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Definitions and Terminology

We consider complete deterministic finite automata (DFA)

o = (Q,X,0) where Q stands for the state set, ¥ is the input
alphabet, and § : Q x ¥ — @ is a (total) transition function.
To simplify notation we often write g. w for §(q, w)

and P.w for {0(q,w) | g € P}.

& is called synchronizing if there is a word w € X* whose action
resets &7, that is, leaves & in one particular state no matter at
which state in Q it started: g.w = q'.w for all ¢, ¢’ € Q.

In short, |Q.w| = 1.

Any w with this property is a reset word for 7.

Other names:

e for automata: directable, cofinal, collapsible, etc;

o for words: directing, recurrent, synchronizing, etc.
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June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



An Example

A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.

In fact, this is the reset word of minimum length for the automaton
whence the reset threshold of the automaton is 9.
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Cerny’s Paper

The notion was formalized in a paper by Jan Cerny (Pozndmka
k homogénnym eksperimentom s kone¢nymi automatami,
Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14, no.3
(1964) 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.
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Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14, no.3
(1964) 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Cerny’s
original motivation).

Independently, the same notion was discovered in coding theory
by Shimon Even (Test for synchronizability of finite automata and
variable length codes, IEEE Trans. Inform. Theory 10 (1964)
185-189). The name synchronizing seems to have originated
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Cerny Conjecture

The Cerny conjecture is the claim that every synchronizing
automaton with n states possesses a reset word of length (n — 1)2.
The validity of the conjecture is main open problem of the area
and arguably one of the most long-standing open problems in
combinatorial theory of finite automata.

Define the Cerny function C(n) as the maximum reset threshold
for synchronizing automata with n states. In terms of this
function, our current knowledge can be summarized in one line:

n3—n

(Cerny, 1964) (n—1)%> < C(n) < (Pin—Frankl, 1983).

The Cerny conjecture thus claims that in fact C(n) = (n —1)2.
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Why so Difficult?

Why is the problem so surprisingly difficult?

One of the reasons: “slowly” synchronizing automata turn out to
be extremely rare. Only one infinite series of n-state synchronizing
automata with reset threshold (n — 1)? is known (due to Cerny,
1964), with a few (actually, 8) sporadic examples for n < 6.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



Episode IV: A New Hope

In 2009/10, Vladimir Gusev, at that time a PhD student of mine,
has performed a massive series of experiments searching
exhaustively through automata with a modest number of states

in order to find new examples of “slowly” synchronizing automata.
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The second gap first appears at 9 states and grows rather regularly
with the number of states. The size of the island depends only on
the parity of the number of states.
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Advantage of Being Old

Thus, the pattern is:
(n—1)? the first gap the “island” the second gap

The second gap first appears at 9 states and grows rather regularly
with the number of states. The size of the island depends only on
the parity of the number of states.

The very same pattern appears in the distribution of exponents of
non-negative matrices.
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Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.
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A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive
n x n-matrix A, one hasexpA < n?>—-2n+2=(n—-1)>+1,
and this bound is tight.
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A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one hasexpA < n?>—-2n+2=(n—-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap.
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A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one hasexpA < n?>—-2n+2=(n—-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap. The sizes of
the gaps and of the island perfectly match the sizes of the gaps
and of the islands in possible reset thresholds of synchronizing
automata with n states — basically one has the same picture
shifted by 1.
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Exponents of Non-negative Matrices

A non-negative matrix A is said to be primitive if some power AX is
positive. The minimum k with this property is called the exponent
of A, denoted exp A.

Helmut Wielandt proved in 1950 that for any primitive

n x n-matrix A, one hasexpA < n?>—-2n+2=(n—-1)>+1,

and this bound is tight. Possible exponents of n x n-matrices were
intensively studied in the 1960s, and it was discovered that two
extreme values are each attained by a unique matrix, then there is
a gap followed by an island followed by another gap. The sizes of
the gaps and of the island perfectly match the sizes of the gaps
and of the islands in possible reset thresholds of synchronizing
automata with n states — basically one has the same picture
shifted by 1. Clearly, this cannot be a mere coincidence.
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Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).
e V set of vertices
e E C V x V set of edges
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Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).

e V set of vertices

e E C V x V set of edges

This definition allows loops but excludes multiple edges.
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Digraphs and Matrices

A directed graph (digraph) is a pair D = (V, E).

e V set of vertices

e E C V x V set of edges

This definition allows loops but excludes multiple edges.

