Y ≃ F × Y (Section 2.2.5) so Φ is relatively contractive. Consider the disintegration
map DΦ : F × Y → P (F ×X). Observe that for (f, y) ∈ F × Y

DΦ(f, y) = δf ×Dπ(y)

since Φ = id× π and all the spaces have the product measure. Now consider the conjugates
of the disintegration map: for g ∈ G and (f, y) ∈ F × Y ,

D
(g)
Φ (f, y) = g−1DΦ(g(f, y)) = g−1DΦ(gfα(g, f), α(g, f)

−1y)

= g−1(δgfα(g,f) ×Dπ(α(g, f)
−1y))

= δf × α(g−1, gfα(g, f))−1Dπ(α(g, f)
−1y)

= δf ×D(α(g,f)−1)
π (y).

Now take r ∈ L∞(X, ν) and define q(f, x) = r(x). Then for m× η-almost every (f, y)

‖q‖L∞(F×X,DΦ(f,y)) = ‖r‖L∞(X,Dπ(y))

and since Φ is relatively contractive, for m× η-almost every (f, y) there exists gn ∈ G such
that

D
(gn)
Φ (f, y)(q) → ‖q‖L∞(F×X,DΦ(f,y)).
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Therefore
δf ×D(α(gn,f)−1)

π (y)(q) → ‖r‖L∞(X,Dπ(y))

and by construction of q then

D(α(gn,f)−1)
π (y)(r) → ‖r‖L∞(X,Dπ(y)).

Hence for η-almost every y there exists a sequence γn = α(gn, f)
−1 ∈ Γ (outside of possibly

a measure zero set, which f is chosen is irrelevant) such that

D(γn)
π (r) → ‖r‖L∞(X,Dπ(y))

which means that π is relatively contractive.
Now assume that π is relatively contractive. Let x ∈ X and f ∈ F and set y = π(x). As

above,

D
(g)
Φ (f, y) = δf ×D(α(g,f)−1)

π (y).

Since π is relatively contractive, there exists {γn} such that D
(γn)
π (y) → δx. Set gn = fγnf

−1.
Then α(gn, f) = γ−1

n and so

D
(gn)
Φ (f, y) = δf ×D(γn)

π (y) → δ(f,x)

meaning that Π is relatively contractive.

4.15 The Intermediate Contractive Factor Theorem

Theorem 4.39. Let Γ < G be a lattice in a locally compact second countable group and let
Λ contain and commensurate Γ and be dense in G. Let (X, ν) be a contractive (G, µ)-space
(for some µ ∈ P (G) such that the support of µ generates G) and (Y, η) be a measure-
preserving G-space. Let π : (X × Y, ν × η) → (Y, η) be the natural projection map from the
product space with the diagonal action. Let (Z, ζ) be a Λ-space such that there exist Γ-maps
ϕ : (X×Y, ν× η) → (Z, ζ) and ρ : (Z, ζ) → (Y, η) with ρ◦ϕ = π. Then ϕ and ρ are Λ-maps
and (Z, ζ) is Λ-isomorphic to a G-space and over this isomorphism the maps ϕ and ρ become
G-maps.

Proof. Write (W, ρ) = (X×Y, ν×η). Fix λ ∈ Λ. Define the maps ϕλ : W → Z and ρλ : Z →
Y by ϕλ(w) = λ−1ϕ(λw) and ρλ(z) = λ−1ρ(λz). Then ρλ ◦ ϕλ(w) = λ−1ρ(λλ−1ϕ(λw)) =
λ−1ρ(ϕ(λw)) = λ−1π(λw) = π(w) since π is Λ-equivariant. Let Γ0 = Γ ∩ λ−1Γλ. Then
for γ0 ∈ Γ0, write γ0 = λ−1γλ for some γ ∈ Γ and we see that ϕλ(γ0w) = λ−1ϕ(λγ0w) =
λ−1ϕ(γλw) = λ−1γϕ(λw) = γ0λ

−1ϕ(λw) = γ0ϕλ(w) meaning that ϕλ is Γ0-equivariant.
Likewise ρλ is Γ0-equivariant. Hence ϕ, ϕλ, ρ and ρλ are all Γ0-equivariant.

Since (X, ν) is a contractive (G, µ)-space and Γ0 is a lattice in G, by Theorem 4.37, (X, ν)
is a contractive Γ0-space. By Theorem 4.27 we can conclude that ϕλ = ϕ and that ρλ = ρ
provided we can show that the disintegration measures Dρ(y) and Dρλ(y) are in the same
measure class for almost every y. Assuming this for the moment, we then conclude that ϕ is
Λ-equivariant since ϕλ = ϕ for each λ. The σ-algebra of pullbacks of measurable functions
on (Z, ζ) form a Λ-invariant sub-σ-algebra of L∞(W, ρ) which is therefore also G-invariant
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(because Λ is dense in G) and so (Z, ζ) has a point realization as a G-space [Mac62] and
likewise ϕ and ρ as G-maps.

It remains only to show that the disintegration measures have the required property. First
note that Dρ(y) = ϕ∗Dρ◦ϕ(y) by the uniqueness of the disintegration measure and likewise

that Dρλ(y) = (ϕλ)∗Dρλ◦ϕλ
(y) = λ−1ϕ∗λDρ◦ϕ(y) = λ−1ϕ∗D

(λ−1)
ρ◦ϕ (λy). Now ρ ◦ ϕ = π is a

Λ-map so D
(λ−1)
ρ◦ϕ (λy) is in the same measure class as Dρ◦ϕ(λy). Therefore Dρλ(y) is in the

same measure class as λ−1ϕ∗Dρ◦ϕ(λy) = λ−1Dρ(λy). Now λ−1Dρ(λy) disintegrates λ
−1ζ over

λ−1η via ρ and λ−1ζ is in the same measure class as ζ since (Z, ζ) is a Λ-space. Therefore,
by Lemma 4.1.4, λ−1Dρ(λy) and Dρ(y) are in the same measure class for almost every y.
Hence Dρλ(y) and Dρ(y) are in the same measure class for almost every y as needed.

4.15.1 The Original Contractive Factor Theorem

As a corollary we obtain a slightly improved form of the Contractive Factor Theorem:

Corollary 4.40 (Creutz-Shalom [CS12]). Let Γ < G be a lattice in a locally compact second
countable group and let Λ contain and commensurate Γ and be dense in G. Let (X, ν) be a
contractive (G, µ)-space (for some µ ∈ P (G) such that the support of µ generates G) and
π : (X, ν) → (Y, η) a Γ-map to a Λ-space. Then π is a Λ-map, (Y, η) is Λ-isomorphic to a
G-space and over this isomorphism π is a G-map.

Proof. As usual, take the relatively contractive map from (X, ν) to the one-point system and
apply the Intermediate Contractive Factor Theorem.

4.15.2 The Piecewise Intermediate Contractive Factor Theorem

For our study of stabilizers, we will need a slightly stronger form of the Intermediate Con-
tractive Factor Theorem:

Theorem 4.41. Let Γ be a group and let Λ be a group that contains and commensurates Γ.
Let (W, ρ) be a Λ-space such that the action restricted to Γ on (W, ρ) is contractive and let
(X, ν) be a measure-preserving Λ-space. Set (Y, η) = (W ×X, ρ× ν) to be the product space
with the diagonal action. Let p : (Y, η) → (X, ν) be the natural projection map. Let (Z, ζ) be
a Γ-space and π : (Y, η) → (Z, ζ) and ϕ : (Z, ζ) → (X, ν) be Γ-maps such that ϕ ◦ π = p.

Assume that Z is orbital over X: for any γ ∈ Γ and x ∈ X such that γx = x, if z ∈ Z
such that ϕ(z) = x then γz = z.

Fix λ ∈ Λ, define the Borel set

E = Eλ = {x ∈ X : λx ∈ Γx},

and define the map θλ : ϕ−1(E) → Z as follows: for z ∈ ϕ−1(E) choose γ ∈ Γ such that
λϕ(z) = γϕ(z) and define θλ(z) = γz (this is well-defined since Z is orbital).

Then π(λy) = θλ(π(y)) for almost every y ∈ p−1(E). In particular, for almost every y
such that λp(y) = p(y) we have that π(λy) = π(y).

The proof of the theorem will proceed as a series of Propositions. Retain the notation
above throughout:
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Proposition 4.15.1. θλ(ϕ
−1(E)) = ϕ−1(λE).

Proof. Let z ∈ θλ(ϕ
−1(E)). Then z = θλ(w) for some w ∈ ϕ−1(E) so λϕ(w) = γϕ(w) for

some γ ∈ Γ hence z = γw by the definition of θλ. Then ϕ(z) = ϕ(γw) = γϕ(w) = λϕ(w) ∈
λE. Therefore θλ(ϕ

−1(E)) ⊆ ϕ−1(λE).
Conversely, let z ∈ ϕ−1(λE). Then ϕ(z) = λx for some x ∈ E so there exists γ ∈ Γ

such that ϕ(z) = λx = γx. Now ϕ(γ−1z) = γ−1ϕ(z) = x ∈ E and λx = γx so θλ(γ
−1z) =

γ(γ−1z) = z. Therefore z = θλ(γ
−1z) ∈ θλ(ϕ

−1(E)) so ϕ−1(λE) ⊆ θλ(ϕ
−1(E)).

