The power of \mathscr{R} -trivial monoids

Anne Schilling

Department of Mathematics, UC Davis

based on

- Arvind Ayyer, Steve Klee, Anne Schilling, arXiv:1205.7074
- Arvind Ayyer, Anne Schilling, Ben Steinberg, Nicolas M. Thiéry, arXiv.1305.1697
- Arvind Ayyer, Anne Schilling, Ben Steinberg, Nicolas M. Thiéry, in preparation

Bar Ilan University, Israel, June 13, 2013

Outline

• Directed Nonabelian Sandpile Models: Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

Outline

• Directed Nonabelian Sandpile Models: Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

• Other Markov chains:

Further examples with nice eigenvalues and multiplicities:

- Promotion Markov chain (generalization of Tsetlin library)
- Walk on reduced words of longest element of Coxeter group
- Toom models

Outline

• Directed Nonabelian Sandpile Models: Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

• Other Markov chains:

Further examples with nice eigenvalues and multiplicities:

- Promotion Markov chain (generalization of Tsetlin library)
- Walk on reduced words of longest element of Coxeter group
- Toom models

• Representation Theory of Monoids:

- Use the representation theory of *R*-trivial monoids.
- Half-regular bands

Abelian Sandpile Model

• Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.

Abelian Sandpile Model

- Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.
- Data: A graph, G = (V, E). A subset S of V, of sinks.

Abelian Sandpile Model

- Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.
- Data: A graph, G = (V, E). A subset S of V, of sinks.
- Allowed configurations: Maps $\phi: V \setminus S \to \mathbb{Z}_{\geq 0}$, such that $\phi(v) < deg(v)$, interpreted as the number of grains of sand sitting at vertex v.

Abelian Sandpile Model

- Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.
- Data: A graph, G = (V, E). A subset S of V, of sinks.
- Allowed configurations: Maps $\phi : V \setminus S \to \mathbb{Z}_{\geq 0}$, such that $\phi(v) < deg(v)$, interpreted as the number of grains of sand sitting at vertex v.
- Move: Pick a random ν, and add one grain to it. If
 φ(ν) + 1 ≥ deg(ν), topple, giving one grain each to its
 neighbors, and continue. A grain given to a sink is considered
 lost.

Abelian Sandpile Model

- Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.
- Data: A graph, G = (V, E). A subset S of V, of sinks.
- Allowed configurations: Maps $\phi : V \setminus S \to \mathbb{Z}_{\geq 0}$, such that $\phi(v) < deg(v)$, interpreted as the number of grains of sand sitting at vertex v.
- Move: Pick a random ν, and add one grain to it. If
 φ(ν) + 1 ≥ deg(ν), topple, giving one grain each to its
 neighbors, and continue. A grain given to a sink is considered
 lost.

Also known as the Chip-firing game.

Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arborescences or upward rooted trees

• Arborescence $\mathcal{T} \colon$ exactly one directed path from any vertex to the root r

Arborescences or upward rooted trees

- Arborescence \mathcal{T} : exactly one directed path from any vertex to the root r
- Set of leaves *L*: vertices with in-degree zero.

Figure: An arborescence with leaves at a, g, h, j, k.

Nonabelian sandpile model
000000000000000000000000000000000000000

Future Work

Configurations

• Threshold T_v : maximal number of grains at vertex $v \in V$.

Nonabelian sandpile model	Representation theory of monoids	Future Work
000000000000000000000000000000000000000		

Configurations

- Threshold T_v : maximal number of grains at vertex $v \in V$.
- Configuration space:

$$\Omega(\mathcal{T}) = \{(t_v)_{v \in V} \mid 0 \le t_v \le T_v\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nonabelian sandpile model	Representation theory o
000000000000000000000000000000000000000	

Future Work 00

Configurations

- Threshold T_v : maximal number of grains at vertex $v \in V$.
- Configuration space:

$$\Omega(\mathcal{T}) = \{(t_v)_{v \in V} \mid 0 \le t_v \le T_v\}.$$

monoids

• Variable t_v : the number of grains of sand at $v \in V$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.
- Unlike in the abelian sandpile model, sand grains only enter at leaves.

