Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids
000	00000000	00000	00000	00000

Fixed points for groups and monoids

Pedro V. Silva

CMUP, University of Porto

Ramat Gan, 11th June 2013

Pedro V. Silva Fixed points for groups and monoids

イロト イヨト イヨト イヨト

3

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids
000	00000000	00000	00000	00000

Part of the results in this talk were obtained in collaboration with:

Emanuele Rodaro (University of Porto) Mihalis Sykiotis (National and Kapodistrian University of Athens)

Э

SOR

Introduction •00	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Fixed poi	nts			

• If M is a finitely generated monoid and $\varphi \in \operatorname{End} M$, then

$$\mathsf{Fix}\,\varphi = \{x \in M \mid x\varphi = x\}$$

is the submonoid of fixed points

- Per $\varphi = \bigcup_{n \ge 1} \operatorname{Fix} \varphi^n$ is the submonoid of periodic points
- If M is a group, both $\operatorname{Fix} \varphi$ and $\operatorname{Per} \varphi$ are subgroups

(日)(4月)(4日)(4日)(日)

San

Introduction •00	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Fixed poi	nts			

• If M is a finitely generated monoid and $\varphi \in \operatorname{End} M$, then

$$\mathsf{Fix}\,\varphi = \{x \in M \mid x\varphi = x\}$$

is the submonoid of fixed points

- Per $\varphi = \bigcup_{n \ge 1} \operatorname{Fix} \varphi^n$ is the submonoid of periodic points
- If M is a group, both $\operatorname{Fix} \varphi$ and $\operatorname{Per} \varphi$ are subgroups
- If *d* is a metric on *M* inducing the discrete topology, we are also interested in the study of Fix Φ if there exists a continuous extension Φ of $\varphi \in \text{End } M$ to the completion \widehat{M}
- The fixed points in the topological closure $\overline{\mathrm{Fix}\,\varphi}$ are said to be singular, the other ones are regular

Introduction ○●○	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Landmark	5			

- Gersten 1984: Fix φ is finitely generated when G is a free group and $\varphi \in Aut G$
- Goldstein and Turner 1986: Fix φ is finitely generated when G is a free group and φ ∈ End G

(日)(4月)(4日)(4日)(日)

SQ C

Introduction ○●○	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Landmarks	5			

- Gersten 1984: Fix φ is finitely generated when G is a free group and $\varphi \in Aut G$
- Goldstein and Turner 1986: Fix φ is finitely generated when G is a free group and φ ∈ End G
- Cooper 1987: $\operatorname{Reg} \Phi$ is a finite union of $(\operatorname{Fix} \varphi)$ -orbits when G is a free group under the prefix metric and $\varphi \in \operatorname{Aut} G$
- Paulin 1989: Fix φ is finitely generated when G is a hyperbolic group and φ ∈ Aut G

(日)(4月)(4日)(4日)(日)

San

Introduction ○●○	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Landmarks	5			

- Gersten 1984: Fix φ is finitely generated when G is a free group and $\varphi \in Aut G$
- Goldstein and Turner 1986: Fix φ is finitely generated when G is a free group and φ ∈ End G
- Cooper 1987: $\operatorname{Reg} \Phi$ is a finite union of $(\operatorname{Fix} \varphi)$ -orbits when G is a free group under the prefix metric and $\varphi \in \operatorname{Aut} G$
- Paulin 1989: Fix φ is finitely generated when G is a hyperbolic group and φ ∈ Aut G
- Bestvina and Handel 1992: rk Fix φ ≤ n when G is a free group of rank n and φ ∈ Aut G
- Gaboriau, Jaeger, Levitt and Lustig 1998: if G is a free group under the prefix metric and $\varphi \in \operatorname{Aut} G$, then every $\alpha \in \operatorname{Reg} \Phi$ is either an attractor or a repeller

(日)(4月)(4日)(4日)(5)

Introduction ○○●	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Previous	work			

 Cassaigne and PVS (Ann. Inst. Fourier 2009): dynamics of Reg Φ when M is a monoid defined by a special confluent rewriting system, d is the prefix metric and φ is either a prefix-convergent or an expanding endomorphism

