Hyperplane arrangements, flag complexes and monoid cohomology

Stuart Margolis, Bar-Ilan University
Franco Saliola, Université du Québec à Montréal Benjamin Steinberg, City College of New York

June 14, 2013
Happy Birthday Stuart Conference

Outline

Combinatorial Topology Simplicial complexes
Leray numbers

Left Regular Bands
Background on LRBs
Examples of LRBs

Cohomological Dimension
Cohomology of monoids
Results

The plan

- Our goal is to give some idea of how combinatorial topology can be used to compute homological invariants of some monoids that arose in combinatorics.

The plan

- Our goal is to give some idea of how combinatorial topology can be used to compute homological invariants of some monoids that arose in combinatorics.
- We begin with the relevant combinatorial topology.

The plan

- Our goal is to give some idea of how combinatorial topology can be used to compute homological invariants of some monoids that arose in combinatorics.
- We begin with the relevant combinatorial topology.
- Then we give examples of the monoids and explain why people are interested in them.

The plan

- Our goal is to give some idea of how combinatorial topology can be used to compute homological invariants of some monoids that arose in combinatorics.
- We begin with the relevant combinatorial topology.
- Then we give examples of the monoids and explain why people are interested in them.
- Then we try to put it altogether and state our main results.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\bigcup \mathcal{F}=V$.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\cup \mathcal{F}=V$.
- An element $X \in \mathcal{F}$ is called a q-simplex where $q=|X|-1$.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\cup \mathcal{F}=V$.
- An element $X \in \mathcal{F}$ is called a q-simplex where $q=|X|-1$.
- $\operatorname{dim} K$ is the dimension of the largest simplex in K.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\bigcup \mathcal{F}=V$.
- An element $X \in \mathcal{F}$ is called a q-simplex where $q=|X|-1$.
- $\operatorname{dim} K$ is the dimension of the largest simplex in K.
- The q-skeleton K^{q} consists of all simplices of dimension at most q.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\bigcup \mathcal{F}=V$.
- An element $X \in \mathcal{F}$ is called a q-simplex where $q=|X|-1$.
- $\operatorname{dim} K$ is the dimension of the largest simplex in K.
- The q-skeleton K^{q} consists of all simplices of dimension at most q.
- Each simplicial complex K has a geometric realization $|K| \subseteq \mathbb{R}^{|V|}$.

Simplicial complexes

- A simplicial complex K is a pair (V, \mathcal{F}) where V is a finite set and \mathcal{F} a collection of nonempty subsets of V such that:
- $\emptyset \neq X \subseteq Y \in \mathcal{F}$ implies $X \in \mathcal{F}$;
- $\bigcup \mathcal{F}=V$.
- An element $X \in \mathcal{F}$ is called a q-simplex where $q=|X|-1$.
- $\operatorname{dim} K$ is the dimension of the largest simplex in K.
- The q-skeleton K^{q} consists of all simplices of dimension at most q.
- Each simplicial complex K has a geometric realization $|K| \subseteq \mathbb{R}^{|V|}$.
- $|K|$ is the union of the simplices spanned by sets of coordinate vectors corresponding to an element of \mathcal{F}.

Order complex

- To each finite poset P is associated its order complex $\Delta(P)$.

Order complex

- To each finite poset P is associated its order complex $\Delta(P)$.
- The vertex set of $\Delta(P)$ is P.

Order complex

- To each finite poset P is associated its order complex $\Delta(P)$.
- The vertex set of $\Delta(P)$ is P.
- A subset of P is a simplex if it is a chain.

Order complex

- To each finite poset P is associated its order complex $\Delta(P)$.
- The vertex set of $\Delta(P)$ is P.
- A subset of P is a simplex if it is a chain.
- Let K be a regular cell complex with face poset P.

Order complex

- To each finite poset P is associated its order complex $\Delta(P)$.
- The vertex set of $\Delta(P)$ is P.
- A subset of P is a simplex if it is a chain.
- Let K be a regular cell complex with face poset P.
- Then $\Delta(P)$ is the barycentric subdivision of K.

The nerve construction

- Let \mathscr{F} be a finite family of subsets of some set.

The nerve construction

- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is the following simplicial complex.

The nerve construction

- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is the following simplicial complex.
- Vertex set: \mathscr{F}

The nerve construction

- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is the following simplicial complex.
- Vertex set: \mathscr{F}
- Simplices: $\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\}$ is a simplex iff

$$
X_{i_{1}} \cap \cdots \cap X_{i_{k}} \neq \varnothing
$$

The nerve construction

- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is the following simplicial complex.
- Vertex set: \mathscr{F}
- Simplices: $\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\}$ is a simplex iff

$$
X_{i_{1}} \cap \cdots \cap X_{i_{k}} \neq \varnothing
$$

- The nerve of an open cover is fundamental to Čech cohomology.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1 -representable if it is the nerve of a collection of closed intervals.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1 -representable: take $q+1$ closed intervals centered at 0 .