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.
- Unlike in the abelian sandpile model, sand grains only enter at leaves.
- The operators defining the entrance of sand grains are the same in both models.

Nonabelian sandp	oile model	
000000000000000000000000000000000000000		

Future Work 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Nonabelian sandp	oile model	
000000000000000000000000000000000000000		

Future Work 00

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Source operator: leaf $\ell \in L$

 $\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

Nonabelian sandp	oile model	
000000000000000000000000000000000000000		

Future Work

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Source operator: leaf $\ell \in L$

$$\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$$

Follow the path ℓ^{\downarrow} from ℓ to the root r

- Add a grain to the first vertex along the way that has not yet reached its threshold, if such a vertex exists.
- If no such vertex exists, then the grain is interpreted to have left the tree at the root and $\sigma_{\ell}(t) = t$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Topple operators

Definition (Trickle-down sandpile model)

 $\theta_{v}: \Omega(\mathcal{T}) \rightarrow \Omega(\mathcal{T})$

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system.

Topple operators

Definition (Trickle-down sandpile model)

```
\theta_{v}: \Omega(\mathcal{T}) \rightarrow \Omega(\mathcal{T})
```

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system.

Definition (Landslide sandpile model)

$$au_{\mathbf{v}}: \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$$

 τ_v moves all grains from $v \in V$ to the first available sites along v^{\downarrow} . Grains remaining after the root exit the system.

Topple operators

Definition (Trickle-down sandpile model)

```
\theta_{v}: \Omega(\mathcal{T}) \to \Omega(\mathcal{T})
```

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system.

Definition (Landslide sandpile model)

$$au_{v}: \Omega(\mathcal{T})
ightarrow \Omega(\mathcal{T})$$

 τ_v moves all grains from $v \in V$ to the first available sites along v^{\downarrow} . Grains remaining after the root exit the system.

Remark

If
$$t_v = 0$$
 (no grain at site v), then $\theta_v(t) = \tau_v(t) = t$.

Representation theory of monoids

Future Work

Toppling in the Trickle-down sandpile model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Representation theory of monoids

Future Work

Toppling in the Trickle-down sandpile model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Representation theory of monoids

Future Work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Toppling in the Landslide sandpile model

Representation theory of monoids

Future Work 00

Toppling in the Landslide sandpile model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Nonabelian	sandpile	model
0000000	000000	0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Markov Chains

• The Trickle-down and Landslide models are discrete-time Markov chains on $\Omega(\mathcal{T})$.

- The Trickle-down and Landslide models are discrete-time Markov chains on Ω(T).
- Probability distribution: {x_v, y_ℓ | v ∈ V, ℓ ∈ L}
 x_v: probability of choosing the topple operator θ_v (resp. τ_v)
 y_ℓ: probability of choosing the source operator σ_ℓ

Markov Chains

- The Trickle-down and Landslide models are discrete-time Markov chains on Ω(T).
- Probability distribution: {x_ν, y_ℓ | v ∈ V, ℓ ∈ L}
 x_ν: probability of choosing the topple operator θ_ν (resp. τ_ν)
 y_ℓ: probability of choosing the source operator σ_ℓ
 We assume that
 - $0 < x_v, y_\ell \leq 1$

$$\sum_{v \in V} x_v + \sum_{\ell \in L} y_\ell = 1$$
Remarks

 Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

- Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.
- Recursive definition: Both models can be defined recursively by successively removing leaves.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

- Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.
- Recursive definition: Both models can be defined recursively by successively removing leaves.
- Sources on all vertices: Allow source operators at all vertices, not just leaves!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ergodicity

Proposition (ASST 2013)

 G_{θ} : directed graph with

- vertex set $\Omega(\mathcal{T})$
- edges given by σ_{ℓ} for $\ell \in L$ and θ_{ν} for $\nu \in V$.

Then G_{θ} is strongly connected and hence the Trickle-down sandpile model is ergodic.