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Previous	work			

- Cassaigne and PVS (Ann. Inst. Fourier 2009): dynamics of Reg Φ when M is a monoid defined by a special confluent rewriting system, d is the prefix metric and φ is either a prefix-convergent or an expanding endomorphism
- PVS (Monatshefte Math. 2010): Fix φ is rational if M is a monoid defined by a special confluent rewriting system and the endomorphism φ is either boundary-injective or has bounded length decrease; finiteness theorems for Reg Φ

イロト 不得下 イヨト イヨト 二日

Introduction	Virtually free groups ●೦೦೦೦೦೦೦	Graph groups	Trace monoids	Inverse monoids 00000
Inverse ti	ransducers			

- A finite *A*-transducer is a finite *A*-automaton with an output function for edges
- Edges are labelled $p \xrightarrow{a|u} q$ with $a \in A$ and $u \in A^*$
- An *A*-transducer \mathcal{T} induces a partial mapping $\eta_{\mathcal{T}} : \widetilde{A}^* \to \widetilde{A}^*$ through the labels of successful paths

(日)(4月)(4日)(4日)(5)

Introduction	Virtually free groups ●○○○○○○○	Graph groups	Trace monoids	Inverse monoids 00000
Inverse ti	ransducers			

- A finite *A*-transducer is a finite *A*-automaton with an output function for edges
- Edges are labelled $p \xrightarrow{a|u} q$ with $a \in A$ and $u \in A^*$
- An *A*-transducer \mathcal{T} induces a partial mapping $\eta_{\mathcal{T}} : \widetilde{A}^* \to \widetilde{A}^*$ through the labels of successful paths
- If à = A ∪ A⁻¹ and the Ã-transducer T̃ is deterministic, complete and satisfies

$$p \xrightarrow{a|u} q$$
 if and only if $q \xrightarrow{a^{-1}|u^{-1}} p$,

it is said to be inverse

• if \mathcal{T} is inverse, $\eta_{\mathcal{T}}$ induces a partial mapping $\overline{\eta}_{\mathcal{T}} : F_A \to F_A$ (a transduction of the free group F_A)

(日)(4月)(4日)(4日)(5)

Introduction 000	Virtually free groups ○●○○○○○○○	Graph groups	Trace monoids	Inverse monoids 00000
A finiten	ess theorem			

Theorem (PVS 2012)

Let ψ be a transduction of F_A and let $z \in F_A$. Then

$$L_z = \{g \in F_A \mid g\psi = gz\}$$

is rational

Pedro V. Silva Fixed points for groups and monoids

590

Introduction 000	Virtually free groups ○○●○○○○○○	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	ne proof			

We adapt the automata-theoretic proof of Goldstein and Turner to the context of inverse transducers:

イロト イロト イヨト イヨト 三日

SOR

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	e proof			

We adapt the automata-theoretic proof of Goldstein and Turner to the context of inverse transducers:

- We define an infinite inverse A-automaton A with vertices $(g^{-1}(g\psi), q_0g)$
- \bullet We define the outward edges of ${\cal A}$

(日)(4月)(4日)(4日)(5)

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	e proof			

We adapt the automata-theoretic proof of Goldstein and Turner to the context of inverse transducers:

- We define an infinite inverse A-automaton A with vertices $(g^{-1}(g\psi), q_0g)$
- \bullet We define the outward edges of ${\cal A}$
- Then we use them to show that there is a finite subautomaton of \mathcal{A} recognizing the reduced forms of L_z

Introduction 000	Virtually free groups ○○○●○○○○○	Graph groups	Trace monoids	Inverse monoids 00000
Virtually	free groups			

- A group is virtually free if it has a free subgroup of finite index
- It is straightforward to derive from the preceding theorem an alternative proof for:

Theorem (Sykiotis 2002)

Let φ be an endomorphism of a finitely generated virtually free group. Then Fix φ is finitely generated.