Proposition 4.15.2. θλ is invertible: there exists θ−1
λ : θλ(ϕ

−1(E)) → E such that θ−1
λ θλ is

the identity on ϕ−1(E) and θλθ
−1
λ is the identity on θλ(ϕ

−1(E)).

Proof. Let w ∈ θλ(ϕ
−1(E)). Then w = θλ(z) for some z ∈ ϕ−1(E) so w = γz for some γ ∈ Γ

such that λϕ(z) = γϕ(z). Note that if γ, γ′ ∈ Γ are both such that λϕ(z) = γϕ(z) = γ′ϕ(z)
then γ−1γ′ϕ(z) = ϕ(z) so as Z is orbital then γ−1γ′z = z. Define θ−1

λ (w) = γ−1w. This is
then well-defined since (γ′)−1w = (γ′)−1γγ−1w = (γ′)−1γz = z = γ−1w because γ−1γ′z = z.
Then θ−1

λ (θλ(z)) = θ−1
λ (w) = z and θλ(θ

−1
λ (w)) = θλ(z) = w hence the proof is complete

(since θλ maps onto its image).

Proposition 4.15.3. Γ0 = Γ ∩ λ−1Γλ is a lattice in Γ and E is Γ0-invariant.

Proof. Γ0 has finite index in Γ since Λ commensurates Γ hence is a lattice. Observe that for
γ0 ∈ Γ0 and x ∈ E, writing γ0 = λ−1γλ for some γ ∈ Γ we have that

λγ0x = λλ−1γλx = γλx ∈ γΓx = Γx

and therefore the set E is Γ0-invariant, that is λγ0x ∈ Γx whenever λx ∈ Γx.

Proposition 4.15.4. Define the map πλ : Y → Z as follows: for y ∈ p−1(E) set πλ(y) =
θ−1
λ (π(λy)) and for y /∈ p−1(E) set πλ(y) = π(y). Likewise define the map ϕλ : Z → X by
ϕλ(z) = λ−1ϕ(θλ(z)) for z such that ϕ(z) ∈ E and ϕλ(z) = ϕ(z) for z such that ϕ(z) /∈ E.

Then ϕλ ◦ πλ = ϕ ◦ π = p and both πλ and ϕλ are Γ0-equivariant.

Proof. Note that in fact ϕλ = ϕ since for z ∈ ϕ−1(E) and γ ∈ Γ such that λϕ(z) = γϕ(z)
we have that λ−1ϕ(γz) = λ−1γϕ(z) = ϕ(z) but we will find it helpful to distinguish these
maps since the measures π∗η and (πλ)∗η may be distinct and we will be treating ϕλ as a
map (Z, (πλ)∗η) → (X, ν) and ϕ as a map (Z, π∗η) → (X, ν).

Now for y such that p(y) ∈ E, observe that

ϕλ(πλ(y)) = λ−1ϕ(θλθ
−1
λ π(λy)) = λ−1ϕ(π(λy)) = λ−1p(λy) = p(y)

since p is Λ-equivariant. Clearly for y such that p(y) /∈ E we have ϕλ(πλ(y)) = ϕλ(π(y)) =
ϕ(π(y)) = p(y). Hence ϕλ ◦ πλ = p.

Observe that for γ0 ∈ Γ0, writing γ0 = λ−1γλ for some γ ∈ Γ, we have that for y such
that p(y) ∈ E, also p(γ0y) = γ0p(y) ∈ E since E is Γ0-invariant, so

πλ(γ0y) = θ−1
λ π(λγ0y) = θ−1

λ π(γλy) = θ−1
λ γπ(λy) = θ−1

λ γθλθ
−1
λ π(λy) = θ−1

λ γθλπλ(y).
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Now observe that for z such that ϕ(z) ∈ E (which includes πλ(y) for p(y) ∈ E), write γ′ ∈ Γ
such that θλz = γ′z and observe that then λϕ(z) = γ′ϕ(z) and so

γγ′γ−1
0 ϕ(γ0z) = γγ′ϕ(z) = γλϕ(z) = λγ0ϕ(z) = λϕ(γ0z)

which in turn means that

θλ(γ0z) = γγ′γ−1
0 (γ0z) = γγ′z = γθλ(z)

and therefore
πλ(γ0y) = θ−1

λ γθλπλ(y) = θ−1
λ θλγ0πλ(y) = γ0πλ(y).

Of course, for y such that p(y) /∈ E we have that γ0y /∈ E and so

πλ(γ0y) = π(γ0y) = γ0π(y) = γ0πλ(y)

and we conclude that πλ is Γ0-equivariant. Note that ϕλ = ϕ so ϕλ is likewise Γ0-equivariant.

Proposition 4.15.5. The maps π, ϕ, πλ, ϕλ are all relatively contractive Γ0-maps.

Proof. p is a relatively contractive Γ-map hence is a relatively contractive Γ0-map since Γ0

has finite index in Γ (Theorem 4.36). Since ϕλ ◦ πλ = ϕ ◦ π = p then the maps are all
relatively contractive (Theorems 4.21 and 4.15).

Proposition 4.15.6. ζλ is in the same measure class as ζ.

Proof. Let B ⊆ Z be measurable such that B ∩ ϕ−1(E) = ∅. Then π−1(B) ∩ p−1(E) =
π−1(B ∩ϕ−1(E)) = ∅ and π−1

λ (B)∩ p−1(E) = π−1
λ (B ∩ϕ−1

λ (E)) = ∅ since ϕ = ϕλ pointwise.
So πλ(y) = π(y) for y ∈ π−1(B) and for y ∈ π−1

λ (B). Then

ζλ(B) = η(π−1
λ (B)) ≤ η(π−1

λ (π(π−1(B)))) = η(π−1(B)) = ζ(B)

and likewise

ζ(B) = η(π−1(B)) ≤ η(π−1(πλ(π
−1
λ (B)))) = η(π−1

λ (B)) = ζλ(B)

hence ζ(B) = ζλ(B) for B ⊆ ϕ−1(EC).
Now let B ⊆ Z be measurable such that B ⊆ ϕ−1(E). For x ∈ E, measurably choose

γx ∈ Γ such that λx = γxx. Write Fγ = {x ∈ E : γx = γ}. Define the disjoint sets

Bγ = B ∩ ϕ−1(Bγ).

Then θλ(Bγ) = γBγ by the definition of θλ.
Suppose first that ζ(B) = 0 but that ζλ(B) > 0. Then

0 < ζλ(B) = η(λ−1π−1(θλ(B))) = λη(π−1(θλ(B)))

so, since η is in the same measure class as λη,

0 < η(π−1(θλ(B))) = ζ(θλ(B)).
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Now

ζ(θλ(B)) = ζ(θλ(
⊔

γ

Bγ)) =
∑

γ

ζ(γBγ) =
∑

γ

γ−1ζ(Bγ)

and therefore there exists γ ∈ Γ such that γ−1ζ(Bγ) > 0. Since ζ is Γ-quasi-invariant then
ζ(Bγ) > 0 for some γ ∈ Γ. But then ζ(B) ≥ ζ(Bγ) > 0 contradicting that ζ(B) = 0.

Suppose now that ζ(B) > 0 but that ζλ(B) = 0. Observe that

ζλ(B) = (πλ)∗η(B) = η(λ−1π−1(θλ(B)))

= λη(π−1(θλ(
⊔

γ

Bγ))) =
∑

γ

γ−1λη(π−1(Bγ))

and therefore γ−1λη(π−1(Bγ)) = 0 for all γ ∈ Γ. By the Λ-quasi-invariance of η, then
η(π−1(Bγ)) = 0 for all γ ∈ Γ. But then

ζ(B) = η(π−1(B)) = η(
⊔

γ

π−1(Bγ)) = 0

contradicting that ζ(B) > 0.

Proof of Theorem 4.41. We are now in the situation of having π : (Y, η) → (Z, ζ), ϕ :
(Z, ζ) → (X, ν), πλ : (Y, η) → (Z, ζλ) and ϕλ : (Z, ζλ) → (X, ν) all Γ0-maps of Γ0-spaces such
that ϕ ◦ π = ϕλ ◦ πλ = p is a relatively contractive Γ0-map and such that the disintegration
measures Dϕ(x) and Dϕλ

(x) are in the same measure class for almost every x (which follows
from the previous proposition and Lemma 4.1.4). By Theorem 4.27, as (Y, η) is a product of
a contractive space and a measure-preserving space, then π = πλ almost surely and ζλ = ζ .

Therefore for almost every y such that p(y) ∈ E we have that

π(λy) = θλθ
−1
λ π(λy) = θλπλ(y) = θλπ(y).

5 Weak Amenability of Actions of Lattices

A key fact in our study of stabilizers of commensurators and lattices is that if an action of
the commensurator has infinite stabilizers then the restriction of the action to the lattice
is weakly amenable (the equivalence relation corresponding to the action of the lattice is
amenable):

Theorem 5.1. Let Γ < G be a lattice in a locally compact second countable group and let Λ
be a countable dense subgroup of G such that Γ <c Λ.

Assume that for every ergodic measure-preserving action of G either the restriction of the
action to Λ has finite stabilizers or the restriction of the action to Γ has finite orbits.

