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The plan

• Our goal is to give some idea of how combinatorial
topology can be used to compute homological invariants
of some monoids that arose in combinatorics.

• We begin with the relevant combinatorial topology.

• Then we give examples of the monoids and explain why
people are interested in them.

• Then we try to put it altogether and state our main
results.
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Simplicial complexes

• A simplicial complex K is a pair (V,F) where V is a
finite set and F a collection of nonempty subsets of V
such that:

• ∅ 6= X ⊆ Y ∈ F implies X ∈ F ;
•

⋃
F = V .

• An element X ∈ F is called a q-simplex where
q = |X| − 1.

• dimK is the dimension of the largest simplex in K.

• The q-skeleton Kq consists of all simplices of dimension
at most q.

• Each simplicial complex K has a geometric realization
|K| ⊆ R

|V |.

• |K| is the union of the simplices spanned by sets of
coordinate vectors corresponding to an element of F .
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Order complex

• To each finite poset P is associated its order complex
∆(P ).

• The vertex set of ∆(P ) is P .

• A subset of P is a simplex if it is a chain.

• Let K be a regular cell complex with face poset P .

• Then ∆(P ) is the barycentric subdivision of K.
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The nerve construction

• Let F be a finite family of subsets of some set.
• The nerve N (F ) of F is the following simplicial
complex.

• Vertex set: F

• Simplices: {Xi1 , . . . , Xik} is a simplex iff

Xi1 ∩ · · · ∩Xik 6= ∅

• The nerve of an open cover is fundamental to Čech
cohomology.
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d-representability

• A simplicial complex K is d-representable if K = N (F )
where F is a family of compact convex subsets of Rd.

• For example, K is 1-representable if it is the nerve of a
collection of closed intervals.

• The q-simplex is 1-representable: take q + 1 closed
intervals centered at 0.

• The four-cycle graph C4 is not 1-representable.

• d-representability is a combinatorial, not a topological,
property.

• An obstruction to d-representability was found in the
1920s by Helly.

• The modern way to formulate his result is via Leray
numbers.
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Vanishing dimension of a simplicial complex

• Fix a commutative ring with unit k for the duration.

• The vanishing dimension of K is

vdk(K) = min{d | ∀n ≥ d, H̃n(K, k) = 0}.

• Clearly vdk(K) ≤ dim(K) + 1.

• E.g., vdk(S
1 × [0, 1]2) = 2 = vdk(S

1).

• vdk(K) is a homotopy invariant.
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The Leray number

• If W ⊆ K0, then the induced subcomplex K[W ] consists
of all simplices whose vertices belong to W .

• The Leray number of K is

Lerk(K) = max{vdk(K[W ]) | W ⊆ K0}.

• In other words the reduced cohomology of all induced
subcomplexes of K vanishes from Lerk(K) onward.

• Lerk(K) ≤ dimK + 1.

• Lerk(K) is a combinatorial invariant, not a topological
invariant.

• Lerk(K) = 0 iff K is a simplex.
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Flag complexes

• K is a flag complex if whenever the 1-skeleton of a
simplex belongs to K, then so does the simplex.

• Flag complexes are determined by their 1-skeletons.

• The order complex of a poset is a flag complex.

• Let G = (V,E) be a graph.

• The clique complex Cliq(G) is the flag complex with
vertex set V and simplices the cliques of G.
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Helly-type theorems

Theorem (‘Helly’)

If K is d-representable, then Lerk(K) ≤ d.

• In general, the converse is false.

• A graph is chordal if it contains no induced cycle of length
greater than 3.

Theorem (??)

The following are equivalent:

1. Lerk(K) ≤ 1;

2. K is the clique complex of a chordal graph.

Cliq(G) is 1-representable iff G is chordal and G is a
comparability graph (Lekkerkerker, Boland).



Combinatorial Topology Left Regular Bands Cohomological Dimension

Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial
commutative algebra.



Combinatorial Topology Left Regular Bands Cohomological Dimension

Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial
commutative algebra.

• To each simplicial complex is associated a Stanley-Reisner
ring.



Combinatorial Topology Left Regular Bands Cohomological Dimension

Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial
commutative algebra.

• To each simplicial complex is associated a Stanley-Reisner
ring.

• You factor the polynomial ring on the vertices by the ideal
generated by non-faces.



Combinatorial Topology Left Regular Bands Cohomological Dimension

Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial
commutative algebra.

• To each simplicial complex is associated a Stanley-Reisner
ring.

• You factor the polynomial ring on the vertices by the ideal
generated by non-faces.

• The Leray number Lerk(K) turns out to be the
Castelnuovo-Mumford regularity of the Stanley-Reisner
ring.
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Left regular bands (LRBs)

• We have a new interpretation of the Leray number of a
flag complex via the cohomology of LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

• x2 = x (B is a “band”)
• xyx = xy (“left regularity”)

• Informally: identities say ignore ‘repetitions’.

• Commutative LRBs are lattices with meet or join.