The matrix of a digraph D = (V/, E) is just the incidence matrix
of the edge relation, that is, a V x V-matrix whose entry in the
row v and the column v/ is 1 if (v,v') € E and 0 otherwise.
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Digraphs and Matrices

For instance, the matrix of the digraph

o

O, 9’

oo O
N———

(with respect to the chosen numbering of its vertices) is <

HooH
OO
OHHO
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Digraphs and Matrices

For instance, the matrix of the digraph

o

O, 9’

1100
(with respect to the chosen numbering of its vertices) is <8 o1 9)
1000
ve

Conversely, given an n x n-matrix P = (pj;) with non-negative real
entries, we assign to it a digraph D(P) on the set {1,2,...,n}

as follows: (/,j) is an edge of D(P) if and only if p;j > 0.
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Digraphs and Matrices

For instance, the matrix of the digraph

o

O, 9’

1100
(with respect to the chosen numbering of its vertices) is (8 o1 9)
1000
ve

Conversely, given an n x n-matrix P = (pj;) with non-negative real
entries, we assign to it a digraph D(P) on the set {1,2,...,n}

as follows: (/,j) is an edge of D(P) if and only if p;j > 0.

This ‘two-way’ correspondence allows us to reformulate in terms of
digraphs several important notions and results which originated in
the classical Perron—Frobenius theory of non-negative matrices.
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Digraphs and Colorings

By a coloring of a digraph we mean assigning labels from an
alphabet ¥ to edges such that the digraph labeled this way
becomes a DFA.
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Digraphs and Colorings

By a coloring of a digraph we mean assigning labels from an
alphabet ¥ to edges such that the digraph labeled this way
becomes a DFA.
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Primitive Digraphs

A digraph D is primitive if D is strongly connected and the greatest
common divisor of the lengths of all cycles in D is equal to 1.
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Primitive Digraphs

A digraph D is primitive if D is strongly connected and the greatest
common divisor of the lengths of all cycles in D is equal to 1.

Adler, Goodwyn, Weiss (Equivalence of topological Markov shifts,
Israel J. Math. 27 (1977) 49-63):

Underlying digraphs of strongly connected synchronizing automata
are primitive.
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Primitive Digraphs

A digraph D is primitive if D is strongly connected and the greatest
common divisor of the lengths of all cycles in D is equal to 1.

Adler, Goodwyn, Weiss (Equivalence of topological Markov shifts,
Israel J. Math. 27 (1977) 49-63):

Underlying digraphs of strongly connected synchronizing automata
are primitive.

The Road Coloring Conjecture: Every primitive digraph admits a
synchronizing coloring.
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Primitive Digraphs

A digraph D is primitive if D is strongly connected and the greatest
common divisor of the lengths of all cycles in D is equal to 1.

Adler, Goodwyn, Weiss (Equivalence of topological Markov shifts,
Israel J. Math. 27 (1977) 49-63):

Underlying digraphs of strongly connected synchronizing automata
are primitive.

The Road Coloring Conjecture: Every primitive digraph admits a
synchronizing coloring.

This was confirmed by Avraham Trahtman (The Road Coloring
Problem, Israel J. Math. 172 (2009) 51-60).
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
(This is equivalent to saying that the t-th power of the matrix
of D is positive.)
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
(This is equivalent to saying that the t-th power of the matrix
of D is positive.) The least t with this property is called

the exponent of the digraph D and is denoted by (D).
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
(This is equivalent to saying that the t-th power of the matrix
of D is positive.) The least t with this property is called

the exponent of the digraph D and is denoted by (D).

1950, Wielandt: The exponent of every primitive digraph on n
vertices is not greater than (n — 1)? 4+ 1 and this bound is tight.
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
(This is equivalent to saying that the t-th power of the matrix
of D is positive.) The least t with this property is called

the exponent of the digraph D and is denoted by (D).

1950, Wielandt: The exponent of every primitive digraph on n
vertices is not greater than (n — 1)? 4+ 1 and this bound is tight.

1964, Dulmage—Mendelsohn: There is exactly one primitive
digraph on n vertices with exponent (n — 1)? + 1 and exactly one
primitive digraph on n vertices with exponent (n — 1)2.
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A digraph D is primitive iff there exists t such that for each pair
of vertices there exists a path between them of length exactly t.
(This is equivalent to saying that the t-th power of the matrix
of D is positive.) The least t with this property is called

the exponent of the digraph D and is denoted by (D).