Let Λ y (X, ν) be an ergodic measure-preserving action. Then either Λ has finite stabi-
lizers or the restriction of the action to Γ is weakly amenable.
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Proof. Let (B, ρ) be any Poisson boundary of G with respect to a measure whose support
generates G. Then G y (B, ρ) is contractive and amenable (Zimmer [Zim84]; reproduced
as Proposition 2.4.2). Then Γ y (B, ρ) amenably since Γ is closed in G (Zimmer [Zim84];
reproduced as Proposition 2.4.3). Let A be an affine orbital Γ-space over (X, ν). Then there
exists Γ-maps π : B ×X → A and p : A→ X such that p ◦ π is the natural projection to X
(Zimmer [Zim84]; reproduced as Proposition 2.4.5). Since (B, ρ) is a stationary space, being
a Poisson boundary, by Theorem 4.37, the restriction of the action on (B, ρ) to Γ makes it
a Γ-contractive space.

By the Intermediate Contractive Factor Theorem (the piecewise version–Theorem 4.41),
for almost every x ∈ X and b ∈ B and for any λ ∈ stabΛ(x) we have π(λ(b, x)) = π(b, x).

By standard arguments (see Appendix B in [Zim84]), there exist Borel models for the
spaces B, X and A, and the maps π and ϕ. Moreover, there is a Borel section X → (B → A)
for π: for almost every x there is a Borel map πx : B×{x} → Ax where Ax = ϕ−1({x}). The
conclusion of the Intermediate Contractive Factor Theorem is that πx ◦ λ = πx for almost
every x and all λ ∈ stabΛ(x). Since composition is weakly continuous on the space of Borel
maps, treating the Λ action as a Borel map B → B, then πx ◦ g = πx for almost every x and
all g ∈ stabΛ(x); that is, π(gb, x) = π(b, x) for almost every x and b and all g ∈ stabΛ(x).

Define the map s : X → S(G), where S(G) is the Borel space of closed subgroups of

G equipped with the conjugation action by G, by s(x) = stabΛ(x). Observe that s(λx) =

λstabΛ(x)λ−1 = λ · s(x) so s is a Λ-map. Let η ∈ P (S(G)) be η = s∗ν.

Let (X̃, ν̃) be an action of G giving rise to the invariant random subgroup η. Such an

action exists by Theorem 3.3. Then (S(G), η) is a G-factor of (X̃, ν̃) and η = s̃∗ν̃ where

s̃(x̃) = stabG(x̃). Then anything true of the stabilizer stabG(x̃) of almost every x̃ ∈ X̃ is

also true of the closure of the stabilizer stabΛ(x) of almost every x ∈ X .
Since Λ acts ergodically on (X, ν) and (S(G), η) is a Λ-factor of (X, ν) then Λ acts

ergodically on (S(G), η). Since Λ is dense in G, G acts ergodically on (S(G), η). Therefore

we may assume G acts ergodically on (X̃, ν̃) by Proposition 3.3.1.

By hypothesis, the G-action on X̃ either has finite orbits when restricted to Γ or the
restriction to Λ of the action has finite stabilizers. Suppose first that the action is such that
Λ ∩ stabG(x̃) is finite for almost every x̃ (for some affine orbital Γ-space over (X, ν)). Then

stabΛ(x) ∩ Λ is finite for almost every x and therefore stabΛ(x) is finite for almost every x
meaning the Λ-action on (X, ν) has finite stabilizers, in which case the proof is complete.

So assume instead that Gy (X̃, ν̃) has finite orbits when restricted to Γ (for every affine
orbital Γ-space over (X, ν)). Then Γ ∩ stabG(x̃) has finite index in Γ for ν̃-almost every x̃

(since the Γ-orbits are finite almost surely). Therefore Γ ∩ stabΛ(x) has finite index in Γ for

ν-almost every x. Let Γx = Γ ∩ stabΛ(x) be this lattice. Note that π(γb, x) = π(b, x) for
every γ ∈ Γx and almost every b ∈ B.

For each such x, let Ax be the fiber over x in A and define the map πx : B → Ax by
πx(b) = π(b, x). Now (B, β) is a contractive G-space hence is a contractive Γx-space (by
Theorem 4.37 since Γx is a lattice in G) and we will now treat (Ax, (πx)∗β) as a Γx-space
with the trivial action. Observe that for any γ ∈ Γx and almost every b ∈ B,

πx(γb) = π(γb, x) = π(b, x) = πx(b) = γπx(b)
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and therefore πx is a Γx-map meaning that (Ax, (πx)∗β) is a contractive Γx-space. Since the
Γx-action on it is trivial, (πx)∗β must be a point mass. Let cx ∈ Ax be the point (πx)∗β
is supported on. Then π(b, x) = cx for almost every b so the mapping x 7→ cx inverts ϕ.
Moreover, this map provides an invariant section for A since for any γ ∈ Γ we have that
cγx = π(b, γx) for almost every b ∈ B and so cγx = π(γb, γx) = γπ(b, x) = γcx for almost
every b ∈ B and x ∈ X so x 7→ cx is Γ-equivariant.

As this holds for all affine orbital Γ-spaces over (X, ν) the action of Γ on (X, ν) is weakly
amenable.

Corollary 5.2. Let Γ < G be a lattice in a locally compact second countable group with
property (T ) and let Λ be a countable dense subgroup of G such that Γ <c Λ.

Assume that for every ergodic measure-preserving action of G either the restriction of the
action to Λ has finite stabilizers or the restriction of the action to Γ has finite orbits.

Then any ergodic measure-preserving action Λ y (X, ν) either has finite stabilizers or
the restriction of the action to Γ has finite orbits.

Proof. By Theorem 5.1, if the action of Λ does not have finite stabilizers then the restriction
of the action to Γ is weakly amenable. By Proposition 2.4.1 then almost every Γ-orbit is
finite since Γ inherits property (T ) from G.

6 The One-One Correspondence

We obtain a correspondence between invariant random subgroups of Λ and of the relative
profinite completion (see Section 2.1.2) using the previous corollary.

6.1 Invariant Random Subgroups of Commensurators

We can restate our previous corollary in terms of invariant random subgroups:

Corollary 6.1. Let Γ < G be a lattice in a locally compact second countable group with
property (T ) and let Λ be a countable dense subgroup of G such that Γ <c Λ.

Assume that for every ergodic measure-preserving action of G either the restriction of the
action to Λ has finite stabilizers or the restriction of the action to Γ has finite orbits.

Then any ergodic invariant random subgroup η ∈ P (S(Λ)) of Λ is either finite (η-almost
every H ∈ S(Λ) is finite) or η contains Γ up to finite index: for η-almost every H ∈ S(Λ),
we have [Γ : H ∩ Γ] is finite.

Proof. An ergodic invariant random subgroup can always be realized as the stabilizer sub-
groups of a measure-preserving Λ-action (Theorem 3.3). By Corollary 5.2 this action either
has finite stabilizers, in which case the invariant random subgroup is finite, or has finite
Γ-orbits which means that a finite index subgroup of Γ fixes each point.

6.2 The One-One Correspondence of Invariant Random Subgroups

Theorem 6.2. Let Γ < G be a lattice in a locally compact second countable group with
property (T ) and let Λ be a countable dense subgroup of G such that Γ <c Λ.
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Assume that for every ergodic measure-preserving action of G either the restriction of the
action to Λ has finite stabilizers or the restriction of the action to Γ has finite orbits.

Then there is a one-one, onto correspondence between commensurability classes of infi-
nite ergodic invariant random subgroups of Λ and commensurability classes of open ergodic
invariant random subgroups of Λ�Γ.

We prove some preliminary facts before proving the theorem.

Proposition 6.2.1. Let Γ <c Λ such that every infinite ergodic invariant random subgroup
of Λ contains Γ up to finite index. Let τ : Λ → Symm(Λ�Γ) be the map defining the relative
profinite completion (see Section 2.1.2).

The map c : S(Λ) → S(Λ�Γ) given by c(L) = τ(L) is a Λ-equivariant map taking infinite
ergodic invariant random subgroups of Λ to open ergodic invariant random subgroups of Λ�Γ.

Proof. For notational purposes, write

H = Λ�Γ = τ(Λ) and K = τ(Γ)

and note that K is a compact open subgroup of H .
Let ν ∈ P (S(Λ)) be an infinite ergodic invariant random subgroup of Λ. By hypothesis,

ν contains Γ up to finite index almost surely. For L ∈ S(Λ), let

KL = τ(L ∩ Γ).

Since L∩Γ has finite index in Γ almost surely, we have that KL has finite index in K almost
surely: [τ(Γ) : τ(L∩Γ)] ≤ [Γ : L∩Γ] <∞ so [τ(Γ) : τ(L ∩ Γ)] <∞ since finite index passes
to closures. Therefore KL is a compact open subgroup (since K is a compact open subgroup
of the locally compact totally disconnected group H). In particular, c(L) contains KL and
therefore c(L) is an open subgroup of H almost surely.

Therefore c maps S(Λ) to open subgroups of H . Recall that H y S(H) by conjugation
and therefore Λ y S(H) by λ · L = τ(λ)Lτ(λ)−1. For λ ∈ Λ and L ∈ S(Λ)

c(λ · L) = τ(λLλ−1) = τ(λ)τ(L)τ(λ)−1 = λ · c(L)

and therefore this mapping is Λ-equivariant. Let η ∈ P (S(H)) be the pushforward of ν
under this map. Then η is τ(Λ)-invariant hence H-invariant since τ(Λ) is dense in H and H
acts continuously on S(H). Since ν is ergodic, so is η.