Ergodicity

Proposition (ASST 2013)

 G_{θ} : directed graph with

- vertex set $\Omega(\mathcal{T})$
- edges given by σ_{ℓ} for $\ell \in L$ and θ_{ν} for $\nu \in V$.

Then G_{θ} is strongly connected and hence the Trickle-down sandpile model is ergodic.

Proposition (ASST 2013)

 G_{τ} : directed graph with

• vertex set $\Omega(\mathcal{T})$

• edges given by σ_{ℓ} for $\ell \in L$ and τ_{v} for $v \in V$.

Then G_{τ} is strongly connected and hence the Landslide sandpile model is ergodic.

Nonabelian sandpile model			
000000000000000000000000000000000000000			

Future Work

Markov chains on a line with thresholds 1

Future Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Trickle-down sandpile model: Stationary distribution

- $L_v := \{\ell \in L \mid v \text{ is a vertex of } \ell^{\downarrow}\}$
- $Y_v := \sum_{\ell \in L_v} y_\ell$
- For $0 \le h \le T_v$

$$\rho_{\mathbf{v}}(h) := \frac{Y_{\mathbf{v}}^{h} \mathbf{x}_{\mathbf{v}}^{T_{\mathbf{v}}-h}}{\sum_{i=0}^{T_{\mathbf{v}}} Y_{\mathbf{v}}^{i} \mathbf{x}_{\mathbf{v}}^{T_{\mathbf{v}}-i}}$$

Future Work

Trickle-down sandpile model: Stationary distribution

•
$$L_v := \{\ell \in L \mid v \text{ is a vertex of } \ell^{\downarrow}\}$$

•
$$Y_v := \sum_{\ell \in L_v} y_\ell$$

• For $0 \le h \le T_v$

$$\rho_{\mathbf{v}}(h) := \frac{Y_{\mathbf{v}}^{h} x_{\mathbf{v}}^{T_{\mathbf{v}}-h}}{\sum_{i=0}^{T_{\mathbf{v}}} Y_{\mathbf{v}}^{i} x_{\mathbf{v}}^{T_{\mathbf{v}}-i}}$$

Theorem (ASST 2013)

The stationary distribution of the Trickle-down sandpile Markov chain defined on G_{θ} is given by the product measure

$$\mathbb{P}(t) = \prod_{v \in V} \rho_v(t_v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Nonabelian sandpile model

Representation theory of monoids

Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Landslide sandpile model: Stationary distribution

$$\mu_{v}(h) := \begin{cases} \frac{Y_{v}^{h} x_{v}}{(Y_{v} + x_{v})^{h+1}} & \text{if } h < T_{v} \\ \\ \frac{Y_{v}^{T_{v}}}{(Y_{v} + x_{v})^{T_{v}}} & \text{if } h = T_{v} \end{cases}$$

Nonabelian sandpile model

Representation theory of monoids

Future Work

Landslide sandpile model: Stationary distribution

$$\mu_{v}(h) := \begin{cases} \frac{Y_{v}^{h} x_{v}}{(Y_{v} + x_{v})^{h+1}} & \text{if } h < T_{v} \\ \\ \frac{Y_{v}^{T_{v}}}{(Y_{v} + x_{v})^{T_{v}}} & \text{if } h = T_{v} \end{cases}$$

Theorem (AST 2013)

Let $T_v = 1$ for all $v \in V$, $v \neq r$ and $T_r = m$ for some positive integer m. Then the stationary distribution of the Landslide sandpile model defined on G_{τ} is given by the product measure

$$\mathbb{P}(t) = \prod_{v \in V} \mu_v(t_v).$$

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Future Work

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2013)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda \mathbb{1}) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

・ロト・西ト・山田・山田・山市・山口・

Future Work

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2013)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda \mathbb{1}) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

Eigenvalues: $y_S + x_S$ Multiplicities: T_{S^c}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Future Work

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$.

Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Future Work

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2013)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Future Work

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2013)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Mixing time: k such that $||P^k - \pi|| \le e^{-c}$

Future Work

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2013)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Mixing time: k such that $||P^k - \pi|| \le e^{-c}$ Mixing time is at most $\frac{2(n+c-1)}{p}$.

