Boolean representations of simplicial complexes

John Rhodes

University of California at Berkeley

Ramat Gan, 11th June 2013

The results presented in this talk are joint work with Pedro V. Silva (Porto):

Matrices

Simplicial complexes

Matroids

Graphs

Lattices

Partial euclidean geometries

Configurations

Abstract simplicial complexes

- Let V be a finite set and let $H \subseteq 2^{V}$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets

Abstract simplicial complexes

- Let V be a finite set and let $H \subseteq 2^{V}$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets
- (V, H) is simple if H contains all the 2-subsets
- $\operatorname{rk}(V, H)=\max \{|X|: X \in H\}$

Abstract simplicial complexes

- Let V be a finite set and let $H \subseteq 2^{V}$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets
- (V, H) is simple if H contains all the 2-subsets
- $\operatorname{rk}(V, H)=\max \{|X|: X \in H\}$
- Graphs are simplicial complexes of rank 2
- Matroids are simplicial complexes satisfying
(EP) For all $I, J \in H$ with $|I|=|J|+1$, there exists some $i \in I \backslash J$ such that $J \cup\{i\} \in H$.

The superboolean semiring

$$
\mathbb{S B}=\left\{0,1,1^{\nu}\right\}
$$

+	0	1	1^{ν}
0	0	1	1^{ν}
1	1	1^{ν}	1^{ν}
1^{ν}	1^{ν}	1^{ν}	1^{ν}

\cdot	0	1	1^{ν}
0	0	0	0
1	0	1	1^{ν}
1^{ν}	0	1^{ν}	1^{ν}

The superboolean semiring

$$
\mathbb{S} \mathbb{B}=\left\{0,1,1^{\nu}\right\}
$$

+	0	1	1^{ν}
0	0	1	1^{ν}
1	1	1^{ν}	1^{ν}
1^{ν}	1^{ν}	1^{ν}	1^{ν}

\cdot	0	1	1^{ν}
0	0	0	0
1	0	1	1^{ν}
1^{ν}	0	1^{ν}	1^{ν}

- The vectors $C_{1}, \ldots, C_{m} \in \mathbb{S B}^{n}$ are dependent if $\lambda_{1} C_{1}+\ldots \lambda_{m} C_{m} \in\left\{0,1^{\nu}\right\}$ for some $\lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}$ not all zero
- The permanent is the positive version of the determinant

Superboolean matrices

Proposition (Izhakian and Rhodes 2011)

The following conditions are equivalent for every $M \in \mathcal{M}_{n}(\mathbb{S B})$:
(i) the column vectors of M are independent;
(ii) $\operatorname{Per} M=1$;
(iii) M can be transformed into some lower triangular matrix of the form

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
? & 1 & 0 & \cdots & 0 \\
? & ? & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
? & ? & ? & \cdots & 1
\end{array}\right)
$$

by permuting rows and permuting columns independently.

Rank of a matrix

A square matrix with permanent 1 is nonsingular.

Proposition (Izhakian 2006)

The following are equal for a given $m \times n$ superboolean matrix M :
(i) the maximum number of independent column vectors in M;
(ii) the maximum number of independent row vectors in M;
(iii) the maximum size of a nonsingular submatrix of M.

This number is the rank of M.

Representation of V -generated lattices

If $X \vee$-generates the lattice L, let $M(L, X)=\left(m_{\ell, X}\right)$ be the boolean
$L \times X$ matrix defined by

$$
m_{\ell, x}= \begin{cases}0 & \text { if } x \leq \ell \\ 1 & \text { otherwise }\end{cases}
$$

Proposition

(i) The column subset $X^{\prime} \subseteq X$ is independent if and only if it admits an enumeration x_{1}, \ldots, x_{k} such that

$$
x_{1}<\left(x_{1} \vee x_{2}\right)<\ldots<\left(x_{1} \vee \ldots \vee x_{k}\right)
$$

(ii) The rank of $M(L, X)$ equals the height of the lattice L.

Graphs

The boolean representation

- Let $\Gamma=(V, E)$ be a finite graph with $V=\{1, \ldots, n\}$.
- The adjacency matrix of Γ is the $n \times n$ boolean matrix $A_{\Gamma}=\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

The boolean representation

- Let $\Gamma=(V, E)$ be a finite graph with $V=\{1, \ldots, n\}$.
- The adjacency matrix of Γ is the $n \times n$ boolean matrix $A_{\Gamma}=\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

- But we shall prefer the matrix A_{Γ}^{c} obtained by interchanging 0 and 1 all over A_{Γ}.

The lattice of stars

- If $\Gamma=(V, E)$ and $v \in V$, let $\operatorname{St}(v)$ be the set of vertices adjacent to v
- If $W \subseteq V$, let $\operatorname{St}(W)=\cap_{w \in W} \operatorname{St}(w)$

The lattice of stars

- If $\Gamma=(V, E)$ and $v \in V$, let $\operatorname{St}(v)$ be the set of vertices adjacent to v
- If $W \subseteq V$, let $\operatorname{St}(W)=\cap_{w \in W} \operatorname{St}(w)$
- St $\Gamma=\{S t(W) \mid W \subseteq V\}$ ordered by inclusion is a lattice (with intersection as meet, and determined join)
- $\left\{y_{1}, \ldots, y_{k}\right\}$ is a transversal of the partition of the successive differences for the chain $X_{0} \supset \ldots \supset X_{k}$ if $y_{i} \in X_{i-1} \backslash X_{i}$ for $i=1, \ldots, k$.

Matrices versus lattices

Theorem

Given a finite graph $\Gamma=(V, E)$ and $W \subseteq V$, the following conditions are equivalent:
(i) the column vectors $A^{c}[w](w \in W)$ are independent;
(ii) W is a transversal of the partition of successive differences for some chain of St Γ.