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1 -representable: take $q+1$ closed intervals centered at 0 .
- The four-cycle graph C4 is not 1-representable.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1 -representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1 -representable: take $q+1$ closed intervals centered at 0 .
- The four-cycle graph C4 is not 1-representable.
- d-representability is a combinatorial, not a topological, property.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1 -representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1 -representable: take $q+1$ closed intervals centered at 0 .
- The four-cycle graph C4 is not 1-representable.
- d-representability is a combinatorial, not a topological, property.
- An obstruction to d-representability was found in the 1920s by Helly.

d-representability

- A simplicial complex K is d-representable if $K=\mathcal{N}(\mathscr{F})$ where \mathscr{F} is a family of compact convex subsets of \mathbb{R}^{d}.
- For example, K is 1 -representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1 -representable: take $q+1$ closed intervals centered at 0 .
- The four-cycle graph C4 is not 1-representable.
- d-representability is a combinatorial, not a topological, property.
- An obstruction to d-representability was found in the 1920s by Helly.
- The modern way to formulate his result is via Leray numbers.

Vanishing dimension of a simplicial complex

- Fix a commutative ring with unit \mathbb{k} for the duration.

Vanishing dimension of a simplicial complex

- Fix a commutative ring with unit \mathbb{k} for the duration.
- The vanishing dimension of K is

$$
\operatorname{vd}_{\mathfrak{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\} .
$$

Vanishing dimension of a simplicial complex

- Fix a commutative ring with unit \mathbb{k} for the duration.
- The vanishing dimension of K is

$$
\operatorname{vd}_{\mathbb{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\}
$$

- Clearly $\operatorname{vd}_{\mathbb{k}}(K) \leq \operatorname{dim}(K)+1$.

Vanishing dimension of a simplicial complex

- Fix a commutative ring with unit \mathbb{k} for the duration.
- The vanishing dimension of K is

$$
\operatorname{vd}_{\mathfrak{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\} .
$$

- Clearly $\operatorname{vd}_{\mathbf{k}}(K) \leq \operatorname{dim}(K)+1$.
- E.g., $\operatorname{vd}_{\mathfrak{k}}\left(S^{1} \times[0,1]^{2}\right)=2=\operatorname{vd}_{\mathfrak{k}}\left(S^{1}\right)$.

Vanishing dimension of a simplicial complex

- Fix a commutative ring with unit \mathbb{k} for the duration.
- The vanishing dimension of K is

$$
\operatorname{vd}_{\mathfrak{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\} .
$$

- Clearly $\operatorname{vd}_{\mathbf{k}}(K) \leq \operatorname{dim}(K)+1$.
- E.g., $\operatorname{vd}_{\mathfrak{k}}\left(S^{1} \times[0,1]^{2}\right)=2=\operatorname{vd}_{k}\left(S^{1}\right)$.
- $\operatorname{vd}_{\mathfrak{k}}(K)$ is a homotopy invariant.

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.
- The Leray number of K is

$$
\operatorname{Ler}_{\mathbb{k}}(K)=\max \left\{\operatorname{vd}_{\mathbb{k}}(K[W]) \mid W \subseteq K^{0}\right\}
$$

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.
- The Leray number of K is

$$
\operatorname{Ler}_{\mathbb{k}}(K)=\max \left\{\operatorname{vd}_{\mathbb{k}}(K[W]) \mid W \subseteq K^{0}\right\}
$$

- In other words the reduced cohomology of all induced subcomplexes of K vanishes from $\operatorname{Ler}_{\mathbb{k}}(K)$ onward.

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.
- The Leray number of K is

$$
\operatorname{Ler}_{\mathbb{k}}(K)=\max \left\{\operatorname{vd}_{\mathbb{k}}(K[W]) \mid W \subseteq K^{0}\right\}
$$

- In other words the reduced cohomology of all induced subcomplexes of K vanishes from $\operatorname{Ler}_{\mathbb{k}}(K)$ onward.
- $\operatorname{Ler}_{\mathrm{k}}(K) \leq \operatorname{dim} K+1$.

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.
- The Leray number of K is

$$
\operatorname{Ler}_{k_{k}}(K)=\max \left\{\operatorname{vd}_{\mathbf{k}}(K[W]) \mid W \subseteq K^{0}\right\} .
$$

- In other words the reduced cohomology of all induced subcomplexes of K vanishes from $\operatorname{Ler}_{\mathfrak{k}}(K)$ onward.
- $\operatorname{Ler}_{\mathrm{k}}(K) \leq \operatorname{dim} K+1$.
- $\operatorname{Ler}_{k_{k}}(K)$ is a combinatorial invariant, not a topological invariant.

The Leray number

- If $W \subseteq K^{0}$, then the induced subcomplex $K[W]$ consists of all simplices whose vertices belong to W.
- The Leray number of K is

$$
\operatorname{Ler}_{k_{k}}(K)=\max \left\{\operatorname{vd}_{\mathbf{k}}(K[W]) \mid W \subseteq K^{0}\right\} .
$$

- In other words the reduced cohomology of all induced subcomplexes of K vanishes from $\operatorname{Ler}_{\mathfrak{k}}(K)$ onward.
- $\operatorname{Ler}_{\mathrm{k}}(K) \leq \operatorname{dim} K+1$.
- $\operatorname{Ler}_{\mathbb{k}}(K)$ is a combinatorial invariant, not a topological invariant.
- $\operatorname{Ler}_{\mathbb{k}}(K)=0$ iff K is a simplex.