• All LRBs are assumed finite with identity.
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Combinatorial objects as LRBs

• A large number of combinatorial structures admit an LRB
multiplication.

• Examples include:
1. real hyperplane arrangements (Tits)
2. oriented matroids (Bland)
3. matroids (Brown)
4. complex hyperplane arrangements (Björner)
5. interval greedoids (Björner)

• Markov chains on these objects can be analyzed via LRB
representation theory.
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Random walks on hyperplane arrangements

Bidigare–Hanlon–Rockmore (1995):

◦ showed eigenvalues admit a simple description

◦ presented a unified approach to several Markov chains

Brown–Diaconis (1998):

◦ described stationary distribution

◦ proved diagonalizability of transition matrices

Brown (2000):

◦ extended results to LRBs

◦ proved diagonalizability for LRBs using algebraic
techniques and representation theory of LRBs

Others:

Björner, Athanasiadis-Diaconis, Chung-Graham, . . .
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Free LRBs and the Tsetlin library

• The free LRB F (A) on a set A consists of all
repetition-free words over the alphabet A.

• Product: concatenate and remove repetitions.

• Example: In F ({1, 2, 3, 4, 5}):

3 · 14532 = 3145✓32 = 31452

• Tsetlin Library: shelf of books
“use a book, then put it at the front”

• orderings of the books ↔ words containing every letter
• move book to the front ↔ left multiplication by generator
• long-term behavior: favorite books move to the front



Combinatorial Topology Left Regular Bands Cohomological Dimension

A q-analogue

• Let q be a prime power.



Combinatorial Topology Left Regular Bands Cohomological Dimension

A q-analogue

• Let q be a prime power.

• Fq,n is all ordered linearly independent subsets of Fn
q .



Combinatorial Topology Left Regular Bands Cohomological Dimension

A q-analogue

• Let q be a prime power.

• Fq,n is all ordered linearly independent subsets of Fn
q .

• Product: concatenate and remove elements dependent on
their predecessors.



Combinatorial Topology Left Regular Bands Cohomological Dimension

A q-analogue

• Let q be a prime power.

• Fq,n is all ordered linearly independent subsets of Fn
q .

• Product: concatenate and remove elements dependent on
their predecessors.

Example: In F2,2:

[
1
0

]
·

[
1 0
1 1

]
=

[
1 1 ✓0

0 1 ✓1

]
=

[
1 1
0 1

]



Combinatorial Topology Left Regular Bands Cohomological Dimension

A q-analogue

• Let q be a prime power.

• Fq,n is all ordered linearly independent subsets of Fn
q .

• Product: concatenate and remove elements dependent on
their predecessors.

Example: In F2,2:

[
1
0

]
·

[
1 0
1 1

]
=

[
1 1 ✓0

0 1 ✓1

]
=

[
1 1
0 1

]

This construction generalizes to matroids and interval
greedoids.
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Product of faces (LRB structure)

xy :=

{
the face first encountered after a small
movement along a line from x toward y

xy

x

y

b

b
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Solomon’s descent algebra

• Consider a finite Coxeter group W with associated
reflection arrangement HW .

• Let F(HW ) be the corresponding LRB.

• Bidigare proved the algebra of W -invariants kF(HW )W is
isomorphic to Solomon’s descent algebra Σ(W ).

• Σ(W ) is a subalgebra of kW that can be viewed as a
non-commutative character ring of W .

• For instance, in type A the algebra Σ(W ) maps onto the
character ring with nilpotent kernel.
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Free partially commutative LRBs

• The free partially commutative LRB B(G) on a graph
G = (V,E) is the LRB with presentation:

B(G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

• If E = ∅, then B(G) is the free LRB on V .

• B(Kn) is the free commutative LRB on n generators.

• These are LRB-analogues of free partially commutative
monoids and groups.
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Acyclic orientations

• Elements of B(G) correspond to acyclic orientations of
induced subgraphs of the complement G.

Example

G =
a b

d c
G =

a b

d c

Acyclic orientation on induced subgraph on vertices {a, d, c}:

a

d c

In B(G): cad = cda = dca (c comes before a since c → a)
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Random walk on B(G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a
different LRB (graphical arrangement of G)
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Cohomology of monoids

• Let M be a monoid and A a left ZM-module.
• The cohomology H•(M ;A) of M with coefficients in A is
the cohomology of the following cochain complex:

Cq(M ;A) = {f : M q → A};

∂qf(m1, . . . ,mq+1) = m1f(m2, . . . ,mq+1)+

=

q∑

i=1

(−1)if(m1, . . . ,mimi+1, . . . ,mq+1)

+ (−1)q+1f(m1, . . . ,mq)

• Equivalently, Hn(M ;A) = Extn
ZM(Z, A).
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Cohomological dimension

• The k-cohomological dimension of M is

cdk(M) = sup{n | Hn(M ;A) 6= 0, A ∈ kM-mod}.

• Equivalently, cdk(M) is the projective dimension of k with
the trivial kM-module structure.

• cd(M) := cdZ(M) ≥ cdk(M) for any k.