Markov chain on reduced words

 $W = \langle s_i \mid i \in I \rangle$ finite Coxeter group

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set}$ of reduced words of w_0 .

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set} \mathsf{ of reduced words of } w_0.$

Markov chain:

 $w \in \mathfrak{R}$ Define $\partial_i : \mathfrak{R} \to \mathfrak{R}$ by prepending *i* to *w* and removing the leftmost letter in *w* that makes *iw* non-reduced.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set}$ of reduced words of w_0 .

Markov chain:

 $w \in \mathfrak{R}$ Define $\partial_i : \mathfrak{R} \to \mathfrak{R}$ by prepending *i* to *w* and removing the leftmost letter in *w* that makes *iw* non-reduced.

Example

 $w = 231231 \in \Re$ for S_4 . Then $\partial_1(w) = 123121$ since 123123 = 121323 = 212323 is not reduced!

Future Work 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Half-regular bands

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Half-regular bands

Is there some uniform explanation?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Half-regular bands

Is there some uniform explanation?

Yes!

Future Work 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Definition (Transition monoid of a Markov chain / automaton) m_i transition operators of the Markov chain E.g.: • σ_ℓ and τ_v for the Landslide sandpile model Monoid: $(\mathcal{M}, \circ) = \langle m_i \rangle$

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Definition (Transition monoid of a Markov chain / automaton) m_i transition operators of the Markov chain E.g.: • σ_ℓ and τ_v for the Landslide sandpile model Monoid: $(\mathcal{M}, \circ) = \langle m_i \rangle$

Alternatively from transition matrix \overline{M} of Markov chain:

$$m_i = \overline{M}_{x_i=1;x_1=\cdots=x_{i-1}=x_{i+1}=\cdots=x_n=0}.$$

Nonabelian sandpile model

Representation theory of monoids

Future Work

The left Cayley graph for the 1D sandpile model

Nonabelian	sandpile	model
	000000	

Future Work

(日)、

э

The right Cayley graph for the 1D sandpile model

• This graph is acyclic: *R*-triviality

Nonabelian	sandpile	model
	000000	

Future Work

(日)、

э

The right Cayley graph for the 1D sandpile model

- This graph is acyclic: *R*-triviality
- Not too deep

Nonabelian	sandpile	model
00000000		

Future Work

The right Cayley graph for the 1D sandpile model

- This graph is acyclic: *R*-triviality
- Not too deep \implies bound on the rates of convergence

Future Work 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$
Nonabelian sandpile model

Representation theory of monoids

Future Work 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$

• Equivalence classes on \mathcal{M} :

$$x \mathscr{R} y$$
 if $y \mathcal{M} = x \mathcal{M}$
 $x \mathscr{L} y$ if $\mathcal{M} y = \mathcal{M} x$

Representation theory of monoids

Future Work 00

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$

• Equivalence classes on \mathcal{M} :

$$x \mathscr{R} y$$
 if $y \mathcal{M} = x \mathcal{M}$
 $x \mathscr{L} y$ if $\mathcal{M} y = \mathcal{M} x$

Definition

 $\mathcal{M} \text{ is } \mathscr{R}\text{-trivial} (\mathscr{L}\text{-trivial}) \text{ if all } \mathscr{R}\text{-classes} (\mathscr{L}\text{-classes}) \text{ are singletons. Equivalently, if the preorders are partial orders.}$

Nonabelian sandpile model

Representation theory of monoids ${\scriptstyle 0000000000000}$

Future Work 00

\mathscr{R} -trivial monoid for promotion example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

• Simple modules are of dimension 1

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

- Simple modules are of dimension 1
- Compute the character of a transformation module (counting fixed points)

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

- Simple modules are of dimension 1
- Compute the character of a transformation module (counting fixed points)
- Recover the composition factors using the character table

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

Using representation of *R*-trivial monoids?

- Steinberg '06, ...
- Not semi-simple.