Flag complexes

- K is a flag complex if whenever the 1-skeleton of a simplex belongs to K, then so does the simplex.

Flag complexes

- K is a flag complex if whenever the 1-skeleton of a simplex belongs to K, then so does the simplex.
- Flag complexes are determined by their 1-skeletons.

Flag complexes

- K is a flag complex if whenever the 1-skeleton of a simplex belongs to K, then so does the simplex.
- Flag complexes are determined by their 1-skeletons.
- The order complex of a poset is a flag complex.

Flag complexes

- K is a flag complex if whenever the 1-skeleton of a simplex belongs to K, then so does the simplex.
- Flag complexes are determined by their 1-skeletons.
- The order complex of a poset is a flag complex.
- Let $G=(V, E)$ be a graph.

Flag complexes

- K is a flag complex if whenever the 1-skeleton of a simplex belongs to K, then so does the simplex.
- Flag complexes are determined by their 1-skeletons.
- The order complex of a poset is a flag complex.
- Let $G=(V, E)$ be a graph.
- The clique complex $\operatorname{Cliq}(G)$ is the flag complex with vertex set V and simplices the cliques of G.

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathfrak{k}}(K) \leq d$.

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathfrak{l k}}(K) \leq d$.

- In general, the converse is false.

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathfrak{l k}}(K) \leq d$.

- In general, the converse is false.
- A graph is chordal if it contains no induced cycle of length greater than 3.

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathrm{k}_{\mathrm{k}}}(K) \leq d$.

- In general, the converse is false.
- A graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (??)
The following are equivalent:

1. $\operatorname{Ler}_{\mathrm{k}}(K) \leq 1$;

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathrm{k}_{\mathrm{k}}}(K) \leq d$.

- In general, the converse is false.
- A graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (??)
The following are equivalent:

1. $\operatorname{Ler}_{\mathrm{k}}(K) \leq 1$;
2. K is the clique complex of a chordal graph.

Helly-type theorems

Theorem ('Helly')
If K is d-representable, then $\operatorname{Ler}_{\mathrm{k}_{\mathrm{k}}}(K) \leq d$.

- In general, the converse is false.
- A graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (??)
The following are equivalent:

1. $\operatorname{Ler}_{\mathrm{k}}(K) \leq 1$;
2. K is the clique complex of a chordal graph.
$\operatorname{Cliq}(G)$ is 1-representable iff G is chordal and \bar{G} is a comparability graph (Lekkerkerker, Boland).

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- To each simplicial complex is associated a Stanley-Reisner ring.

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- To each simplicial complex is associated a Stanley-Reisner ring.
- You factor the polynomial ring on the vertices by the ideal generated by non-faces.

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- To each simplicial complex is associated a Stanley-Reisner ring.
- You factor the polynomial ring on the vertices by the ideal generated by non-faces.
- The Leray number $\operatorname{Ler}_{\mathbb{k}}(K)$ turns out to be the Castelnuovo-Mumford regularity of the Stanley-Reisner ring.

Left regular bands (LRBs)

- We have a new interpretation of the Leray number of a flag complex via the cohomology of LRBs.

Left regular bands (LRBs)

- We have a new interpretation of the Leray number of a flag complex via the cohomology of LRBs.

Definition (LRB)
A left regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
- $x y x=x y$
(B is a "band") ("left regularity")

Left regular bands (LRBs)

- We have a new interpretation of the Leray number of a flag complex via the cohomology of LRBs.

Definition (LRB)
A left regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
(B is a "band")
- $x y x=x y$ ("left regularity")
- Informally: identities say ignore 'repetitions'.

Left regular bands (LRBs)

- We have a new interpretation of the Leray number of a flag complex via the cohomology of LRBs.

Definition (LRB)
A left regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
(B is a "band")
- $x y x=x y$ ("left regularity")
- Informally: identities say ignore 'repetitions'.
- Commutative LRBs are lattices with meet or join.

Left regular bands (LRBs)

- We have a new interpretation of the Leray number of a flag complex via the cohomology of LRBs.

Definition (LRB)
A left regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
(B is a "band")
- $x y x=x y$ ("left regularity")
- Informally: identities say ignore 'repetitions'.
- Commutative LRBs are lattices with meet or join.
- All LRBs are assumed finite with identity.

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)
3. matroids (Brown)

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)
3. matroids (Brown)
4. complex hyperplane arrangements (Björner)

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)
3. matroids (Brown)
4. complex hyperplane arrangements (Björner)
5. interval greedoids (Björner)

Combinatorial objects as LRBs

- A large number of combinatorial structures admit an LRB multiplication.
- Examples include:

1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)
3. matroids (Brown)
4. complex hyperplane arrangements (Björner)
5. interval greedoids (Björner)

- Markov chains on these objects can be analyzed via LRB representation theory.

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- presented a unified approach to several Markov chains

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- presented a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- presented a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Brown (2000):

- extended results to LRBs
- proved diagonalizability for LRBs using algebraic techniques and representation theory of LRBs

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- presented a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Brown (2000):

- extended results to LRBs
- proved diagonalizability for LRBs using algebraic techniques and representation theory of LRBs
Others:
Björner, Athanasiadis-Diaconis, Chung-Graham, ...