1950, Wielandt: The exponent of every primitive digraph on n
vertices is not greater than (n — 1)? 4+ 1 and this bound is tight.

1964, Dulmage—Mendelsohn: There is exactly one primitive
digraph on n vertices with exponent (n — 1)? + 1 and exactly one
primitive digraph on n vertices with exponent (n — 1)2.

If n > 4 is even, then there is no primitive digraph D on n vertices
such that n> —4n+6 < (D) < (n —1)2.

If n> 3 is odd, then there is no primitive digraph D on n vertices
such that n> —3n+4 < (D) < (n—1)?, or

n?>—4n+6 < y(D) < n* —3n+2.
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Exponents vs Reset Lengths

Exponents of primitive digraphs with 9 vertices vs reset thresholds
of 2-letter strongly connected synchronizing automata with 9 states

N 65(64(63(62(61/60|59|58|57|56|55(54(53|52|51
# of primitive
digraphs 1(1/0(0(0f0|0|21|1({2(0|0|0]|0]|3
with exponent N
# of 2-letter

synchronizing
automata with
reset threshold N
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The Wielandt Automaton

The Wielandt automaton %, is a (unique) coloring of the Wielandt
digraph W, with v(W,) = (n —1)2 + 1.
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The Wielandt Automaton

The Wielandt automaton %, is a (unique) coloring of the Wielandt
digraph W, with v(W,) = (n — 1)?2 + 1. The Wielandt digraph has
n vertices 1,2,..., n, say, and the following n+ 1 edges: (i,i+ 1)
fori=1,...,n—1, (n,1), and (n,2).
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The Wielandt Automaton

The Wielandt automaton %, is a (unique) coloring of the Wielandt
digraph W, with v(W,) = (n — 1)?2 + 1. The Wielandt digraph has
n vertices 1,2,..., n, say, and the following n+ 1 edges: (i,i+ 1)
fori=1,...,n—1, (n,1), and (n,2).
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The Wielandt Automaton

The Wielandt automaton % is a (unique) coloring of the Wielandt
digraph W, with v(W,) = (n — 1)? + 1. The Wielandt digraph has
n vertices 1,2,..., n, say, and the following n+ 1 edges: (i,i + 1)
fori=1,...,n—1, (n,1), and (n,2).

It is easy to show that the reset threshold of #;, is n> — 3n + 3.
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The Wielandt Automaton

The Wielandt automaton %, is a (unique) coloring of the Wielandt
digraph W, with v(W,) = (n — 1)?> + 1. The Wielandt digraph has
n vertices 1,2,..., n, say, and the following n+ 1 edges: (i,i+ 1)
fori=1,...,n—1, (n,1), and (n,2).

It is easy to show that the reset threshold of #, is n> — 3n + 3.

In a similar way, each digraph with large exponent generates slowly

synchronizing automata.
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1

the state to which our

@automaton is reset
by a word of length ¢
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1

the state to which our

@automaton is reset

£<n-1,

/

by a word of length ¢
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1

n—1-—¢ ,,@ the state to which our
@automaton is reset

by a word of length ¢
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1

n—1-¢ ,,@\ ; the state to which our
@automaton is reset

£<n-1,

by a word of length ¢
0 June 13th, 2013
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Colorings of Digraphs with Large Exponents

Observation

Let a strongly connected synchronizing automaton with n states
and reset threshold t be a coloring of a digraph D. Then

y(D)<t+n-1

For instance, the reset threshold t of the Wielandt automaton %,
must satisfy

t>y(W,) —n+1=(n—-12%+1-n+1=n>—-3n+3,

and it is easy to find a reset word of length n?> — 3n + 3.
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The Cerny Automaton

There are slowly synchronizing automata that cannot be obtained
as colorings of a digraph with large exponent.
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The Cerny Automaton

There are slowly synchronizing automata that cannot be obtained
as colorings of a digraph with large exponent. For instance,

the Cerny automaton %, has reset threshold (n — 1)? while

its underlying digraph has exponent n — 1.
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The Cerny Automaton

There are slowly synchronizing automata that cannot be obtained
as colorings of a digraph with large exponent. For instance,

the Cerny automaton %, has reset threshold (n — 1)? while

its underlying digraph has exponent n — 1.