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

Using representation of *R*-trivial monoids?

- Steinberg '06, ...
- Not semi-simple. But simple modules of dimension 1!
- Nice combinatorics

Future Work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Wreath product formulation of sandpile models

Choose a leaf ℓ , and decompose the state space:

$$\Omega(\mathcal{T}) = \{0, \ldots, T_\ell\} \times \Omega(\nabla_\ell(\mathcal{T})),$$

where $\nabla_{\ell} \mathcal{T}$ is \mathcal{T} without the leaf ℓ .

Wreath product formulation of sandpile models

Choose a leaf $\ell\text{,}$ and decompose the state space:

$$\Omega(\mathcal{T}) = \{0, \ldots, T_\ell\} imes \Omega(
abla_\ell(\mathcal{T})),$$

where $\nabla_{\ell} \mathcal{T}$ is \mathcal{T} without the leaf ℓ .

Recursive definition (for Landslide sandpile model):

$$\sigma_\ell(t_\ell, t) = egin{cases} (t_\ell+1, t) & ext{if } t_\ell < T_\ell \ (T_\ell, \sigma_{\mathbf{s}(\ell)} t) & ext{if } t_\ell = T_\ell \ \sigma_{\mathbf{v}}(t_\ell, t) = (t_\ell, \sigma_{\mathbf{v}} t) & (\mathbf{v}
eq \ell) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wreath product formulation of sandpile models

Choose a leaf $\ell\text{,}$ and decompose the state space:

$$\Omega(\mathcal{T}) = \{0, \ldots, T_\ell\} imes \Omega(
abla_\ell(\mathcal{T})),$$

where $\nabla_{\ell} \mathcal{T}$ is \mathcal{T} without the leaf ℓ .

Recursive definition (for Landslide sandpile model):

$$\begin{aligned} \sigma_{\ell}(t_{\ell},t) &= \begin{cases} (t_{\ell}+1,t) & \text{if } t_{\ell} < T_{\ell} \\ (T_{\ell},\sigma_{\mathbf{s}(\ell)}t) & \text{if } t_{\ell} = T_{\ell} \end{cases} \\ \sigma_{\mathbf{v}}(t_{\ell},t) &= (t_{\ell},\sigma_{\mathbf{v}}t) & (\mathbf{v} \neq \ell) \\ \tau_{\ell}(t_{\ell},t) &= (0,\sigma_{\mathbf{s}(\ell)}^{t_{\ell}}t) \\ \tau_{\mathbf{v}}(t_{\ell},t) &= (t_{\ell},\tau_{\mathbf{v}}t) & (\mathbf{v} \neq \ell) \end{cases} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Wreath product formulation of sandpile models (cont.)

Wreath product

$$M(\mathcal{T}) \subseteq (M(\mathcal{T}_{\ell}), [\mathcal{T}_{\ell}]) \wr (M(\nabla_{\ell}\mathcal{T}), \Omega(\nabla_{\ell}\mathcal{T}))$$

where

• $M(m) = \langle \alpha_m, \overline{0} \rangle$ with $\overline{0}$ the constant map 0 and

$$\alpha_m(h) = \begin{cases} h+1 & \text{if } h < m \\ m & \text{if } h = m \end{cases}$$

Wreath product formulation of sandpile models (cont.)

Wreath product

$$M(\mathcal{T}) \subseteq (M(\mathcal{T}_{\ell}), [\mathcal{T}_{\ell}]) \wr (M(\nabla_{\ell}\mathcal{T}), \Omega(\nabla_{\ell}\mathcal{T}))$$

where

• $M(m) = \langle \alpha_m, \overline{0} \rangle$ with $\overline{0}$ the constant map 0 and

$$\alpha_m(h) = \begin{cases} h+1 & \text{if } h < m \\ m & \text{if } h = m \end{cases}$$