イロト イポト イヨト イヨト

Introduction 000	Virtually free groups ○○○○●○○○○	Graph groups	Trace monoids	Inverse monoids 00000
A new m	odel for the bou	undary		

- Virtually free groups are hyperbolic and have thus a well-known established boundary
- For a fixed set A of generators of G, the shortlex minimal geodesics M_A constitute a set of normal forms for G

(日)(4月)(4日)(4日)(5)

SOR

Introduction	Virtually free groups ○○○○●○○○○	Graph groups	Trace monoids	Inverse monoids 00000
A new m	odel for the bou	undary		

- Virtually free groups are hyperbolic and have thus a well-known established boundary
- For a fixed set A of generators of G, the shortlex minimal geodesics M_A constitute a set of normal forms for G
- By using a result of Gilman, Hermiller, Holt and Rees, we can choose *A* so that:
 - M_A is the set of irreducibles of a nice finite rewriting system

Introduction 000	Virtually free groups ○○○○●○○○○	Graph groups	Trace monoids	Inverse monoids 00000
A new m	odel for the bou	Indary		

- Virtually free groups are hyperbolic and have thus a well-known established boundary
- For a fixed set A of generators of G, the shortlex minimal geodesics M_A constitute a set of normal forms for G
- By using a result of Gilman, Hermiller, Holt and Rees, we can choose *A* so that:
 - M_A is the set of irreducibles of a nice finite rewriting system
 - M_A under the prefix metric can be completed by adding all the infinite words with prefixes in M_A
 - This completion, under the prefix metric, is homeomorphic to the hyperbolic completion \widehat{G} of G

(日)(4月)(4日)(4日)(日)

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Uniformly	v continuous end	lomorphisms		

• These are the endomorphisms that admit continuous extensions to the boundary

イロト イヨト イヨト イヨト

1

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 00000
Uniform	v continuous end	lomorphisms	3	

- These are the endomorphisms that admit continuous extensions to the boundary
- We can prove that, for virtually free groups, they are precisely the virtually injective endomorphisms
- Moreover, they satisfy the bounded cancellation property

イロト イポト イヨト イヨト

Introduction	Virtually free groups ○○○○○●○○	Graph groups	Trace monoids	Inverse monoids 00000
Finitely r	nany orbits			

- Fix φ acts naturally on the left of Fix Φ
- By restriction, Fix φ acts also on the left of Sing Φ and Reg Φ
- The finiteness condition on Fix Φ closest to finite generation is the existence of finitely many (Fix φ)-orbits

(日)(4月)(4日)(4日)(日)

Introduction	Virtually free groups ○○○○○●○○	Graph groups	Trace monoids	Inverse monoids 00000
Finitely r	nany orbits			

- Fix φ acts naturally on the left of Fix Φ
- By restriction, Fix φ acts also on the left of Sing Φ and Reg Φ
- The finiteness condition on Fix Φ closest to finite generation is the existence of finitely many (Fix φ)-orbits

Theorem (PVS 2012)

Let φ be a virtually injective endomorphism of a finitely generated virtually free group G. Then Reg Φ has finitely many (Fix φ)-orbits.

イロト イポト イヨト イヨト

Introduction 000	Virtually free groups ○○○○○○●○	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	e proof			

- We construct an infinite deterministic \widetilde{A} -automaton \mathcal{A}'_{φ} recognizing $Fix\Phi$
- The vertices of \mathcal{A}'_{arphi} are 4-uples

イロト イロト イヨト イヨト 三日

na a

Introduction	Virtually free groups ○○○○○○●○	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	ne proof			

- We construct an infinite deterministic \widetilde{A} -automaton \mathcal{A}'_{φ} recognizing $Fix\Phi$
- The vertices of \mathcal{A}'_{φ} are 4-uples
- \mathcal{A}'_{ω} has a finite subautomaton \mathcal{A}''_{ω} recognizing Sing Φ
- \mathcal{A}'_{φ} equals \mathcal{A}''_{φ} with finitely many (infinite) hairs adjoined

(日)(4月)(4日)(4日)(5)

Introduction 000	Virtually free groups ○○○○○○●○	Graph groups	Trace monoids	Inverse monoids 00000
ldea of th	e proof			

- We construct an infinite deterministic \widetilde{A} -automaton \mathcal{A}'_{φ} recognizing $Fix\Phi$
- The vertices of \mathcal{A}'_{φ} are 4-uples
- \mathcal{A}'_{arphi} has a finite subautomaton \mathcal{A}''_{arphi} recognizing $\mathsf{Sing}\,\Phi$
- \mathcal{A}'_{φ} equals \mathcal{A}''_{φ} with finitely many (infinite) hairs adjoined

Corollary (PVS 2012)

Let φ be a virtually injective endomorphism of a finitely generated virtually free group G with Fix φ finite. Then Fix Φ is also finite.