However, ¥, becomes #, under the action of b and ¢ = ab.
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The Cerny Automaton

Let w be a shortest reset word for &,.
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The Cerny Automaton

Let w be a shortest reset word for €.
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The Cerny Automaton

Let w be a shortest reset word for €,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.

Thus, w = w’a where w' can be rewritten into a word v over the
alphabet {b, c}.
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The Cerny Automaton

Let w be a shortest reset word for €,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.

Thus, w = w'a where w’ can be rewritten into a word v over the
alphabet {b, c}. Since w’ and v act in the same way, the word vc
is a reset word for #,.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



The Cerny Automaton

Let w be a shortest reset word for €,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.

Thus, w = w'a where w’ can be rewritten into a word v over the
alphabet {b, c}. Since w’ and v act in the same way, the word vc
is a reset word for #,. Hence |v| > n? —3n + 2.
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The Cerny Automaton

Let w be a shortest reset word for %,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.
Thus, w = w’a where w’ can be rewritten into a word v over the
alphabet {b, c}. Since w’ and v act in the same way, the word vc
is a reset word for #,. Hence |v| > n®> — 3n+ 2.

Further, v contains at least n — 2 occurrences of c¢. Since each
occurrence of ¢ in v corresponds to an occurrence of ab in w’/, we
conclude that |w'| > n?> —3n+2+n—2=n? —2n.
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The Cerny Automaton

Let w be a shortest reset word for %,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.
Thus, w = w'a where w’ can be rewritten into a word v over the
alphabet {b, c}. Since w’ and v act in the same way, the word vc
is a reset word for #,. Hence |v| > n? —3n + 2.

Further, v contains at least n — 2 occurrences of c¢. Since each
occurrence of ¢ in v corresponds to an occurrence of ab in w', we
conclude that |w'| > n®> —3n+2+n—2=n?—2n. Thus,

lw| = |w'a] > n?> —2n+1=(n—1)>.
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The Cerny Automaton

Let w be a shortest reset word for %,. It must end with a and
every other occurrence of a in w is followed by an occurrence of b.
Thus, w = w'a where w’ can be rewritten into a word v over the
alphabet {b, c}. Since w’ and v act in the same way, the word vc
is a reset word for #,. Hence |v| > n? —3n + 2.

Further, v contains at least n — 2 occurrences of c¢. Since each
occurrence of ¢ in v corresponds to an occurrence of ab in w', we
conclude that |w’| > n? —3n+2+n—2=n? —2n. Thus,

lw| = |w'a] > n?> —2n+4+1=(n—1)>.

Thus, it is the Wielandt digraph that stays behind the Cerny
automaton!
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Digraphs vs Automata

In a similar manner it is easy to recover every known slowly
synchronizing automaton from a suitable digraph with large
exponent.
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Digraphs vs Automata

In a similar manner it is easy to recover every known slowly
synchronizing automaton from a suitable digraph with large
exponent.

S HOBD

for odd n
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Extensibility

How to get upper bounds for reset threshold?
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with
IR| > [P].
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with
|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible.
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with
|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible. Observe
that this would imply the Cerny conjecture.
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with

|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible. Observe
that this would imply the Cerny conjecture.

Indeed, some letter a should sent two states g, g’ to the same state

p.
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with

|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible. Observe
that this would imply the Cerny conjecture.

Indeed, some letter a should sent two states g, g’ to the same state
p. Let Py ={q,q'} and, for i > 0, let P; be such that |P;| > |P;_1]
and Pi_1 D P;.w; for some word w; of length < n.
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with

|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible. Observe
that this would imply the Cerny conjecture.

Indeed, some letter a should sent two states g, g’ to the same state
p. Let P ={q,q'} and, for i > 0, let P; be such that |P;| > |P;i_1]
and P;_1 D P;.w; for some word w; of length < n. Then in at
most n — 2 steps the sequence Py, Py, Py, ... reaches @ and

Q. Wp—2Wp_3+--Wja = {P},
that is, wh_owp_3---wpa is a reset word.
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Extensibility

How to get upper bounds for reset threshold?

For & = (Q,%,0), a subset P C Q is extensible if P D R.w for
some w € X* of length at most n = |Q| and some R C Q with

|R| > |P|. It was conjectured for some time that in synchronizing
automata every proper non-singleton subset is extensible. Observe
that this would imply the Cerny conjecture.