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145,72=31452
$$

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not Z 22=31452
$$

- Tsetlin Library: shelf of books
"use a book, then put it at the front"

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not Z 22=31452
$$

- Tsetlin Library: shelf of books
"use a book, then put it at the front"
- orderings of the books \leftrightarrow words containing every letter

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not Z 22=31452
$$

- Tsetlin Library: shelf of books
"use a book, then put it at the front"
- orderings of the books \leftrightarrow words containing every letter
- move book to the front \leftrightarrow left multiplication by generator

Free LRBs and the Tsetlin library

- The free LRB $F(A)$ on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not Z 22=31452
$$

- Tsetlin Library: shelf of books
"use a book, then put it at the front"
- orderings of the books \leftrightarrow words containing every letter
- move book to the front \leftrightarrow left multiplication by generator
- long-term behavior: favorite books move to the front

A q-analogue

- Let q be a prime power.

A q-analogue

- Let q be a prime power.
- $F_{q, n}$ is all ordered linearly independent subsets of \mathbb{F}_{q}^{n}.

A q-analogue

- Let q be a prime power.
- $F_{q, n}$ is all ordered linearly independent subsets of \mathbb{F}_{q}^{n}.
- Product: concatenate and remove elements dependent on their predecessors.

A q-analogue

- Let q be a prime power.
- $F_{q, n}$ is all ordered linearly independent subsets of \mathbb{F}_{q}^{n}.
- Product: concatenate and remove elements dependent on their predecessors.

Example: $\ln F_{2,2}$:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & \not 0 \\
0 & 1 & \not Z
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

A q-analogue

- Let q be a prime power.
- $F_{q, n}$ is all ordered linearly independent subsets of \mathbb{F}_{q}^{n}.
- Product: concatenate and remove elements dependent on their predecessors.

Example: $\ln F_{2,2}$:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & \not 0 \\
0 & 1 & \not Z
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

This construction generalizes to matroids and interval greedoids.

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Product of faces (LRB structure)

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces (LRB structure)

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces (LRB structure)

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces (LRB structure)

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Solomon's descent algebra

- Consider a finite Coxeter group W with associated reflection arrangement \mathscr{H}_{W}.

Solomon's descent algebra

- Consider a finite Coxeter group W with associated reflection arrangement \mathscr{H}_{W}.
- Let $\mathcal{F}\left(\mathscr{H}_{W}\right)$ be the corresponding LRB.

Solomon's descent algebra

- Consider a finite Coxeter group W with associated reflection arrangement \mathscr{H}_{W}.
- Let $\mathcal{F}\left(\mathscr{H}_{W}\right)$ be the corresponding LRB.
- Bidigare proved the algebra of W-invariants $\mathbb{k} \mathcal{F}\left(\mathscr{H}_{W}\right)^{W}$ is isomorphic to Solomon's descent algebra $\Sigma(W)$.

Solomon's descent algebra

- Consider a finite Coxeter group W with associated reflection arrangement \mathscr{H}_{W}.
- Let $\mathcal{F}\left(\mathscr{H}_{W}\right)$ be the corresponding LRB.
- Bidigare proved the algebra of W-invariants $\mathbb{k} \mathcal{F}\left(\mathscr{H}_{W}\right)^{W}$ is isomorphic to Solomon's descent algebra $\Sigma(W)$.
- $\Sigma(W)$ is a subalgebra of $\mathbb{k} W$ that can be viewed as a non-commutative character ring of W.

Solomon's descent algebra

- Consider a finite Coxeter group W with associated reflection arrangement \mathscr{H}_{W}.
- Let $\mathcal{F}\left(\mathscr{H}_{W}\right)$ be the corresponding LRB.
- Bidigare proved the algebra of W-invariants $\mathbb{k} \mathcal{F}\left(\mathscr{H}_{W}\right)^{W}$ is isomorphic to Solomon's descent algebra $\Sigma(W)$.
- $\Sigma(W)$ is a subalgebra of $\mathbb{k} W$ that can be viewed as a non-commutative character ring of W.
- For instance, in type A the algebra $\Sigma(W)$ maps onto the character ring with nilpotent kernel.

Free partially commutative LRBs

- The free partially commutative LRB $B(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
B(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Free partially commutative LRBs

- The free partially commutative LRB $B(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
B(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

- If $E=\varnothing$, then $B(G)$ is the free LRB on V.

Free partially commutative LRBs

- The free partially commutative LRB $B(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
B(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

- If $E=\varnothing$, then $B(G)$ is the free LRB on V.
- $B\left(K_{n}\right)$ is the free commutative LRB on n generators.

Free partially commutative LRBs

- The free partially commutative LRB $B(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
B(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

- If $E=\varnothing$, then $B(G)$ is the free LRB on V.
- $B\left(K_{n}\right)$ is the free commutative LRB on n generators.
- These are LRB-analogues of free partially commutative monoids and groups.

Acyclic orientations

- Elements of $B(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.

Acyclic orientations

- Elements of $B(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.

Example

Acyclic orientations

- Elements of $B(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.

Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

Acyclic orientations

- Elements of $B(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.

Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

In $B(G): c a d=c d a=d c a(c$ comes before a since $c \rightarrow a)$

Random walk on $B(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $B(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $B(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $B(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different LRB (graphical arrangement of \bar{G})

Cohomology of monoids

- Let M be a monoid and A a left $\mathbb{Z} M$-module.

Cohomology of monoids

- Let M be a monoid and A a left $\mathbb{Z} M$-module.
- The cohomology $H^{\bullet}(M ; A)$ of M with coefficients in A is the cohomology of the following cochain complex:

Cohomology of monoids

- Let M be a monoid and A a left $\mathbb{Z} M$-module.
- The cohomology $H^{\bullet}(M ; A)$ of M with coefficients in A is the cohomology of the following cochain complex:

$$
C^{q}(M ; A)=\left\{f: M^{q} \rightarrow A\right\} ;
$$

Cohomology of monoids

- Let M be a monoid and A a left $\mathbb{Z} M$-module.
- The cohomology $H^{\bullet}(M ; A)$ of M with coefficients in A is the cohomology of the following cochain complex:

$$
\begin{aligned}
& C^{q}(M ; A)=\left\{f: M^{q} \rightarrow A\right\} \\
& \begin{aligned}
\partial^{q} f\left(m_{1}, \ldots, m_{q+1}\right) & =m_{1} f\left(m_{2}, \ldots, m_{q+1}\right)+ \\
& =\sum_{i=1}^{q}(-1)^{i} f\left(m_{1}, \ldots, m_{i} m_{i+1}, \ldots, m_{q+1}\right) \\
& +(-1)^{q+1} f\left(m_{1}, \ldots, m_{q}\right)
\end{aligned}
\end{aligned}
$$

Cohomology of monoids

- Let M be a monoid and A a left $\mathbb{Z} M$-module.
- The cohomology $H^{\bullet}(M ; A)$ of M with coefficients in A is the cohomology of the following cochain complex:

$$
\begin{aligned}
& C^{q}(M ; A)=\left\{f: M^{q} \rightarrow A\right\} \\
& \begin{aligned}
\partial^{q} f\left(m_{1}, \ldots, m_{q+1}\right) & =m_{1} f\left(m_{2}, \ldots, m_{q+1}\right)+ \\
& =\sum_{i=1}^{q}(-1)^{i} f\left(m_{1}, \ldots, m_{i} m_{i+1}, \ldots, m_{q+1}\right) \\
& +(-1)^{q+1} f\left(m_{1}, \ldots, m_{q}\right)
\end{aligned}
\end{aligned}
$$

- Equivalently, $H^{n}(M ; A)=\operatorname{Ext}_{\mathbb{Z} M}^{n}(\mathbb{Z}, A)$.

Cohomological dimension

- The \mathbb{k}-cohomological dimension of M is

$$
\operatorname{cd}_{\mathbb{k}}(M)=\sup \left\{n \mid H^{n}(M ; A) \neq 0, A \in \mathbb{k} M-\bmod \right\}
$$

Cohomological dimension

- The \mathbb{k}-cohomological dimension of M is

$$
\operatorname{cd}_{\mathbb{k}}(M)=\sup \left\{n \mid H^{n}(M ; A) \neq 0, A \in \mathbb{k} M-\bmod \right\}
$$

- Equivalently, $\operatorname{cd}_{\mathbb{k}}(M)$ is the projective dimension of \mathbb{k} with the trivial $\mathbb{k} M$-module structure.

Cohomological dimension

- The \mathbb{k}-cohomological dimension of M is

$$
\operatorname{cd}_{\mathbb{k}}(M)=\sup \left\{n \mid H^{n}(M ; A) \neq 0, A \in \mathbb{k} M-\bmod \right\}
$$

- Equivalently, $\operatorname{cd}_{\mathbb{k}}(M)$ is the projective dimension of \mathbb{k} with the trivial $\mathbb{k} M$-module structure.
- $\operatorname{cd}(M):=\operatorname{cd}_{\mathbb{Z}}(M) \geq \operatorname{cd}_{\mathbb{k}}(M)$ for any \mathbb{k}.

Cohomological dimension

- The \mathbb{k}-cohomological dimension of M is

$$
\operatorname{cd}_{\mathbb{k}}(M)=\sup \left\{n \mid H^{n}(M ; A) \neq 0, A \in \mathbb{k} M-\bmod \right\}
$$

- Equivalently, $\mathrm{cd}_{\mathbb{k}}(M)$ is the projective dimension of \mathbb{k} with the trivial $\mathbb{k} M$-module structure.
- $\operatorname{cd}(M):=\operatorname{cd}_{\mathbb{Z}}(M) \geq \operatorname{cd}_{\mathbb{k}}(M)$ for any \mathbb{k}.
- We were originally interested in computing the global dimension of $\mathbb{k} B$ when \mathbb{k} is a field and B is an LRB.

Cohomological dimension

- The \mathbb{k}-cohomological dimension of M is

$$
\operatorname{cd}_{\mathbb{k}}(M)=\sup \left\{n \mid H^{n}(M ; A) \neq 0, A \in \mathbb{k} M-\bmod \right\}
$$

- Equivalently, $\operatorname{cd}_{\mathbb{k}}(M)$ is the projective dimension of \mathbb{k} with the trivial $\mathbb{k} M$-module structure.
- $\operatorname{cd}(M):=\operatorname{cd}_{\mathbb{Z}}(M) \geq \operatorname{cd}_{\mathbb{k}}(M)$ for any \mathbb{k}.
- We were originally interested in computing the global dimension of $\mathbb{k} B$ when \mathbb{k} is a field and B is an LRB.
- We were able to reduce this question to computing $\mathrm{cd}_{\mathbb{k}}$ of LRBs.