Proposition 6.2.2. The map d : S(Λ�Γ) → S(Λ) by d(M) = τ−1(M ∩ τ(Λ)) has the
following properties:

(i) c(d(M)) =M for all open M ∈ S(Λ�Γ);

(ii) d(M ∩Q) = d(M) ∩ d(Q) for all M,Q ∈ S(Λ�Γ);

(iii) L < d(c(L)) for all L ∈ S(Λ);

(iv) [d(c(L)) : L] <∞ for all L ∈ S(Λ) such that [Γ : Γ ∩ L] <∞; and

(v) for open M,Q ∈ S(Λ�Γ) with Q < M , if [M : Q] <∞ then [d(M) : d(Q)] <∞.
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Proof. Let M be an open subgroup of Λ�Γ. Then

c(d(M)) = τ(τ−1(M ∩ τ(Λ))) =M ∩ τ(Λ) =M

since M is open (hence also closed) and τ(Λ) is dense in Λ�Γ, proving the first statement.
Now let M,Q ∈ S(Λ�Γ). Then

d(M) ∩ d(Q) = τ−1(M ∩ τ(Λ)) ∩ τ−1(Q ∩ τ(Λ)) = τ−1(M ∩Q ∩ τ(Λ)) = d(M ∩Q)

proving the second statement.
Let L ∈ S(Λ). Then d(c(L)) = τ−1(τ(L) ∩ τ(Λ)) and τ(L) ⊆ τ(Λ) so L is a subgroup of

d(c(L)), proving the third statement. Now let L be an infinite subgroup of Λ. Define the
group

Q = c(L) ∩ τ(Λ).

Then τ(L) is dense in Q and K = τ(Γ) is open in H = τ(Λ) so Q ⊆ Kτ(L). Let h ∈ Q,
then h = kn for some k ∈ K and n ∈ τ(L). Therefore hn−1 ∈ K and also hn−1 ∈ τ(Λ). By
Proposition 2.1.3, K ∩ τ(Λ) = τ(Γ) so we have that hn−1 ∈ τ(Γ). Hence

Q ⊆ τ(Γ)τ(L) = τ(ΓL).

We will use the notation [A : B] when A and B are merely subsets (and not necessarily
subgroups) to refer to the smallest number of elements of A such that the left translates of
B by those elements cover A. Observe that, since L contains Γ up to finite index,

[Q : τ(L)] ≤ [τ(ΓL) : τ(L)] ≤ [ΓL : L] = [Γ : Γ ∩ L] <∞

so Q is a finite index extension of τ(L).

Now write R = τ−1(Q) = τ−1(τ(L) ∩ τ(Λ)). Then τ(R) = Q. Write R0 = R∩ ker(τ) and
L0 = L ∩ ker(τ). Since R0 ⊆ ker(τ) and ker(τ) ⊆ Γ, by the isomorphism theorems we have
that

[R0 : L0] ≤ [ker(τ) : L ∩ ker(τ)] = [L ker(τ) : L] ≤ [LΓ : L] = [Γ : Γ ∩ L] <∞.

By Lemma 6.2.3 below,

[R : L] ≤ [τ(R) : τ(L)][R0 : L0] = [Q : τ(L)][R0 : L0] <∞

since Q is a finite index extension of τ(L). Therefore L has finite index in τ−1(τ(L)∩τ(Λ)) =
d(c(L)) proving the fourth statement.

Now let M,Q be open subgroups of Λ�Γ such that [M : Q] <∞. Observe that Q∩ τ(Γ)

is then open so τ(Γ)/Q∩τ(Γ) is both compact and discrete, hence finite. Since τ(d(Q)) = Q

then we have [τ(Γ) : τ(d(Q)) ∩ τ(Γ)] <∞. Therefore [τ(Γ) : τ(d(Q)) ∩ τ(Γ)] <∞.
Since ker(τ) = τ−1({e}) = d({e}),

[ker(τ) : d(Q) ∩ ker(τ)] = [d({e}) : d(Q) ∩ d({e})] = [d({e}) : d(Q ∩ {e})] = 1

hence by Lemma 6.2.3,

[Γ : Γ ∩ d(Q)] ≤ [τ(Γ) : τ(Γ ∩ d(Q))][ker(τ) : d(Q) ∩ ker(τ)] = [τ(Γ) : τ(Γ ∩ d(Q))] <∞.
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Similarly, [d(M) ∩ ker(τ) : d(Q) ∩ ker(τ)] = 1, so by Lemma 6.2.3,

[d(M) : d(Q)] ≤ [τ(d(M)) : τ(d(Q))][d(M) ∩ ker(τ) : d(Q) ∩ ker(τ)] <∞

since [τ(d(M)) : τ(d(Q))] = [c(d(M)) : c(d(Q))] = [M : Q] <∞, proving the final statement.

Lemma 6.2.3. Let φ : C → D be a group homomorphism and A ⊆ C and B ⊆ A be subsets.
Then

[A : B] ≤ [φ(A) : φ(B)][ker(φ) : B ∩ ker(φ)].

Proof. Assume both indices on the right are finite, otherwise there is nothing to prove. Let
X be a finite system of representatives for φ(A)/φ(B) (that is, φ(A) ⊆ ∪x∈Xxφ(B)). Let Y

be a finite system of representatives for ker(φ)/B ∩ ker(φ). Let X̃ contain one element x̃ for

each x ∈ X such that φ(x̃) = x so |X̃| = |X|.
Let a ∈ A. Then φ(a) = xφ(b) for some x ∈ X and b ∈ B. So φ(x̃−1ab−1) = e hence

x̃−1ab−1 ∈ ker(φ) and therefore x̃−1ab−1 = yk for some y ∈ Y and some k ∈ B ∩ ker(φ).

Then a = x̃ykb. Now kb ∈ B and there are at most |X̃||Y | = |X||Y | choices for x̃y so the
claim follows.

Proof of Theorem 6.2. Let c and d denote the maps in the previous propositions. The cor-
respondence will be given by the map c on commensurability classes. By Corollary 6.1, any
infinite ergodic invariant random subgroup ν of Λ contains Γ up to finite index almost surely.
By Proposition 6.2.1, c∗ν is then an open ergodic invariant random subgroup of Λ�Γ.

Let ν1 and ν2 be infinite ergodic invariant random subgroups of Λ such that ν1 and ν2
are commensurate invariant random subgroups. Let α ∈ P (S(Λ)× S(Λ)) be a joining of η1
and η2 witnessing the commensuration. Define β ∈ P (S(Λ�Γ)× S(Λ�Γ)) by β = (c× c)∗α.
Then β is a joining of c∗ν1 and c∗ν2 that is clearly measure-preserving. Since, in general
X ∩ Y ⊆ X ∩ Y , for any H,L ∈ S(Λ),

[c(H) : c(H) ∩ c(L)] = [τ(H) : τ(H) ∩ τ(L)] ≤ [τ(H) : τ(H) ∩ τ(L)].

For α-almost every H,L, we have that [H : H ∩ L] < ∞ and since τ is a homomorphism
then [τ(H) : τ(H)∩τ(L)] <∞. Therefore [c(H) : c(H)∩ c(L)] <∞ since finite index passes
to closures. Likewise, [c(L) : c(H) ∩ c(L)] <∞.

Hence for β-almost every M,Q, the subgroup M ∩ Q has finite index in both M and
Q. Therefore β makes c∗η1 and c∗η2 commensurate invariant random subgroups. Hence c
defines a correspondence from commensurability classes of infinite ergodic invariant random
subgroups of Λ to commensurability classes of open ergodic invariant random subgroups of
Λ�Γ.

Now let ν1 and ν2 be infinite ergodic invariant random subgroups of Λ such that c∗ν1
and c∗ν2 are commensurate open ergodic invariant random subgroups of Λ�Γ. Let β ∈
P (S(Λ�Γ)× S(Λ�Γ)) be a joining of c∗ν1 and c∗ν2 such that for β-almost every M,Q, the
subgroup M ∩ Q has finite index in M and Q. Define ν3 = d∗c∗ν1. Then by Proposition
6.2.2 (iv), [d(c(L)) : L] <∞ for ν1-almost every L ∈ S(Λ). Define ρ ∈ P (S(Λ)× S(Λ)) by

ρ =

∫

L

δL × δd(c(L)) dν1(L).
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Then ρ is a joining of ν1 and ν3 and clearly L ∩ d(c(L)) = L has finite index in both L
and d(c(L)) almost surely so ρ makes ν1 and ν3 commensurate invariant random subgroups.
Likewise ν2 and ν4 = d∗c∗ν2 are commensurate invariant random subgroups. Since commen-
surability is an equivalence relation (Proposition 3.8), it is enough to show that ν3 and ν4
are commensurate.

Define α ∈ P (S(Λ) × S(Λ)) by α = (d × d)∗β. Then α is a joining of d∗c∗ν1 = ν3 and
d∗c∗ν2 = ν4. By Proposition 6.2.2 (ii), for open M,Q ∈ S(Λ�Γ), d(M) ∩ d(Q) = d(M ∩Q).
Observe that ν3 and ν4 are infinite ergodic invariant random subgroup of Λ hence d(M) and
d(Q) both contain Γ up to finite index almost surely. Then d(M ∩Q) contains Γ up to finite
index almost surely. For β-almost every M,Q we also know that [M : M ∩ Q] < ∞. So by
Proposition 6.2.2 (v),

[d(M) : d(M) ∩ d(Q)] = [d(M) : d(M ∩Q)] <∞

almost surely. Hence for α-almost every H,L the subgroup H ∩ L has finite index in both
so ν3 and ν4 are commensurate invariant random subgroups. Therefore the correspondence
is one-one.