Indeed, some letter a should sent two states g, g’ to the same state
p. Let P ={q,q'} and, for i > 0, let P; be such that |P;| > |P;i_1]
and P;_1 D P;.w; for some word w; of length < n. Then in at
most n — 2 steps the sequence Py, Py, Py, ... reaches @ and

Q. W oWy _3---wja= {p}a

that is, wp_ow,_3---wia is a reset word. The length of this reset
word is at most n(n —2) +1 = (n— 1)2.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



For an illustration, consider the subset automaton of the Cerny
automaton %;.
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Example
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Applications of Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:
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Applications of Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).
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Applications of Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).

e Jarkko Kari's result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223-232).
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Applications of Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in French]).

e Jarkko Kari's result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223-232).

e Benjamin Steinberg’s result for automata in which a letter labels
only one cycle (one-cluster automata) and this cycle is of prime
length (The Cerny conjecture for one-cluster automata with prime
length cycle. Theoret. Comput. Sci. 412 (2011) 5487-5491).
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Limits of Extensibility

In general, the extensibility conjecture fails.
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Limits of Extensibility

In general, the extensibility conjecture fails. The first (implicit)
example was a 6-state automaton found by Jarkko Kari in 2001,
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Limits of Extensibility

In general, the extensibility conjecture fails. The first (implicit)
example was a 6-state automaton found by Jarkko Kari in 2001,
and Mikhail Berlinkov has constructed for every a < 2 an infinite
series of synchronizing automata %, = (Q, L, d) such that there is
a proper non-singleton subset P C Q that cannot be extended by
any word of length < a|Q| (On a conjecture by Carpi and
D’Alessandro, Int. J. Found. Comput. Sci. 22 (2011) 1565-1576).
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Limits of Extensibility

In general, the extensibility conjecture fails. The first (implicit)
example was a 6-state automaton found by Jarkko Kari in 2001,
and Mikhail Berlinkov has constructed for every a < 2 an infinite
series of synchronizing automata %, = (Q, L, d) such that there is
a proper non-singleton subset P C Q that cannot be extended by
any word of length < a|Q| (On a conjecture by Carpi and
D’Alessandro, Int. J. Found. Comput. Sci. 22 (2011) 1565-1576).

It is not excluded that in every synchronizing automaton each
proper non-singleton subset can be extended by a word of length
2 X # of states.
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Limits of Extensibility

In general, the extensibility conjecture fails. The first (implicit)
example was a 6-state automaton found by Jarkko Kari in 2001,
and Mikhail Berlinkov has constructed for every a < 2 an infinite
series of synchronizing automata %, = (Q, L, d) such that there is
a proper non-singleton subset P C Q that cannot be extended by
any word of length < a|Q| (On a conjecture by Carpi and
D’Alessandro, Int. J. Found. Comput. Sci. 22 (2011) 1565-1576).

It is not excluded that in every synchronizing automaton each
proper non-singleton subset can be extended by a word of length
2 X # of states. On the other hand, we don’t know even

a quadratic (in the number of states) upper bound for the length
of extending words.
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Linearization

We associate a natural linear structure with each automaton

g =(Q,L,0).
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Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.
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Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.

For each word w € ¥, its action on @ gives rise to a linear
transformation of R”; we denote by [w] the matrix of this
transformation in the standard basis [1],...,[n] of R".
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Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.

For each word w € ¥, its action on @ gives rise to a linear
transformation of R”; we denote by [w] the matrix of this
transformation in the standard basis [1],...,[n] of R". Clearly,
the matrix [w] has exactly one non-zero entry in each column and
this entry is equal to 1.

June 13th, 2013

Mikhail Volkov Digraphs, Markov Chains and Automata



Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.

For each word w € ¥, its action on @ gives rise to a linear
transformation of R”; we denote by [w] the matrix of this
transformation in the standard basis [1],...,[n] of R". Clearly,
the matrix [w] has exactly one non-zero entry in each column and
this entry is equal to 1.

For KCQandveX* leteK.vi={q|qveK}
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Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.

For each word w € ¥, its action on @ gives rise to a linear
transformation of R”; we denote by [w] the matrix of this
transformation in the standard basis [1],...,[n] of R". Clearly,
the matrix [w] has exactly one non-zero entry in each column and
this entry is equal to 1.