Pathologies

- Cohomological dimension of monoids has several pathologies.

Pathologies

- Cohomological dimension of monoids has several pathologies.
- Let $0 \leq m, n \leq \infty$.

Pathologies

- Cohomological dimension of monoids has several pathologies.
- Let $0 \leq m, n \leq \infty$.
- Guba and Pride showed that any monoid embeds in a monoid M with $\operatorname{cd}(M)=n$ and $\operatorname{cd}\left(M^{o p}\right)=m$.

Pathologies

- Cohomological dimension of monoids has several pathologies.
- Let $0 \leq m, n \leq \infty$.
- Guba and Pride showed that any monoid embeds in a monoid M with $\operatorname{cd}(M)=n$ and $\operatorname{cd}\left(M^{o p}\right)=m$.
- If B is an LRB, then $\operatorname{cd}\left(B^{o p}\right)=0$.

Hyperplane face monoids

Theorem (MSS)
Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d} with corresponding face monoid $\mathcal{F}(\mathscr{H})$. Then $\operatorname{cd}_{\mathbb{k}}(\mathcal{F}(\mathscr{H}))=d$.

Hyperplane face monoids

Theorem (MSS)
Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d} with corresponding face monoid $\mathcal{F}(\mathscr{H})$. Then $\operatorname{cd}_{\mathbf{k}}(\mathcal{F}(\mathscr{H}))=d$.

Corollary
Let \mathscr{H} and \mathscr{H}^{\prime} be essential hyperplane arrangements in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. Let $M=\mathcal{F}(\mathscr{H}) \times \mathcal{F}\left(\mathscr{H}^{\prime}\right)^{o p}$. Then $\operatorname{cd}(M)=n$ and $\operatorname{cd}\left(M^{o p}\right)=m$.

Trees and cohomological dimension one

Theorem (MSS)
If B is an LRB whose loop-free right Cayley graph with respect to some generating set is a tree, then $\operatorname{cd}_{\mathfrak{k}}(B) \leq 1$.

Trees and cohomological dimension one

Theorem (MSS)
If B is an LRB whose loop-free right Cayley graph with respect to some generating set is a tree, then $\operatorname{cd}_{\mathfrak{k}}(B) \leq 1$. This theorem applies to free LRBs and LRBs associated to matroids.

Free partially commutative LRBs

Theorem (MSS)
Let G be a graph with associated free partially commutative $\operatorname{LRB} B(G)$. Then $\operatorname{cd}_{k}(B(G))=\operatorname{Ler}_{\mathbf{k}}(\operatorname{Cliq}(G))$.

Free partially commutative LRBs

Theorem (MSS)
Let G be a graph with associated free partially commutative $\operatorname{LRB} B(G)$. Then $\operatorname{cd}_{\mathbf{k}}(B(G))=\operatorname{Ler}_{\mathbf{k}}(\operatorname{Cliq}(G))$.

Corollary (MSS)
Let G be a graph. Then:

Free partially commutative LRBs

Theorem (MSS)
Let G be a graph with associated free partially commutative $\operatorname{LRB} B(G)$. Then $\operatorname{cd}_{\mathbf{k}}(B(G))=\operatorname{Ler}_{\mathbf{k}}(\operatorname{Cliq}(G))$.

Corollary (MSS)
Let G be a graph. Then:

1. $\operatorname{cd}_{\mathfrak{k}}(B(G))=0$ iff G is complete;

Free partially commutative LRBs

Theorem (MSS)
Let G be a graph with associated free partially commutative $\operatorname{LRB} B(G)$. Then $\operatorname{cd}_{\mathbb{k}}(B(G))=\operatorname{Ler}_{\mathbf{k}_{\mathbf{k}}}(\operatorname{Cliq}(G))$.

Corollary (MSS)
Let G be a graph. Then:

1. $\operatorname{cd}_{\mathfrak{k}}(B(G))=0$ iff G is complete;
2. $\mathrm{cd}_{\mathfrak{k}}(B(G))=1$ iff G is chordal, but not complete.

Free partially commutative LRBs

Theorem (MSS)
Let G be a graph with associated free partially commutative $L R B B(G)$. Then $\operatorname{cd}_{\mathbb{k}}(B(G))=\operatorname{Ler}_{\mathbb{k}}(\operatorname{Cliq}(G))$.

Corollary (MSS)
Let G be a graph. Then:

1. $\operatorname{cd}_{\mathbb{k}}(B(G))=0$ iff G is complete;
2. $\operatorname{cd}_{\mathbb{k}}(B(G))=1$ iff G is chordal, but not complete.
3. if G is triangle-free but not chordal, then $\operatorname{cd}_{\mathfrak{k}}(B(G))=2$.