Let η ∈ P (S(Λ�Γ)) be an open ergodic invariant random subgroup of Λ�Γ. ForM an open
subgroup of Λ�Γ we have that d(M) = τ−1(M ∩ τ(Λ)) is infinite since otherwise M ∩ τ(Λ)
is finite but τ(Λ) is dense. Therefore d∗η is an infinite invariant random subgroup of Λ and
must be ergodic since c∗d∗η = η by Proposition 6.2.2 (i). Therefore the correspondence is
onto.

6.3 The Dichotomy for Actions of Commensurators

We now are ready to state the conclusion of our study of stabilizer subgroups that will be
the main ingredient in the various consequences we prove in the rest of the paper:

Corollary 6.3. Let Γ < G be a lattice in a locally compact second countable group with
property (T ) and let Λ be a countable dense subgroup of G such that Γ <c Λ.

Assume that for every ergodic measure-preserving action of G either the restriction of the
action to Λ has finite stabilizers or the restriction of the action to Γ has finite orbits.

Assume that every ergodic measure-preserving action of Λ�Γ with open stabilizer subgroups
is necessarily on the trivial space.

Then any ergodic measure-preserving action of Λ on a probability space either has finite
orbits or has finite stabilizers.

Proof. Let Λ y (X, ν) be an ergodic measure-preserving action that does not have finite
stabilizers. By the one-one correspondence theorem, the invariant random subgroup of sta-
bilizer subgroups corresponds to an ergodic open invariant random subgroup η of H = Λ�Γ.
This invariant random subgroup corresponds to an ergodic action of H with open stabilizer
groups and so by hypothesis then η = δH meaning τ(stabΛ(x)) = H for almost every x.

By the one-one correspondence construction we then have that

[Λ : stabΛ(x)] = [τ−1(stabΛ(x) ∩ τ(Λ)) : stabΛ(x)] = [d(c(stabΛ(x))) : stabΛ(x)] <∞

for almost every x. This means that almost every Λ-orbit is finite so by ergodicity (X, ν)
consists of exactly one such orbit.
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7 Howe-Moore Groups

We now discuss the properties one can impose on the ambient group G to ensure that for
every nontrivial ergodic measure-preserving action of G the restriction of the action to Λ has
finite stabilizers. The main property we impose on the ambient group will be the Howe-Moore
property.

7.1 Actions of Subgroups of Simple Lie Groups

The next fact is a consequence of the Stuck-Zimmer Theorem [SZ94] and also follows from
earlier work by Zimmer, [Zim87] Lemma 6, and of Iozzi, [Ioz94] Proposition 2.1, showing
that the stabilizers of any nontrivial irreducible action of a semisimple real Lie group are
discrete. However, we opt to include the following elementary argument proving what we
need directly.

Theorem 7.1. Let G be a connected (real) Lie group with trivial center and let Λ < G
be any countable subgroup. Let G y (X, ν) be a faithful weakly mixing measure-preserving
action. Then the restriction of the action to Λ is essentially free.

Proof. For x ∈ X let C(x) be the connected component of the identity in the stabilizer
subgroup stabG(x). Let n(x) be the dimension of C(x). Then n(gx) is the dimension of
C(gx) = gC(x)g−1 hence n(x) is G-invariant. By ergodicity then n(x) = n is constant
almost surely.

Since the action of G is weakly mixing, the diagonal action Gy (X2, ν2) is ergodic. Let
n1(x, y) be the dimension of the connected component of the identity C(x, y) in stabG(x, y)
and then n1(x, y) = n1 is constant almost surely by ergodicity.

When n = 0, the stabilizer subgroup stabG(x) is discrete for almost every x (since the
stabilizer subgroup is closed). Assume now that n 6= 0. Since stabG(x, y) = stabG(x) ∩
stabG(y) we have that C(x, y) = C(x) ∩ C(y). Suppose that n = n1. Then for almost every
x and y we have that C(x, y) = C(x) ∩ C(y) has the same dimension as C(x) and C(y).

In general, if H < G are real Lie groups with the same dimension then H has finite index
in G. If, in addition, G and H are connected then H = G.

Therefore, if C(x, y) = C(x) ∩ C(y) has the same dimension as C(x) and C(y) then in
fact C(x) = C(y). So if n > 0 this then means there is a positive dimension subgroup in the
kernel of the action contradicting that the action is faithful. So if n = n1 then n = n1 = 0.

So instead we have that n1 < n. Proceeding by induction, since G acts ergodically on
(Xm, νm) for any m ∈ N, we conclude that for almost every x̃ ∈ Xn+1 the stabilizer subgroup
stabG(x̃) is discrete.

The conclusion now follows from the following proposition.

Proposition 7.1.1. Let G be a nondiscrete locally compact second countable group and
Λ < G a countable subgroup such that Λ does not intersect the center of G. Let Gy (X, ν)
be a measure-preserving action such that almost every stabilizer subgroup is discrete. Then
the restriction of the action to Λ is essentially free.
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Proof. Fix a compact model of X where G acts continuously. Suppose the Λ-action is not
essentially free. Then there exists λ ∈ Λ, λ 6= e, such that E = {x ∈ X : λx = x} has
positive measure. Let gn → e such that g−1

n λgn 6= λ for all n (possible as G is nondiscrete
and λ is not in the center of G). Then ν(gnE△E) → 0 since G acts continuously. Take a
subsequence along which ν(gnE△E) < 2−n−1ν(E). Then

ν(E ∩
⋂

n

gnE) = ν(E)− ν(E△
⋂

n

gnE) ≥ ν(E)−
∞∑

n=1

ν(E△gnE) >
1

2
ν(E) > 0

For x ∈ E ∩ (∩ngnE) we have that λx = x and g−1
n λgnx = x for all n, hence g−1

n λgn ∈
stabG(x) and λ ∈ stabG(x). But g

−1
n λgn 6= λ and g−1

n λgn → λ contradicting that stabG(x) is
discrete.

Theorem 7.2. Let G be a product of noncompact connected simple locally compact second
countable groups with the Howe-Moore property. Let Λ < G be a countable subgroup of G
such that the Λ intersection with any proper subproduct of G is finite. Then the restriction
of any nontrivial ergodic measure-preserving action of G to Λ has finite stabilizers.

Proof. Let G y (X, ν) be a nontrivial ergodic action. Then the kernel of the action is
some subproduct G′ of the G-factors (as all are normal). Let G0 = G/G′. By a result of
Rothman [Rot80] reproduced as Theorem 2.36, each simple factor of G0 being a Howe-Moore
group that is simple and connected is necessarily a simple Lie group. Hence G0 is a minimally
almost periodic group, being a semisimple Lie group without compact factors, so any ergodic
action of G0 is weakly mixing. Since each factor is simple, G0 has trivial center. Therefore
G0 y (X, ν) is a faithful weakly mixing action so Theorem 7.1 implies that projG0

Λ acts
essentially freely. Therefore projG0

stabΛ(x) = {e} for almost every x hence stabΛ(x) ⊆ G′

and |Λ ∩G′| <∞ by hypothesis.

7.2 Actions of Lattices in Howe-Moore Groups

In the case when G is not connected we have a similar result:

Definition 7.3. A countable discrete group Γ is locally finite when every finitely generated
subgroup is finite.

Theorem 7.4. Let G be a locally compact second countable group and Γ < G be a lattice in
G. Let G y (X, ν) be an ergodic measure-preserving action of G such that the restriction
of the action to Γ is mixing. Then either the kernel of the G-action is noncompact or
stabΓ(x) = stabG(x) ∩ Γ is locally finite almost surely.

Proof. Let E = {x ∈ X : stabΓ(x) is locally finite}. Then E is Γ-invariant. Assume that
ν(E) < 1. By ergodicity then ν(E) = 0. Then stabΓ(x) contains a finitely generated infinite
subgroup for almost every x. Since there are countably many finitely generated infinite
subgroups of Γ, there exists an infinite finitely generated subgroup Γ0 < Γ and a positive
measure set F ⊆ X such that Γ0 < stabΓ(x) for each x ∈ F .

Since the action of Γ on (X, ν) is mixing, we have that ν(F ) = 1 (as Γ0 is infinite so is
unbounded in Γ and therefore must also be mixing but Γ0 acts trivially on F ). Therefore Γ0
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is contained in the kernel of the G-action which is therefore noncompact (as Γ is a lattice so
Γ0 is unbounded in G).

Corollary 7.5. Let G be a noncompact locally compact second countable group with the
Howe-Moore property and Γ < G be a lattice. Let G y (X, ν) be a nontrivial ergodic
measure-preserving action. Then stabΓ(x) is locally finite for almost every x.

Proof. The Howe-Moore property applied to the Koopman representation for G y (X, ν)
implies that G y (X, ν) is mixing (a result of Schmidt [Sch84] reproduced as Theorem
2.35). Since Γ is a lattice in G then Γ y (X, ν) by restriction is also mixing. If stabΓ(x)
is not locally finite almost surely then by Theorem 7.4 the kernel N of the G-action is a
noncompact closed normal subgroup. Since G has Howe-Moore any proper normal subgroup
is compact (Proposition 2.5.1) so the kernel is all of G.

The following argument is due to R. Tucker-Drob [TD12] and we are grateful to him for
allowing us to present it here:

Corollary 7.6. Let G be a noncompact locally compact second countable group with the
Howe-Moore property and Γ < G be a lattice. Let G y (X, ν) be a nontrivial ergodic
measure-preserving action. Then stabΓ(x) is finite for almost every x.