Introduction 000	Virtually free groups ○○○○○○○●	Graph groups	Trace monoids	Inverse monoids 00000
CL .C		i e i -		

Classification of the regular fixed points

The following theorem generalizes the theorem proved by Gaboriau, Jaeger, Levitt and Lustig for free group automorphisms:

Theorem (PVS 2012)

Let φ be an automorphism of a finitely generated virtually free group. Then Reg Φ contains only exponentially stable attractors and exponentially stable repellers.

(日本) (日本) (日本)

Introduction 000	Virtually free groups	Graph groups ●0000	Trace monoids	Inverse monoids 00000
Graph gr	oups			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The graph group $G(\Gamma)$ is presented by

 $\langle V \mid ab = ba, (a - b) \in E \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Introduction	Virtually free groups	Graph groups ●0000	Trace monoids	Inverse monoids 00000
Graph gr	oups			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The graph group $G(\Gamma)$ is presented by

 $\langle V \mid ab = ba, (a - b) \in E \}$

- If Γ has no edges, $G(\Gamma)$ is the free group on V
- If Γ is complete, $G(\Gamma)$ is the free abelian group on V

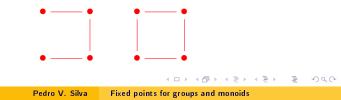
▲ロト ▲冊ト ▲臣ト ▲臣ト 三臣 - のへで

Introduction	Virtually free groups	Graph groups ●0000	Trace monoids	Inverse monoids 00000
Graph gr	oups			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The graph group $G(\Gamma)$ is presented by

 $\langle V \mid ab = ba, (a - b) \in E \}$

- If Γ has no edges, $G(\Gamma)$ is the free group on V
- If Γ is complete, $G(\Gamma)$ is the free abelian group on V
- Graph groups are also known as right-angled Artin groups
- We say that a simple graph is a transitive forest if it has no full subgraphs of one of the following forms



Introduction 000	Virtually free groups	Graph groups ○●○○○	Trace monoids	Inverse monoids 00000
- I				

Endomorphism fixed points

Theorem (Rodaro, PVS and Sykiotis 2012)

Let $\Gamma = (V, E)$ be a finite simple graph. Then the following conditions are equivalent:

- (i) Fix φ is finitely generated for every $\varphi \in \text{End } G(\Gamma)$;
- (ii) Per φ is finitely generated for every $\varphi \in \text{End } G(\Gamma)$;
- (iii) Γ is a disjoint union of complete graphs;
- (iv) $G(\Gamma)$ is a free product of finitely many free abelian groups of finite rank.

(日)(4月)(4日)(4日)(5)

Introduction 000	Virtually free groups	Graph groups ○○●○○	Trace monoids	Inverse monoids 00000
Δ.	1 C C 1 C			

Automorphism fixed points

Theorem (Rodaro, PVS and Sykiotis 2012)

Let $\Gamma = (V, E)$ be a finite transitive forest. Then the following conditions are equivalent:

- (i) Fix φ is finitely generated for every $\varphi \in Aut G(\Gamma)$;
- (ii) Per φ is finitely generated for every $\varphi \in \operatorname{Aut} G(\Gamma)$;
- (iii) Γ is a disjoint union of complete graphs;
- (iv) $G(\Gamma)$ is a free product of finitely many free abelian groups of finite rank.

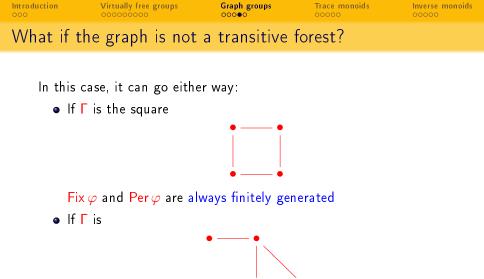
(日)(4月)(4日)(4日)(5)

In this case, it can go either way:

• If Γ is the square

 $\operatorname{Fix} \varphi$ and $\operatorname{Per} \varphi$ are always finitely generated

イロト イポト イヨト イヨト



both Fix φ and Per φ may be non finitely generated

Pedro V. Silva Fixed points for groups and monoids

(D) (A) (A) (A) (A)