Poset of an LRB

An LRB B is a poset via

$$
a \leq b \quad \Longleftrightarrow \quad b a=a \quad \Longleftrightarrow \quad a B \subseteq b B
$$

Poset of an LRB

An LRB B is a poset via

$$
a \leq b \quad \Longleftrightarrow \quad b a=a \quad \Longleftrightarrow \quad a B \subseteq b B
$$

Example: $F(\{a, b, c\})$

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- Assume that the hyperplanes are given by the equations

$$
v_{i} \cdot \boldsymbol{x}=0
$$

for $i=1, \ldots, n$.

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- Assume that the hyperplanes are given by the equations

$$
v_{i} \cdot \boldsymbol{x}=0
$$

for $i=1, \ldots, n$.

- The associated zonotope is the Minkowski sum of the line segments $\left[0, v_{i}\right]$:

$$
\mathcal{Z}(\mathscr{H})=\left\{\sum_{i=1}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1\right\} .
$$

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- Assume that the hyperplanes are given by the equations

$$
v_{i} \cdot \boldsymbol{x}=0
$$

for $i=1, \ldots, n$.

- The associated zonotope is the Minkowski sum of the line segments $\left[0, v_{i}\right]$:

$$
\mathcal{Z}(\mathscr{H})=\left\{\sum_{i=1}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1\right\}
$$

- It naturally has the structure of a polyhedral ball.

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- Assume that the hyperplanes are given by the equations

$$
v_{i} \cdot \boldsymbol{x}=0
$$

for $i=1, \ldots, n$.

- The associated zonotope is the Minkowski sum of the line segments $\left[0, v_{i}\right]$:

$$
\mathcal{Z}(\mathscr{H})=\left\{\sum_{i=1}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1\right\} .
$$

- It naturally has the structure of a polyhedral ball.
- $\mathcal{F}(\mathscr{H})$ is isomorphic to the face poset of $\mathcal{Z}(\mathscr{H})$.

The poset for a hyperplane arrangement

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- Assume that the hyperplanes are given by the equations

$$
v_{i} \cdot \boldsymbol{x}=0
$$

for $i=1, \ldots, n$.

- The associated zonotope is the Minkowski sum of the line segments $\left[0, v_{i}\right]$:

$$
\mathcal{Z}(\mathscr{H})=\left\{\sum_{i=1}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1\right\} .
$$

- It naturally has the structure of a polyhedral ball.
- $\mathcal{F}(\mathscr{H})$ is isomorphic to the face poset of $\mathcal{Z}(\mathscr{H})$.
- Thus $\Delta(\mathcal{F}(\mathscr{H}))$ is the barycentric subdivision of $\mathcal{Z}(\mathscr{H})$.

Certain subposets of an LRB

- If P is a poset and $a \in P$, put $P_{<a}=\{b \in P \mid b<a\}$.

Certain subposets of an LRB

- If P is a poset and $a \in P$, put $P_{<a}=\{b \in P \mid b<a\}$.

Example: $F(\{a, b, c\})_{<b}$ is given by

Subposets of hyperplane face monoids

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.

Subposets of hyperplane face monoids

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- $\mathcal{F}(\mathscr{H})$ is the face poset of the zonotope $\mathcal{Z}(\mathscr{H})$.

Subposets of hyperplane face monoids

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- $\mathcal{F}(\mathscr{H})$ is the face poset of the zonotope $\mathcal{Z}(\mathscr{H})$.
- Thus $\Delta\left(\mathcal{F}(\mathscr{H})_{<1}\right)$ is a ($d-1$)-sphere.

Subposets of hyperplane face monoids

- Let \mathscr{H} be an essential hyperplane arrangement in \mathbb{R}^{d}.
- $\mathcal{F}(\mathscr{H})$ is the face poset of the zonotope $\mathcal{Z}(\mathscr{H})$.
- Thus $\Delta\left(\mathcal{F}(\mathscr{H})_{<1}\right)$ is a $(d-1)$-sphere.
- $\Delta\left(\mathcal{F}(\mathscr{H})_{<a}\right)$ is in general a sphere of dimension $<d$.

Subposets of free partially commutative LRBs

- Let G be a graph.

Subposets of free partially commutative LRBs

- Let G be a graph.
- $\Delta\left(B(G)_{<1}\right)$ is homotopy equivalent to $\operatorname{Cliq}(G)$.

Subposets of free partially commutative LRBs

- Let G be a graph.
- $\Delta\left(B(G)_{<1}\right)$ is homotopy equivalent to $\operatorname{Cliq}(G)$.
- The proof uses Rota's cross-cut theorem.

Subposets of free partially commutative LRBs

- Let G be a graph.
- $\Delta\left(B(G)_{<1}\right)$ is homotopy equivalent to $\operatorname{Cliq}(G)$.
- The proof uses Rota's cross-cut theorem.
- More generally, $\Delta\left(B(G)_{<a}\right)$ is homotopy equivalent to an induced subcomplex of $\operatorname{Cliq}(G)$.

Subposets of free partially commutative LRBs

- Let G be a graph.
- $\Delta\left(B(G)_{<1}\right)$ is homotopy equivalent to $\operatorname{Cliq}(G)$.
- The proof uses Rota's cross-cut theorem.
- More generally, $\Delta\left(B(G)_{<a}\right)$ is homotopy equivalent to an induced subcomplex of $\operatorname{Cliq}(G)$.
- Moreover, each induced subcomplex comes up in this way.