Proof. (Tucker-Drob [TD12]) By the previous corollary, the stabilizer subgroups are locally
finite almost surely. Hall and Kulatilaka [HK64] showed that any infinite locally finite group
contains an infinite abelian subgroup.

Since G has Howe-Moore, the action is mixing and has compact kernel K. Let G′ = G/K
and Γ′ = Γ/Γ ∩ K. Then G′ y (X, ν) is a faithful mixing action and Γ′ is a lattice in G′

(and is a finite index subgroup of Γ).
Let γ ∈ Γ′, γ 6= e, such that there exists an infinite abelian subgroup A < Γ′ with γ ∈ A.

Let Eγ = {x ∈ X : γx = x}. Then for a ∈ A, γax = aγx = ax so Eγ is an A-invariant set.
Since the action is mixing and faithful, and since A is infinite and discrete, ν(Eγ) = 0.

Let F = {x ∈ X : stabΓ′(x) contains an infinite abelian subgroup} and suppose ν(F ) >
0. Since Γ′ is countable there then exists some γ 6= e such that ν{x ∈ F : γx = x} > 0. But
this contradicts the above since γ is then contained in an infinite abelian subgroup.

7.3 A Normal Subgroup of the Commensurator

Proposition 7.3.1. Let Γ be a finitely generated countable group that is not virtually abelian
and let Λ be a countable group such that Γ <c Λ. Let Λ y (X, ν) be a measure-preserving
action such that stabΛ(x) is infinite almost surely. If stabΓ(x) are finite on a positive measure
set then Λ contains an infinite normal subgroup N ⊳ Λ such that [Γ : Γ ∩N ] = ∞.

Proof. Since there are only countably many finite subgroups of Γ, let us assume there exists
some finite subgroup Σ < Γ such that stabΓ(x) = Σ for all x ∈ E where ν(E) > 0.

For λ ∈ Λ define the set
Eλ = {x ∈ X : λx = x} ∩ E

and denote by Γλ = Γ ∩ λΓλ−1 the subgroup with finite index in Γ and λΓλ−1.
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By hypothesis, ν(Eλ) > 0 for infinitely many λ ∈ Λ (since otherwise stabΛ(x) is finite
for all x ∈ E which has positive measure, see [Ver12]). For such λ, define Eλ ⊂ X to be
∪γ∈Γλ

γEλ. For any ǫ > 0 there exists a finite set F ⊆ Γλ such that ν(Eλ)−ν(∪f∈F fEλ) < ǫ.
Take ǫ = ν(Eλ). Then there is a finite set F ⊆ Γλ such that ν(∪f∈F fEλ) > ν(Eλ)− ν(Eλ).

Then for each γ ∈ Γλ there exists f ∈ F such that ν(γEλ ∩ fEλ) > 0 because γEλ ⊆ Eλ
and ν(γEλ) = ν(Eλ). For x ∈ f−1γEλ∩Eλ we have that x ∈ E, λx = x and λγ−1fx = γ−1fx,
therefore

λ−1(f−1γ)λ(f−1γ)−1x = λ−1(f−1γ)(f−1γ)−1x = λ−1x = x

and so λ−1(f−1γ)λ(f−1γ)−1 ∈ Σ. This in turn means that γλγ−1 ∈ fλΣf−1 ⊆ FλΣF−1.
Since F and Σ are finite then the centralizer

CΓλ
(λ) = {γ ∈ Γλ : γλγ

−1 = λ}

has finite index in Γλ. Therefore [Γ : CΓ(λ)] <∞ since Γλ has finite index in Γ.
Consider the subgroup

N = {λ ∈ Λ : [Γ : CΓ(λ)] <∞}

which is infinite by the above (it is a subgroup since CΓ(λ1) ∩ CΓ(λ2) ⊆ CΓ(λ1λ2)). Since
Γ <c Λ, for λ0 ∈ Λ,

λ0Nλ
−1
0 = {λ ∈ Λ : [Γ : CΓ(λ

−1
0 λλ0)] <∞}

= {λ ∈ Λ : [Γ : λ−1
0 CΓ(λ)λ0] <∞}

= {λ ∈ Λ : [λ0Γλ
−1
0 : CΓ(λ)] <∞}

= {λ ∈ Λ : [Γ : CΓ(λ)] <∞} = N

where the last line follows since Γ ∩ λ0Γλ
−1
0 has finite index in Γ by commensuration.

Therefore N is an infinite normal subgroup of Λ. If [Γ : Γ ∩ N ] < ∞ then there exists
Γ0 = Γ ∩N of finite index in Γ such that for every γ ∈ Γ0 we have that [Γ0 : CΓ0

(γ)] < ∞.
Hence for any finite set F ⊆ Γ0 we have that [Γ0 : CΓ0

(F )] < ∞. As Γ is finitely generated
so is Γ0 so let S be a finite generating set of Γ0 and then CΓ0

(S) has finite index in Γ0. But
CΓ0

(S) commutes with Γ0 so Γ0 is virtually abelian hence so is Γ.

7.4 Ensuring Actions of the Ambient Group “Behave”

Theorem 7.7. Let G be a noncompact compactly generated locally compact second countable
group with the Howe-Moore property. Let Γ < G be a lattice and let Λ < G be a dense
subgroup such that Γ <c Λ. Assume that for every compact normal subgroup M ⊳ G we have
that |M ∩ Λ| <∞.

Then for any nontrivial ergodic measure-preserving action of G the restriction of the
action to Λ has finite stabilizers.

Proof. By Corollary 7.6, since G has the Howe-Moore property almost every Γ-stabilizer
is finite, hence the restriction of the action to Γ has finite stabilizers. Also, Γ is finitely
generated since G is compactly generated. Since G is not a compact extension of an abelian
group (being Howe-Moore), Γ cannot be virtually abelian. Suppose the restriction of the
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action to Λ does not have finite stabilizers. Then by Proposition 7.3.1 there exists an infinite
normal subgroup N ⊳Λ such that [Γ : Γ∩N ] <∞. But Γ < Λ < G satisfy the hypotheses of
the Normal Subgroup Theorem for Commensurators (Theorem 2.45), as any proper closed
normal subgroup is compact by Howe-Moore, so for any normal subgroup N ⊳Λ we have that
[Γ : Γ∩N ] <∞ or |N | <∞. This contradiction means the Λ-action has finite stabilizers.

7.5 Ensuring Actions of the Relative Profinite Completion “Behave”

To handle invariant random subgroups coming from the relative profinite completion we also
need:

Theorem 7.8. Let H be a simple nondiscrete locally compact second countable totally discon-
nected group with the Howe-Moore property. If H y (X, ν) is an ergodic measure-preserving
action with open stabilizer subgroups then (X, ν) is trivial.

Proof. Suppose (X, ν) is nontrivial so that stabH(x) 6= H almost surely. For almost every
x ∈ X , since stabH(x) is open in H and H has Howe-Moore then stabH(x) is compact
almost surely. There are only countably many compact open subgroups of H (as H is
second countable) so there exists E ⊆ X with ν(E) > 0 and K0 a compact open subgroup
such that stabH(x) = K0 for all x ∈ E. Now for h ∈ H \NH(K0) we have that hE ∩ E = ∅
(since stabH(hx) = hK0h

−1 for x ∈ E). As ν(E) > 0 and ν is preserved by H there exists
a finite collection h1, h2, . . . , hn ∈ H such that X = ⊔nj=1hjE. Then K = ∩nj=1hjK0h

−1
j is a

compact open subgroup and K < stabH(x) for almost every x hence K is in the kernel of
the H-action. As H is simple and K is nontrivial (since H is nondiscrete) then the kernel is
all of H so X is trivial.

Proposition 7.5.1. Let H = H1×· · ·×Hm be a product of locally compact second countable
groups where each Hj has the property that any ergodic measure-preserving action of Hj

with open stabilizer subgroups is necessarily on the trivial space. Then any ergodic measure-
preserving action of H with open stabilizer subgroups is necessarily on the trivial space.

Proof. LetH y (X, ν) be an ergodic measure-preserving action. Let (S(H), η) be the ergodic
open invariant random subgroup corresponding to the (X, ν) stabilizers. Fix j and consider
the map pj : S(H) → S(Hj) by pj(L) = L∩Hj (meaning that p1(L) = L∩H1×{e}×· · ·×{e}).
Treat S(Hj) as an H-space where Hi acts trivially on S(Hj) for i 6= j. Then pj is an H-map
from (S(H), η) to (S(Hj), ηj) where ηj = (pj)∗η.

Since η-almost every L ∈ S(H) is open so is ηj-almost every Lj < Hj. Since η is H-
ergodic, ηj is Hj-ergodic hence corresponds to an ergodic action of Hj with open stabilizer
subgroups (Theorem 3.3). By hypothesis then ηj = δHj

. As this holds for each j, for η-almost
every L < H we have that L ∩Hj = Hj hence 〈H1, · · · , Hm〉 ⊆ L and therefore η = δH . So

stabΛ(x) = H for almost every x and therefore (X, ν) is the trivial space.

Proposition 7.5.2. Let H be a restricted infinite product
∏′Hj of locally compact second

countable groups where each Hj has the property that any ergodic measure-preserving action
of Hj with open stabilizer subgroups is necessarily on the trivial space. Then any ergodic
measure-preserving action of H with open stabilizer subgroups is necessarily on the trivial
space.
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Proof. This follows exactly as in the proof of Proposition 7.5.1.