Introduction	Virtually free groups	Graph groups ○○○○●	Trace monoids	Inverse monoids 00000
Techniqu	es used			

 If Γ is not a disjoint union of complete graphs, we explicitly construct endomorphisms/automorphisms with non finitely generated fixed (periodic) point subgroups

(日)(4月)(4日)(4日)(日)

SQ C

Introduction	Virtually free groups	Graph groups ○○○○●	Trace monoids	Inverse monoids 00000
Technique	es used			

- If Γ is not a disjoint union of complete graphs, we explicitly construct endomorphisms/automorphisms with non finitely generated fixed (periodic) point subgroups
- If Γ is a disjoint union of complete graphs, we use theorems of Sykiotis on the Kurosh rank of free products of finitely generated nilpotent and finite groups
- Sykiotis' theorems (2005 and 2007) have generalized the aforementioned Bestvina and Handel's rank theorems

Introduction 000	Virtually free groups	Graph groups	Trace monoids ●○○○○	Inverse monoids 00000
Trace mo	noids			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The trace monoid $M(\Gamma)$ is presented by

$$\langle V \mid ab = ba, (a - b) \in E \}$$

Introduction 000	Virtually free groups	Graph groups	Trace monoids ●0000	Inverse monoids 00000
Trace mo	noids			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The trace monoid $M(\Gamma)$ is presented by

$$\langle V \mid ab = ba, (a - b) \in E \}$$

- If Γ has no edges, $M(\Gamma)$ is the free monoid on V
- If Γ is complete, $M(\Gamma)$ is the free commutative monoid on V
- Trace monoids are the monoid version of graph groups

Introduction 000	Virtually free groups	Graph groups	Trace monoids ●0000	Inverse monoids 00000
Trace mo	noids			

- Let $\Gamma = (V, E)$ be a finite simple graph
- The trace monoid $M(\Gamma)$ is presented by

$$\langle V \mid ab = ba, (a - b) \in E \}$$

- If Γ has no edges, $M(\Gamma)$ is the free monoid on V
- If Γ is complete, $M(\Gamma)$ is the free commutative monoid on V
- Trace monoids are the monoid version of graph groups
- Foata normal form: products of blocks $w_1 \dots w_k$ where
 - all letters in a block are different and commute
 - if a occurs in w_{i+1} then in w_i occurs either a or some letter not commuting with a

Introduction	Virtually free groups	Graph groups	Trace monoids ○●○○○	Inverse monoids 00000
Fixed and	periodic points			

Let $\Gamma = (V, E)$ be a finite simple graph and let $\varphi \in \operatorname{End} M(\Gamma)$. Then: (i) Fix φ is finitely generated and effectively computable;

(ii) Per φ is finitely generated and effectively computable.

Techniques used: combinatorics on traces

イロト イポト イヨト イヨト

Introduction 000	Virtually free groups	Graph groups	Trace monoids ○○●○○	Inverse monoids 00000
Real trac	es			

- A poset is d-complete if every directed set admits a join
- The prefix order is a partial order on $M(\Gamma)$
- The ideal completion $\mathbb{R}(\Gamma)$ of $M(\Gamma)$ is the set of real traces

(日) (周) (王) (王)

Э

Introduction 000	Virtually free groups	Graph groups	Trace monoids ○○●○○	Inverse monoids 00000
Real trac	es			

- A poset is d-complete if every directed set admits a join
- The prefix order is a partial order on $M(\Gamma)$
- The ideal completion $\mathbb{R}(\Gamma)$ of $M(\Gamma)$ is the set of real traces
- R(Γ) is d-complete and every order-preserving mapping φ of M(Γ) admits a unique (Scott) continuous extension Φ to R(Γ) (Φ preserves directed sets and their joins)

- ロト - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (母) - (d)

San

Introduction	Virtually free groups	Graph groups	Trace monoids ○○○●○	Inverse monoids
Finiteness	conditions			

- $\mathbb{R}(\Gamma)$ is best described as the set of all finite and infinite traces arising from Γ
- The Foata normal form can be generalized to produce a normal form w₁w₂... for infinite traces

イロト イロト イヨト イヨト 三日

San

Introduction 000	Virtually free groups	Graph groups	Trace monoids ○○○●○	Inverse monoids 00000
Finiteness	s conditions			