The main theorem

Recall: $\operatorname{vd}_{\mathbb{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\}$.

The main theorem

Recall: $\operatorname{vd}_{\mathfrak{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\}$.
Theorem (MSS)
Let B be an LRB. Then

$$
\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{\operatorname{vd}_{\mathfrak{k}}\left(\Delta\left(B_{<a}\right)\right) \mid a \in B\right\} .
$$

The main theorem

Recall: $\operatorname{vd}_{\mathfrak{k}}(K)=\min \left\{d \mid \forall n \geq d, \widetilde{H}^{n}(K, \mathbb{k})=0\right\}$.
Theorem (MSS)
Let B be an LRB. Then

$$
\operatorname{cd}_{\mathfrak{k}}(B)=\max \left\{\operatorname{vd}_{\mathbb{k}}\left(\Delta\left(B_{<a}\right)\right) \mid a \in B\right\} .
$$

Corollary (MSS)
$\operatorname{cd}_{\mathfrak{k}}(B) \leq \operatorname{Ler}_{\mathrm{k}}(\Delta(B))$.

Semi-free actions

A simplicial action $B \curvearrowright K$ of an LRB on a simplicial complex is semi-free if the stabilizer of each simplex has a minimum element.

Semi-free actions

A simplicial action $B \curvearrowright K$ of an LRB on a simplicial complex is semi-free if the stabilizer of each simplex has a minimum element.

Theorem (MSS)
Suppose that $B \curvearrowright K$ is a semi-free action on a contractible simplicial complex. Then the augmented chain complex of K is a projective resolution of \mathbb{k} over $\mathbb{k} B$.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.
- $\Delta(B)$ is contractible because 1 is a cone point.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.
- $\Delta(B)$ is contractible because 1 is a cone point.
- Let $\sigma=b_{0}<b_{1}<\cdots<b_{m}$ be a simplex.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.
- $\Delta(B)$ is contractible because 1 is a cone point.
- Let $\sigma=b_{0}<b_{1}<\cdots<b_{m}$ be a simplex.
- Then b_{m} is the minimum element of the stabilizer of σ.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.
- $\Delta(B)$ is contractible because 1 is a cone point.
- Let $\sigma=b_{0}<b_{1}<\cdots<b_{m}$ be a simplex.
- Then b_{m} is the minimum element of the stabilizer of σ.
- So $B \curvearrowright \Delta(B)$ is semi-free.

The action on $\Delta(B)$

- The left action of B on itself is order preserving.
- Thus B acts on $\Delta(B)$ by simplicial maps.
- $\Delta(B)$ is contractible because 1 is a cone point.
- Let $\sigma=b_{0}<b_{1}<\cdots<b_{m}$ be a simplex.
- Then b_{m} is the minimum element of the stabilizer of σ.
- So $B \curvearrowright \Delta(B)$ is semi-free.
- In particular, $\operatorname{cd}_{\mathbb{k}}(B)<\infty$.

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.
- $\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{n \mid H^{n}(B ; \mathbb{k} B) \neq 0\right\}$.

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.
- $\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{n \mid H^{n}(B ; \mathbb{k} B) \neq 0\right\}$.
- $\mathbb{k} B$ has a filtration by certain modules V_{a} with $a \in B$.

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.
- $\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{n \mid H^{n}(B ; \mathbb{k} B) \neq 0\right\}$.
- $\mathbb{k} B$ has a filtration by certain modules V_{a} with $a \in B$.
- $V_{a}=\mathbb{k}$ where $b \in B$ acts as 1 if $a b=a$ and as 0 , else.

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.
- $\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{n \mid H^{n}(B ; \mathbb{k} B) \neq 0\right\}$.
- $\mathbb{k} B$ has a filtration by certain modules V_{a} with $a \in B$.
- $V_{a}=\mathbb{k}$ where $b \in B$ acts as 1 if $a b=a$ and as 0 , else.
- We compute using the resolution from $\Delta(B)$ that

$$
H^{n}\left(B ; V_{a}\right) \cong H^{n}\left(B_{\leq a}, B_{<a} ; \mathbb{k}\right) \cong \widetilde{H}^{n-1}\left(B_{<a} ; \mathbb{k}\right)
$$

The remaining ideas

- The remainder of the proof of the main theorem is mostly algebraic.
- $\operatorname{cd}_{\mathbb{k}}(B)=\max \left\{n \mid H^{n}(B ; \mathbb{k} B) \neq 0\right\}$.
- $\mathbb{k} B$ has a filtration by certain modules V_{a} with $a \in B$.
- $V_{a}=\mathbb{k}$ where $b \in B$ acts as 1 if $a b=a$ and as 0 , else.
- We compute using the resolution from $\Delta(B)$ that

$$
H^{n}\left(B ; V_{a}\right) \cong H^{n}\left(B_{\leq a}, B_{<a} ; \mathbb{k}\right) \cong \widetilde{H}^{n-1}\left(B_{<a} ; \mathbb{k}\right)
$$

- The last isomorphism uses that $B_{\leq a}$ is a cone on $B_{<a}$, hence contractible, and the long exact sequence in relative cohomology.

The end

Thank you for your attention!