For KCQandveX*lete K.v'i={q|q.veK} Then

[K.v~1] = [v]T[K], where [v]" stands for the usual transpose of
the matrix [v].
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Linearization

We associate a natural linear structure with each automaton

& = (Q,%,0). Assume that Q@ = {1,2,...,n} and assign to each
subset K C Q its characteristic vector [K] € R (the space of
n-dimensional column vectors): the i-th entry of [K] is 1 if i € K,
otherwise the entry is 0.

For each word w € ¥, its action on @ gives rise to a linear
transformation of R”; we denote by [w] the matrix of this
transformation in the standard basis [1],...,[n] of R". Clearly,
the matrix [w] has exactly one non-zero entry in each column and
this entry is equal to 1.

For KCQandveX*lete K.v'i={q|q.veK} Then
[K.v~1] = [v]T[K], where [v]" stands for the usual transpose of
the matrix [v]. A word w is a reset word for & iff g.w=! = Q for
some state g. Now we can rewrite this as [w][q] = [Q)].
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(81,82)-
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,&2)- Then for any K, L C Q, we have ([K],[L]) = |K N L|.
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,&2)- Then for any K, L C Q, we have ([K],[L]) = |K N L|.
Denote by 1, the uniform stochastic vector in R”, that is, the
vector with all entries equal to %
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,82)- Then for any K, L C Q, we have ([K],[L]) = |[K N L|.
Denote by 1, the uniform stochastic vector in R”, that is, the
vector with all entries equal to % Then the fact that a word w
extends a subset K C Q (that is, the inequality |K| < |K.w™}|)
can be rewritten as ([K],1,) < ([w]T[K],1,).
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,82)- Then for any K, L C Q, we have ([K],[L]) = |[K N L|.
Denote by 1, the uniform stochastic vector in R”, that is, the
vector with all entries equal to % Then the fact that a word w
extends a subset K C Q (that is, the inequality |K| < |K.w™}|)
can be rewritten as ([K],1,) < ([w]T[K],1,).

Thus, the extension method amounts to finding a state g, a letter
a, and a sequence of words wy, wo, ..., wy such that

1

n

([a], 1n) < (1] "], 1) < ([w12] "[q],1a) < ...

coo & ([Wd"' W2W13]T[q],1n) =1.
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,82)- Then for any K, L C Q, we have ([K],[L]) = |[K N L|.
Denote by 1, the uniform stochastic vector in R”, that is, the
vector with all entries equal to % Then the fact that a word w
extends a subset K C Q (that is, the inequality |K| < |K.w™}|)
can be rewritten as ([K],1,) < ([w]T[K],1,).

Thus, the extension method amounts to finding a state g, a letter
a, and a sequence of words wy, wo, ..., wy such that

1

— = (lgl, 1n) < ([2] "[q} 1n) < ((m22] "[q], 1n) < -

coo & ([Wd"' W2W13]T[q],1n) =1.

Here d < n — 2 because at each step the inner product increases
by at least %
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Extensibility in Linear Terms

For vectors g1,8> € R", we denote their usual inner product by
(g1,82)- Then for any K, L C Q, we have ([K],[L]) = |[K N L|.
Denote by 1, the uniform stochastic vector in R”, that is, the
vector with all entries equal to % Then the fact that a word w
extends a subset K C Q (that is, the inequality |K| < |K.w™}|)
can be rewritten as ([K],1,) < ([w]T[K],1,).

Thus, the extension method amounts to finding a state g, a letter
a, and a sequence of words wy, wo, ..., wy such that

4
=

([a], 1n) < (1] "], 1) < ([w12] "[q],1a) < ...

coo & ([Wd"' W2W13]T[q],1n) =1.

Here d < n — 2 because at each step the inner product increases
by at least % The problem is that so far we don’t any linear bound

for the lengths of the w;’s.
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Jungers’s Dualization

Raphaél Jungers (The synchronizing probability function of an
automaton, SIAM J. Discrete Math. 26 (2011) 177-192) has
suggested an interesting idea that in our notation can be described
as follows: one should substitute the uniform stochastic vector 1,
by an adaptive positive stochastic vector p which can depend on
both the automaton & and the given proper subset K C Q but
has the property that there exists a word v of length at most |Q)|
such that ([v]T[K],p) > ([K], p).
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Jungers’s Dualization