8 Actions of Commensurators in Howe-Moore (T ) Groups

Here we apply the results of the previous sections to derive concrete consequences about
actions of commensurators in groups with Howe-Moore and property (T ):

Corollary 8.1. Let G be a noncompact locally compact second countable group with the
Howe-Moore property and property (T ). Let Γ < G be a lattice and Λ < G be a countable
dense subgroup such that Γ <c Λ and such that Λ has finite intersection with every compact
normal subgroup of G.

Then any ergodic measure-preserving action of Λ either has finite stabilizers or the re-
striction of the action to Γ has finite orbits.

Proof. This follows from Corollary 5.2 and Theorem 7.7.

Corollary 8.2. Let G be a noncompact locally compact second countable group with the
Howe-Moore property and property (T ). Let Γ < G be a lattice and Λ < G be a countable
dense subgroup such that Γ <c Λ and such that Λ has finite intersection with every compact
normal subgroup of G.

The commensurability classes of infinite ergodic invariant random subgroups of Λ are in
one-one, onto correspondence with the commensurability classes of open ergodic invariant
random subgroups of Λ�Γ.

Proof. This follows from Theorem 6.2 and Theorem 7.7.

Corollary 8.3. Let G be a noncompact locally compact second countable group with the
Howe-Moore property and property (T ). Let Γ < G be a lattice and Λ < G be a countable
dense subgroup such that Γ <c Λ and such that Λ has finite intersection with every compact
normal subgroup of G.

Assume that Λ�Γ is isomorphic to a finite (or restricted infinite) product
∏
Hj such that

each Hj is a simple nondiscrete locally compact second countable group with the Howe-Moore
property.

Then any ergodic measure-preserving action of Λ either has finite orbits or has finite
stabilizers.

Proof. By Theorem 7.7, any nontrivial ergodic action of G has finite stabilizers when re-
stricted to Λ. Theorem 7.8 applied to each Hj says that open ergodic invariant random
subgroups of Hj correspond to the trivial space. Theorem 6.3 combined with Propositions
7.5.1 and 7.5.2 then gives the conclusion.

Corollary 8.4. Let G be a product of connected noncompact locally compact second countable
groups with the Howe-Moore property and property (T ). Let Γ < G be a lattice and Λ < G
be a countable dense subgroup such that Γ <c Λ and such that Λ has finite intersection with
every proper closed normal subgroup of G.
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Assume that Λ�Γ is isomorphic to a finite (or restricted infinite) product
∏
Hj such that

each Hj is a simple nondiscrete locally compact second countable group with the Howe-Moore
property.

Then any ergodic measure-preserving action of Λ either has finite orbits or has finite
stabilizers.

Proof. By Theorem 7.2, any nontrivial ergodic action of G has finite stabilizers when re-
stricted to Λ. Theorem 7.8 applied to the Hj shows that any ergodic action of Hj with open
stabilizers is on the trivial space. Theorem 6.3 combined with Propositions 7.5.1 and 7.5.2
then gives the conclusion.

9 Actions of Lattices in Products of Howe-Moore (T ) Groups

A consequence of the previous results is a generalization of the Bader-Shalom Normal Sub-
group Theorem for Lattices in Product Groups to measure-preserving actions for certain
product groups:

Theorem 9.1. Let G be a product of at least two simple nondiscrete noncompact locally
compact second countable groups with the Howe-Moore property, at least one of which has
property (T ), at least one of which is totally disconnected and such that every connected
simple factor has property (T ). Let Γ < G be an irreducible lattice.

Then any ergodic measure-preserving action of Γ either has finite orbits or has finite
stabilizers.

Proof. Write G0 to be the product of all the connected simple factors of G. In the case when
there are no connected simple factors instead take G0 to be a simple factor with property (T ).
Write H to be the product of all the simple factors not in G0. So H is totally disconnected
and nondiscrete.

Write G = G0 ×H and let K be a compact open subgroup of H . Let L = Γ ∩ (G0 ×K).
Then projK L is dense in K since Γ is irreducible. L is a lattice in G0 ×K since K is open.

Set Γ0 = projG0
L. Since K is compact, Γ0 has finite covolume in G0 since L does in

G×K. Moreover, Γ0 is discrete since L is discrete. Therefore Γ0 is a lattice in G0.
Set Λ0 = projG0

Γ. Then Λ0 is dense in G0 since Γ is irreducible and Γ0 <c Λ0 since
K <c H .

By Propositions 2.1.5 and 2.1.4, Γ�L is isomorphic to H/ker(τH,K) since proj : Γ → H is a
homomorphism with dense image and pullback of K equal to L. Since ker(τH,K) is contained
in K and H is semisimple then the kernel is trivial so Γ�L is isomorphic to H .

Set N = Γ∩ {e} ×H and write M for the subgroup of H such that N = {e} ×M . Then
N ⊳ Γ since {e} ×H ⊳ G ×H and M is discrete in H so M = projH N ⊳ projH Γ = H by
the irreducibility of Γ. Since H is simple, M is trivial so Γ ∩ {e} ×H is trivial. This means
that projG : Γ → Λ0 is an isomorphism and so Λ0�Γ0 ≃ H .

By Corollary 8.3 or Corollary 8.4 (depending on whether G0 is a single factor or a product
of connected factors) then any ergodic measure-preserving action of Λ0 either has finite orbits
or has finite stabilizers. The same then holds for Γ ≃ Λ0.
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We remark that the above construction, writing an irreducible lattice in a product of
nondiscrete groups, at least one of which is totally disconnected, as the commensurator of a
lattice in one of the groups can also be reversed:

Theorem 9.2. Let Γ be a lattice in a locally compact second countable group G and let Λ
be a subgroup of G such that Γ <c Λ. Then Λ sits diagonally as a lattice in G× (Λ�Γ).

Proof. Let τ : Λ → Λ�Γ be the map defining the relative profinite completion and let

Λ0 = {(λ, τ(λ)) : λ ∈ Λ} < G× (Λ�Γ)

be the diagonal embedding of Λ.
Let F be a fundamental domain for G/Γ: F is of finite volume, F ∩ Γ = {e} and

Γ · F = G. Let K = τ(Γ) be the canonical compact open subgroup. Let λ0 ∈ Λ0 ∩ F ×K.

Then λ0 = (λ, τ(λ)) for some λ ∈ Λ ∩ F such that τ(λ) ∈ K. Now K = τ(Γ) and by
Proposition 2.1.3, K ∩ τ(Λ) = τ(Γ) so τ(λ) ∈ τ(Γ) meaning that λ ∈ Γ (as the kernel of τ
is contained in Γ). But λ ∈ Λ ∩ F so λ ∈ Γ ∩ F = {e}. Therefore F × K is a subset of
G× (Λ�Γ) of finite volume such that Λ0 ∩ F ×K = {e} and, in particular, Λ0 is discrete in
G× (Λ�Γ).

Let (g, h) ∈ G×Λ�Γ be arbitrary. Write h = τ(λ′)k′ for some λ′ ∈ Λ and k′ ∈ K. Write
(λ′)−1g = γf for some γ ∈ Γ and f ∈ F . Set λ = λ′γ. Then τ(λ)τ(γ−1)k′ = τ(λ′)k′ = h and
k = τ(γ−1)k′ ∈ K. Also g = λ′γf = λf . Therefore (g, h) = (λ, τ(λ))(f, k) ∈ Λ0 · (F ×K).

Therefore F ×K is a fundamental domain for Λ0 hence Λ0 is a lattice as claimed.

We remark that if both G and Λ�Γ are semisimple with finite center then Λ sits as an
irreducible lattice if and only if Γ is irreducible and Λ is dense.

A consequence of this reverse construction is a special case of the Normal Subgroup
Theorem for Commensurators [CS12] following immediately from the Bader-Shalom Normal
Subgroup Theorem for lattices in products:

Corollary 9.3. Let Γ be an irreducible integrable lattice in a just noncompact locally compact
second countable group G and let Λ be a dense subgroup of G such that Γ <c Λ. Assume that
Λ�Γ is just noncompact. Then Λ is just infinite.

Proof. Write Λ as an irreducible lattice in the product G × Λ�Γ. Observe that Λ will be
integrable (as a lattice) since Γ is. As the relative profinite completion is totally disconnected,
it is not isomorphic to R and therefore the Bader-Shalom Normal Subgroup Theorem implies
that Λ has no nontrivial normal subgroups of infinite index.

10 Commensurators and Lattices in Lie Groups

The primary example of a class of groups our results apply to is commensurators of lattices
and lattices in higher-rank Lie groups.
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10.1 Actions of Commensurators in Semisimple Higher-Rank Lie Groups

Theorem 10.1. Let G be a semisimple Lie group (real or p-adic or both) with finite center
where each simple factor has rank at least two. Let Γ < G be an irreducible lattice. Let
Λ < G be a countable dense subgroup such that Γ <c Λ and that Λ has finite intersection
with every proper subfactor of G.

Then any ergodic measure-preserving action of Λ either has finite stabilizers or the re-
striction of the action to Γ has finite orbits.

Moreover, the commensurability classes of infinite ergodic invariant random subgroups of
Λ are in one-one, onto correspondence with the commensurability classes of open ergodic
invariant random subgroups of Λ�Γ.