- $\mathbb{R}(\Gamma)$ is best described as the set of all finite and infinite traces arising from Γ
- The Foata normal form can be generalized to produce a normal form w₁w₂... for infinite traces
- We say that Y ⊆ ℝ(Γ) is rational if Y can be obtained from finite subsets of ℝ(Γ) by applying finitely many times the operators union, product, star and mixed product (finite by infinite)
- Two infinite traces are suffix-equivalent if they share an (infinite) suffix

Introduction 000	Virtually free groups	Graph groups	Trace monoids ○○○○●	Inverse monoids 00000
A finiten	ess theorem			

Let $\Gamma = (V, E)$ be a finite transitive forest. Then the following conditions are equivalent:

- (i) for every $\varphi \in \operatorname{End} M(A, I)$, $\operatorname{Reg} \Phi$ is rational;
- (ii) for every φ ∈ End M(A, I), Reg Φ has only finitely many suffix-equivalence classes;
- (iii) Γ is a disjoint union of complete graphs;
- (iv) $M(\Gamma)$ is a free product of finitely many free commutative monoids of finite rank.

Techniques used: order theory and combinatorics on traces

イロト イポト イヨト

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ●○○○○
Inverse m	nonoids			

• Inverse monoids can be viewed as monoids of partial injective transformations closed under inversion

(日) (部) (E) (E) (E)

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ●೦೦೦೦
Inverse m	nonoids			

- Inverse monoids can be viewed as monoids of partial injective transformations closed under inversion
- The free inverse monoid on *A* (denoted as *Fl_A*) admits as normal forms the set of all finite birooted *A*-labelled trees (Munn)
- $heta:\widetilde{A}^* \to Fl_A$ denotes the canonical homomorphism

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ○●○○○
Chomsky'	s hierarchy			

For languages:

- $rational \subset context-free$
 - \subset context-sensitive
 - ⊂ recursively enumerable

イロト イロト イヨト イヨト 三日

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ○●○○○
Chomsky'	s hierarchy			

For languages:

rational	С	context-free
	\subset	context-sensitive
	\subset	recursively enumerable

For subsets of *Fl_A*:

X is C if $X = L\theta$ for some L in C

イロト イロト イヨト イヨト 三日

Introduction	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ○○●○○
Periodic	points			

Let $\varphi \in \operatorname{End} Fl_A$. Then $\operatorname{Per} \varphi$ is finitely generated.

Pedro V. Silva Fixed points for groups and monoids

イロト イロト イヨト イヨト 三日

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids
Periodic	points			

Let $\varphi \in \operatorname{End} Fl_A$. Then $\operatorname{Per} \varphi$ is finitely generated.

- Every $\varphi \in \operatorname{End} FI_A$ induces some $\varphi' \in \operatorname{End} F_A$
- If φ' in injective, it admits a (unique) continuous extension $\widehat{\varphi'}: \widehat{F_A} \to \widehat{F_A}$

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids ○○○●○
A huge c	ollapse			

Let $\varphi \in \operatorname{End} Fl_A$ be such that φ' is injective and $\operatorname{Fix} \widehat{\varphi'} = 1$. Then the following conditions are equivalent:

- (i) Fix φ is context-free;
- (ii) Fix φ is rational;
- (iii) Fix φ is finitely generated;
- (iv) Fix φ is finite;
- (v) Per φ is finite;
- (vi) Per $\varphi \subseteq E(FI_A)$.

イロト イポト イヨト イヨト

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 0000●
Fixed po	ints			

Let $\varphi \in \text{End } Fl_A$ permute \widetilde{A} without fixing any letter. Then $\text{Fix } \varphi$ is not context-free.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Introduction 000	Virtually free groups	Graph groups	Trace monoids	Inverse monoids 0000●
Fixed po	ints			

Let $\varphi \in \text{End } Fl_A$ permute \widetilde{A} without fixing any letter. Then $\text{Fix } \varphi$ is not context-free.

Theorem (Rodaro and PVS 2012)

Let $\varphi \in \text{End } Fl_A$. Then Fix φ is context-sensitive.

Techniques used: combinatorics on trees, combinatorial group theory, language theory

イロト イポト イヨト イヨト