Raphaél Jungers (The synchronizing probability function of an
automaton, SIAM J. Discrete Math. 26 (2011) 177-192) has
suggested an interesting idea that in our notation can be described
as follows: one should substitute the uniform stochastic vector 1,
by an adaptive positive stochastic vector p which can depend on
both the automaton & and the given proper subset K C Q but
has the property that there exists a word v of length at most |Q)|
such that ([v]T[K], p) > ([K], p). Jungers has explored this idea
using techniques from linear programming and has proved that
such a positive stochastic vector indeed exists for every
synchronizing automaton and every proper subset.
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Jungers’s Dualization

Raphaél Jungers (The synchronizing probability function of an
automaton, SIAM J. Discrete Math. 26 (2011) 177-192) has
suggested an interesting idea that in our notation can be described
as follows: one should substitute the uniform stochastic vector 1,
by an adaptive positive stochastic vector p which can depend on
both the automaton & and the given proper subset K C Q but
has the property that there exists a word v of length at most |Q)|
such that ([v]T[K], p) > ([K], p). Jungers has explored this idea
using techniques from linear programming and has proved that
such a positive stochastic vector indeed exists for every
synchronizing automaton and every proper subset.

Warning: Here we encounter a dual problem since it is not clear
how to find a linear upper bound for the number of extension steps.
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Markov Chains

Assume that X = {aj, a2, ..., ax}.
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Markov Chains

Assume that X = {aj, ap,...,ax}. Each positive stochastic vector
T € ]Rf‘F defines a probability distribution on .
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Markov Chains

Assume that X = {aj, ap,...,ax}. Each positive stochastic vector
T € ]Rf‘F defines a probability distribution on ¥. Consider a process
in which an agent randomly walks on the underlying graph of <7,
choosing for each move an edge labeled a; with probability p(a;).
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Markov Chains

Assume that X = {aj, ap,...,ax}. Each positive stochastic vector
T € ]Rf‘F defines a probability distribution on ¥. Consider a process
in which an agent randomly walks on the underlying graph of <7,
choosing for each move an edge labeled a; with probability p(a;).
This is a Markov chain with the transition matrix

k

S=5(e,m) =" plai)ail.

i=1
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Markov Chains

Assume that X = {aj, ap,...,ax}. Each positive stochastic vector
T € ]Rf‘F defines a probability distribution on ¥. Consider a process
in which an agent randomly walks on the underlying graph of <7,
choosing for each move an edge labeled a; with probability p(a;).
This is a Markov chain with the transition matrix

k

S=5(e,m) =" plai)ail.

i=1

By basic properties of Markov chains, there exists the stationary
distribution o € R} of this Markov chain, that is, a unique positive
stochastic vector satisfying Sa = a.
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Berlinkov's Result

Theorem (Berlinkov, 2012)

Let &/ be a synchronizing automaton with n states and k letters,
TE ]R‘jr a positive stochastic vector, and « the stationary
distribution of the Markov chain with the transition matrix
S(«7,m). Then there exist a state g, a letter a, and a sequence of
words wi, wa, ..., wy of length at most n such that

(gl @) < ([a]"[g], @) < ([waa]"[g], @) < ...
oo < ([wg - - - wowia] T[q], @) = 1.
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Berlinkov's Result

Theorem (Berlinkov, 2012)

Let &/ be a synchronizing automaton with n states and k letters,
T E R’jr a positive stochastic vector, and « the stationary
distribution of the Markov chain with the transition matrix
S(«7,m). Then there exist a state g, a letter a, and a sequence of
words wy, wa, ..., wy of length at most n such that

([q], @) < ([a]"[q), @) < (Iw1a]"[q], @) < ...
oo < ([wg -+ - wamga] T [q], @) = 1.

An immediate application: a new proof of the Cerny conjecture for
automata with Eulerian digraphs.
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Berlinkov's Result

Theorem (Berlinkov, 2012)

Let &/ be a synchronizing automaton with n states and k letters,
T E Rﬁ a positive stochastic vector, and « the stationary
distribution of the Markov chain with the transition matrix
S(«7,m). Then there exist a state g, a letter a, and a sequence of
words wy, wa, ..., wy of length at most n such that

([g], @) < ([a]"[g], @) < ([ma2a]"[q],0) < ...
cos < ([wa - woma] T[q] @) = 1,

An immediate application: a new proof of the Cerny conjecture for
automata with Eulerian digraphs. In this case the matrix S(<, )
is doubly stochastic whence the uniform vector 1, is its stationary
distribution and d < n — 2.
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