Proof. First note that if we show that the commensurability classes are in one-one, onto
correspondence then any ergodic measure-preserving action of Λ that does not have finite
stabilizers must have finite Γ-orbits since any infinite ergodic invariant random subgroup of
Λ then contains Γ up to finite index. So we need only prove the one-one correspondence.

The case when G is a real Lie group follows from Corollary 8.2 combined with Theorem
7.2 and the case when G is simple follows from Corollary 8.2 directly since every factor in
G has Howe-Moore and property (T ).

So we may assume that G has at least two factors, at least one of which is totally dis-
connected. By Theorem 9.1, any measure-preserving ergodic action of Γ either has finite
stabilizers or has finite orbits. In particular, if G y (X, ν) is a measure-preserving ergodic
action such that the restriction to Γ does not have finite orbits then there must exist a
positive measure Γ-invariant subset where the Γ-stabilizers are finite. Since Λ y (X, ν) is
ergodic we may then apply Proposition 7.3.1 and the Normal Subgroup Theorem for Com-
mensurators to conclude that the restriction of the action to Λ has finite stabilizers. So
Γ <c Λ < G satisfy the hypotheses of Theorem 6.2 and the result follows.

10.2 Relative Profinite Completions of Arithmetic Lattices

Theorem 10.2. Let K be a global field, let O be the ring of integers, let V be the set of
places (inequivalent valuations) on K, let V∞ be the infinite places (archimedean valuations
in the case of a number field) and let Kv be the completion of K over v ∈ V .

Let V∞ ⊆ S ⊆ V be any collection of valuations and let OS be the ring of S-integers:
OS = {k ∈ K : v(k) ≥ 0 for all v /∈ S}. Let Ov = OV∞∪{v} be the ring of v-integers and let

Ov be the closure of the v-integers in Kv.
Let G be a simple algebraic group defined over K. Then for V∞ ⊆ S ′ ⊆ S, the relative

profinite completion G(OS)�G(OS′) is isomorphic to the restricted product

′∏

v∈S\S′

G(Kv) = {(gv)v∈S\S′ : gv /∈ G(Ov) for only finitely many v ∈ S \ S ′}.

Proof. That G(OS′) is commensurated by G(OS) follows from the fact that any fixed el-
ement in OS has a negative valuation on only finitely many valuations in S \ S ′. Let
ϕ : G(OS) →

∏′
v∈S\S′ G(Kv) be the natural diagonal embedding. Then ϕ(G(OS)) is
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dense (since S ′ contains V∞) and ϕ−1(
∏′

v∈S\S′ G(Ov)) = G(OS′). By Proposition 2.1.5,

G(OS)�G(OS′) is isomorphic to
∏′

v∈S\S′ G(Kv)�
∏′

v∈S\S′ G(Ov). By Proposition 2.1.4, it is

isomorphic to
∏′

v∈S\S′ G(Kv)/M whereM is the largest closed normal subgroup contained in∏′
v∈S\S′ G(Ov). Since G is simple, the only normal subgroups are of the form

∏′
v∈S′′ G(Kv)

for S ′′ ( S \ S ′. But M is contained in the v-integers for each v ∈ S \ S ′ so M must be
trivial.

Corollary 10.3. Let G be a simple algebraic group over Q and let S ′ ⊆ S be sets of primes
containing ∞. Then the relative profinite completion G(ZS)�G(ZS′) is isomorphic to the
restricted product

∏′
p∈S\S′ G(Qp). In particular G(Q)�G(Z) is isomorphic to

∏′
p∈PG(Qp)

where P is the set of all primes.

10.3 Actions of Lattices in Semisimple Higher-Rank Lie Groups

Corollary 10.4. Let G be a semisimple Lie group (real or p-adic or both) with no compact
factors, finite center, at least one factor with rank at least two and such that each real simple
factor has rank at least two. Let Γ < G be an irreducible lattice. Then any ergodic measure-
preserving action of Γ either has finite orbits or has finite stabilizers.

Proof. By Margulis’ S-Arithmeticity Theorem, and using that compact kernels and commen-
suration do not affect the conclusion, we may assume Γ = G(ZS) and G =

∏
p∈S∪{∞}G(Qp)

where G is a semisimple algebraic group over Q and S is a finite set of primes containing
∞.

First observe that since Γ is irreducible, the intersection of Γ with any proper subfactor of
G is finite (that is, G(ZS)∩

∏
p∈S\QG(Qp) is finite for any nonempty Q ⊆ S since the lattice

is embedded diagonally). Also, Γ has finite intersection with any compact factor because
the original choice of G has no compact factors.

The case when every simple factor of G is real reduces to the Stuck-Zimmer Theorem
(Theorem 2.44). So instead we may assume there is some p-adic factor in G. When G
is a simple p-adic group, the methods of Stuck-Zimmer combined with the more general
Nevo-Zimmer Intermediate Factor Theorem [NZ99a] (for local fields of characteristic zero)
give the conclusion since in this case there is no issue with action of G being nonirreducible
(however, in the case when there are two factors, such an issue does arise and their work
does not apply).

Therefore we may assume that there are at least two noncompact simple factors, one of
which is totally disconnected, so combined with the fact that each noncompact simple factor
of G(Qp) is Howe-Moore, Theorem 9.1 then implies the conclusion.

Corollary 10.5. Let G be a semisimple Lie group (real or p-adic or both) with no compact
factors, trivial center, at least one factor with rank at least two and such that each real
simple factor has rank at least two. Let Γ < G be an irreducible lattice. Then any ergodic
measure-preserving action of Γ on a nonatomic probability space is essentially free.

Proof. Let Γ y (X, ν) be an ergodic measure-preserving action on a nonatomic probability
space. Corollary 10.4 implies that the action either has finite stabilizers or has finite orbits.
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The case of finite orbits is ruled out by the space being nonatomic so the action has finite
stabilizers. For a finite subgroup F < Γ let EF = {x ∈ X : stab(x) = F}. Since there are
only countably many finite groups there is some F with ν(EF ) > 0. Since gEF = EgFg−1,
ν(EgFg−1) = ν(EF ) for all g so there are at most a finite number of finite groups appearing
as stabilizers. Therefore there is a subgroup Γ0 < Γ of finite index such that Γ0 normalizes
the finite subgroup F . Then F ⊳ Γ0 and Γ0 is a lattice in G hence by Margulis’ Normal
Subgroup Theorem [Mar91], F is contained in the center of G. Therefore F is trivial so all
the stabilizer groups are trivial.

10.4 Actions of Rational Groups in Simple Higher-Rank Lie Groups

Corollary 10.6. Let G be a simple algebraic group defined over Q with p-rank at least two
for some prime p, possibly ∞, such that G(R) is either compact or has rank at least two.
Let S be any (finite or infinite) set of primes containing ∞ and p. Then every ergodic
measure-preserving action of G(ZS) either has finite orbits or has finite stabilizers.

Proof. The case when S contains only one prime q, possibly ∞, such that G(Qq) is non-
compact is a consequence of Corollary 10.4. So assume S contains more than one such
prime. Let S ′ = {p,∞}. By Theorem 10.2, the relative profinite completion G(ZS)�G(ZS′)
is isomorphic to

∏′
p∈S\S′ G(Qp). The above facts about Lie groups imply that each factor

of the relative profinite completion has Howe-Moore. Therefore Corollary 8.3 applied to
G(ZS′) <c G(ZS) <

∏
p∈S′ G(Qp) (recall Q∞ = R) implies the result.

Corollary 10.7. Let G be a simple algebraic group defined over Q with p-rank at least two
for some prime p, possibly ∞, such that G(R) is either compact or has rank at least two.
Then every nontrivial ergodic measure-preserving action of G(Q) is essentially free.

Proof. Since G is simple as an algebraic group over Q the group G(Q) has no finite normal
subgroups and therefore the previous corollary implies the conclusion.

10.5 Actions of Rational Groups in Simple Higher-Rank Groups

Theorem 10.8. Let K be a global field, let O be the ring of integers, let V be the set of
places (inequivalent valuations) on K, let V∞ be the infinite places (archimedean valuations
in the case of a number field), let Kv be the completion of K over v ∈ V and let Ov be the
ring of v-integers. Let V∞ ⊆ S ⊆ V and let OS be the ring of S-integers.

Let G be a simple algebraic group defined over K such that G has v0-rank at least two for
some v0 ∈ S (possibly in V∞), G(Kv) is noncompact for some v ∈ S, v 6= v0, and G(Kv∞)
is compact or of higher-rank for all v∞ ∈ V∞. Then every ergodic measure-preserving action
of G(OS) either has finite orbits or has finite stabilizers.

Proof. Let S ′ = V∞ ∪ {v0}. Let Γ = G(OS′), let Λ = G(OS) and let G =
∏

v∈S′ G(Kv).
Then Γ <c Λ and Λ is dense in G (since S contains some valuation v 6= v0 where G(Kv) is
noncompact). Γ is an irreducible lattice in G and each simple factor of G has property (T )
and the Howe-Moore property.
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By Theorem 10.2, Λ�Γ is isomorphic to
∏′

v∈S\S′ G(Kv) which is a product of simple
locally compact groups with the Howe-Moore property. Corollary 8.3 applied to Γ <c Λ < G
then implies the result.

Corollary 10.9. Let G be a simple algebraic group defined over a global field K with v-rank
at least two for some place v such that the v∞-rank is at least two for every infinite place
v∞. Then every nontrivial ergodic measure-preserving action of G(K) is essentially free.
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