• Generators in wreath notation

$$\begin{aligned} \sigma_{\ell} &= \alpha_{\mathcal{T}_{\ell}}(\mathrm{id}, \dots, \mathrm{id}, \sigma_{\mathbf{s}(\ell)}) \\ \sigma_{\mathbf{v}} &= (\sigma_{\mathbf{v}}, \dots, \sigma_{\mathbf{v}}) & (\mathbf{v} \neq \ell) \\ \tau_{\ell} &= \overline{\mathsf{0}}(\mathrm{id}, \sigma_{\mathbf{s}(\ell)}, \sigma_{\mathbf{s}(\ell)}^{2}, \dots, \sigma_{\mathbf{s}(\ell)}^{\mathcal{T}_{\ell}}) \\ \tau_{\mathbf{v}} &= (\tau_{\mathbf{v}}, \dots, \tau_{\mathbf{v}}) & (\mathbf{v} \neq \ell) \end{aligned}$$

Wreath product formulation of sandpile models (cont.)

Wreath product

$$M(\mathcal{T}) \subseteq (M(\mathcal{T}_{\ell}), [\mathcal{T}_{\ell}]) \wr (M(\nabla_{\ell}\mathcal{T}), \Omega(\nabla_{\ell}\mathcal{T}))$$

where

• $M(m) = \langle \alpha_m, \overline{0} \rangle$ with $\overline{0}$ the constant map 0 and

$$\alpha_m(h) = \begin{cases} h+1 & \text{if } h < m \\ m & \text{if } h = m \end{cases}$$

• Generators in wreath notation

$$\begin{aligned} \sigma_{\ell} &= \alpha_{\mathcal{T}_{\ell}}(\mathrm{id}, \dots, \mathrm{id}, \sigma_{\mathbf{s}(\ell)}) \\ \sigma_{\mathbf{v}} &= (\sigma_{\mathbf{v}}, \dots, \sigma_{\mathbf{v}}) & (\mathbf{v} \neq \ell) \\ \tau_{\ell} &= \overline{\mathsf{0}}(\mathrm{id}, \sigma_{\mathbf{s}(\ell)}, \sigma_{\mathbf{s}(\ell)}^{2}, \dots, \sigma_{\mathbf{s}(\ell)}^{\mathcal{T}_{\ell}}) \\ \tau_{\mathbf{v}} &= (\tau_{\mathbf{v}}, \dots, \tau_{\mathbf{v}}) & (\mathbf{v} \neq \ell) \end{aligned}$$

 \Rightarrow useful for proof of $\mathscr{R}\text{-triviality}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Half-regular band

 \mathcal{M} semigroup, X set of idempotent generators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Half-regular band

 \mathcal{M} semigroup, X set of idempotent generators

Definition

 ${\mathcal M}$ is called a half-regular band if there exists a total order $<_X$ on X such that

xyx = xy whenever $x <_X y$.

Half-regular band

 \mathcal{M} semigroup, X set of idempotent generators

Definition

 ${\mathcal M}$ is called a half-regular band if there exists a total order $<_X$ on X such that

xyx = xy whenever $x <_X y$.

Theorem (ASST 2013)

 \mathcal{M} is \mathscr{R} -trivial.

Half-regular band

 \mathcal{M} semigroup, X set of idempotent generators

Definition

 ${\mathcal M}$ is called a half-regular band if there exists a total order $<_X$ on X such that

xyx = xy whenever x < x y.

Theorem (ASST 2013)

 $\mathcal M$ is $\mathscr R$ -trivial.

Alternative description:

X is a set of generators such that for each generator x, $x^{k+1} = x^k$ for some k

Require that there exists a total order $<_X$ on X such that

- x and y commute or
- x is idempotent and xyx = xy

whenever $x <_X y$.

Future work

R-trivial machinery:

• Multitude of models fits this setting!

Future work

R-trivial machinery:

• Multitude of models fits this setting!

Mixing time for linear extensions:

- Recall that the uniform promotion graph led to the uniform distribution on linear extensions
- Counting linear extensions is an important problem in practice.
- Can we get better bounds on cover times? Or mixing times? (since Markov chains are irreversible)
- Explicit conjecture for second largest eigenvalue for random-to-random shuffling on posets

Happy birthday Stuart !