• We were originally interested in computing the global
dimension of kB when k is a field and B is an LRB.

• We were able to reduce this question to computing cdk of
LRBs.
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Pathologies

• Cohomological dimension of monoids has several
pathologies.

• Let 0 ≤ m,n ≤ ∞.

• Guba and Pride showed that any monoid embeds in a
monoid M with cd(M) = n and cd(Mop) = m.

• If B is an LRB, then cd(Bop) = 0.
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Hyperplane face monoids

Theorem (MSS)

Let H be an essential hyperplane arrangement in R
d with

corresponding face monoid F(H ). Then cdk(F(H )) = d.

Corollary

Let H and H ′ be essential hyperplane arrangements in R
n

and R
m, respectively. Let M = F(H )×F(H ′)op. Then

cd(M) = n and cd(Mop) = m.
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Trees and cohomological dimension one

Theorem (MSS)

If B is an LRB whose loop-free right Cayley graph with

respect to some generating set is a tree, then cdk(B) ≤ 1.

This theorem applies to free LRBs and LRBs associated to
matroids.
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Free partially commutative LRBs

Theorem (MSS)

Let G be a graph with associated free partially commutative

LRB B(G). Then cdk(B(G)) = Lerk(Cliq(G)).

Corollary (MSS)

Let G be a graph. Then:

1. cdk(B(G)) = 0 iff G is complete;

2. cdk(B(G)) = 1 iff G is chordal, but not complete.

3. if G is triangle-free but not chordal, then cdk(B(G)) = 2.
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Poset of an LRB

An LRB B is a poset via

a ≤ b ⇐⇒ ba = a ⇐⇒ aB ⊆ bB

Example: F ({a, b, c})

abcacbbacbcacabcba

abacbabccacb

abc

1
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The poset for a hyperplane arrangement

• Let H be an essential hyperplane arrangement in R
d.

• Assume that the hyperplanes are given by the equations

vi · x = 0

for i = 1, . . . , n.

• The associated zonotope is the Minkowski sum of the line
segments [0, vi]:

Z(H ) =

{
n∑

i=1

tivi | 0 ≤ ti ≤ 1

}
.

• It naturally has the structure of a polyhedral ball.

• F(H ) is isomorphic to the face poset of Z(H ).

• Thus ∆(F(H )) is the barycentric subdivision of Z(H ).
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Certain subposets of an LRB

• If P is a poset and a ∈ P , put P<a = {b ∈ P | b < a}.

Example: F ({a, b, c})<b is given by

abcacbbacbcacabcba

abacbabccacb

abc

1

F ({a, b, c})<b = {bc, ba, bca, bac}
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Subposets of hyperplane face monoids

• Let H be an essential hyperplane arrangement in R
d.

• F(H ) is the face poset of the zonotope Z(H ).

• Thus ∆(F(H )<1) is a (d− 1)-sphere.

• ∆(F(H )<a) is in general a sphere of dimension < d.
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Subposets of free partially commutative LRBs

• Let G be a graph.

• ∆(B(G)<1) is homotopy equivalent to Cliq(G).

• The proof uses Rota’s cross-cut theorem.

• More generally, ∆(B(G)<a) is homotopy equivalent to an
induced subcomplex of Cliq(G).

• Moreover, each induced subcomplex comes up in this way.
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The main theorem

Recall: vdk(K) = min{d | ∀n ≥ d, H̃n(K, k) = 0}.

Theorem (MSS)

Let B be an LRB. Then

cdk(B) = max{vdk(∆(B<a)) | a ∈ B}.

Corollary (MSS)

cdk(B) ≤ Lerk(∆(B)).
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Semi-free actions

A simplicial action B y K of an LRB on a simplicial complex
is semi-free if the stabilizer of each simplex has a minimum
element.

Theorem (MSS)

Suppose that B y K is a semi-free action on a contractible

simplicial complex. Then the augmented chain complex of K

is a projective resolution of k over kB.
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The action on ∆(B)

• The left action of B on itself is order preserving.

• Thus B acts on ∆(B) by simplicial maps.

• ∆(B) is contractible because 1 is a cone point.

• Let σ = b0 < b1 < · · · < bm be a simplex.

• Then bm is the minimum element of the stabilizer of σ.

• So B y ∆(B) is semi-free.

• In particular, cdk(B) < ∞.
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The remaining ideas

• The remainder of the proof of the main theorem is mostly
algebraic.

• cdk(B) = max{n | Hn(B; kB) 6= 0}.

• kB has a filtration by certain modules Va with a ∈ B.

• Va = k where b ∈ B acts as 1 if ab = a and as 0, else.

• We compute using the resolution from ∆(B) that

Hn(B;Va) ∼= Hn(B≤a, B<a; k) ∼= H̃n−1(B<a; k).

• The last isomorphism uses that B≤a is a cone on B<a,
hence contractible, and the long exact sequence in relative
cohomology.



Combinatorial Topology Left Regular Bands Cohomological Dimension

The end

Thank you for your attention!
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