Matrices versus lattices

Theorem

Given a finite graph $\Gamma=(V, E)$ and $W \subseteq V$, the following conditions are equivalent:
(i) the column vectors $A^{c}[w](w \in W)$ are independent;
(ii) W is a transversal of the partition of successive differences for some chain of St Γ.

The height of a lattice L is the length of the longest chain in L.

Theorem

Let $\Gamma=(V, E)$ be a finite graph. Then rk $A_{\Gamma}^{c}=h t S t \Gamma$.

Partial euclidean geometries

Let P be a finite nonempty set (points) and let \mathcal{L} be a nonempty subset of 2^{P} (lines). We say that (P, \mathcal{L}) is a PEG if:
(P1) $P \subseteq \cup \mathcal{L}$;
(P2) if $L, L^{\prime} \in \mathcal{L}$ are distinct, then $\left|L \cap L^{\prime}\right| \leq 1$;
(P3) $|L| \geq 2$ for every $L \in \mathcal{L}$.

Graphs and Coxeter's configurations are particular cases of PEGs.

From graphs to PEGs

- A graph is sober if St_{V} is injective
- Every graph admits a retraction onto a sober connected restriction with the same lattice of stars
- The class of sober connected graphs of rank 3 (SC3) contains all cubic graphs of girth ≥ 5 and has many interesting features

From graphs to PEGs

- A graph is sober if $\left.\mathrm{St}\right|_{V}$ is injective
- Every graph admits a retraction onto a sober connected restriction with the same lattice of stars
- The class of sober connected graphs of rank 3 (SC3) contains all cubic graphs of girth ≥ 5 and has many interesting features
- Given a graph $\Gamma=(V, E)$, let $\mathcal{L}_{\Gamma}=\{W \in \operatorname{St} \Gamma \backslash\{V\}:|W| \geq 2\}$ and let Geo $\Gamma=\left(V, \mathcal{L}_{\Gamma}\right)$

Theorem

If $\Gamma \in S C 3$, then $G e o \Gamma$ is a PEG.

Starting with the Petersen graph. . .

we get the Desargues configuration!

PEGs, graphs and lattices

- In the dual of a PEG, lines become the points
- The Levi graph of a PEG (P, \mathcal{L}) has $P \cup \mathcal{L}$ as vertex set and all the natural edges between points and lines

PEGs, graphs and lattices

- In the dual of a PEG, lines become the points
- The Levi graph of a PEG (P, \mathcal{L}) has $P \cup \mathcal{L}$ as vertex set and all the natural edges between points and lines

Theorem

Let \mathcal{G} and \mathcal{G}^{\prime} be PEG's with mindeg \mathcal{G}, mindeg $\mathcal{G}^{\prime} \geq 2$. Then the following conditions are equivalent:
(i) $\mathcal{G} \cong \mathcal{G}^{\prime}$ or $\mathcal{G}^{d} \cong \mathcal{G}^{\prime}$;
(ii) Levi $\mathcal{G} \cong$ Levi \mathcal{G}^{\prime};
(iii) St Levi $\mathcal{G} \cong$ St Levi \mathcal{G}^{\prime}.

Simplicial complexes

Boolean representations

- A simplicial complex (V, H) is boolean representable if there exists some $R \times V$ boolean matrix M such that

$$
\begin{aligned}
X \in H \Leftrightarrow & \text { the column vectors } M[x](x \in X) \\
& \text { are independent over } \mathbb{S B}
\end{aligned}
$$

holds for every $X \subseteq V$

Boolean representations

- A simplicial complex (V, H) is boolean representable if there exists some $R \times V$ boolean matrix M such that

$$
\begin{aligned}
X \in H \Leftrightarrow & \text { the column vectors } M[x](x \in X) \\
& \text { are independent over } \mathbb{S B}
\end{aligned}
$$

holds for every $X \subseteq V$

- The representation is reduced if all rows are distinct
- All matroids are boolean representable (Izhakian and Rhodes 2011), unlike field representable
- Not all simplicial complexes are boolean representable

Example: tetrahedra

The nature of the simplicial complex having K_{4} as its 2-skeleton depends on the number of 3-faces:

- 0, 3 or 4 3-faces: matroid, hence boolean representable
- 2 3-faces: not a matroid, but boolean representable
- 1 3-face: not boolean representable

Flats

- $X \subseteq V$ is a flat if

$$
\forall I \in H \cap 2^{X} \forall v \in V \backslash X \quad I \cup\{v\} \in H
$$

- The set of all flats of (V, H) is denoted by $\mathrm{Fl}(V, H)$

Flats

- $X \subseteq V$ is a flat if

$$
\forall I \in H \cap 2^{X} \forall v \in V \backslash X \quad I \cup\{v\} \in H
$$

- The set of all flats of (V, H) is denoted by $\mathrm{FI}(\mathrm{V}, \mathrm{H})$
- $\mathrm{Fl}(V, H)$ ordered by inclusion is a lattice (with intersection as meet, and determined join)

The canonical representation

$$
\begin{aligned}
& M(F I(V, H))=\left(m_{F v}\right) \text { is the } F I(V, H) \times V \text { matrix defined by } \\
& \qquad m_{F v}= \begin{cases}0 & \text { if } v \in F \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

The canonical representation

$M(\mathrm{Fl}(V, H))=\left(m_{F V}\right)$ is the $\mathrm{Fl}(V, H) \times V$ matrix defined by

$$
m_{F v}= \begin{cases}0 & \text { if } v \in F \\ 1 & \text { otherwise }\end{cases}
$$

Theorem

Let (V, H) be a simple simplicial complex. Then the following conditions are equivalent:
(i) (V, H) is boolean representable;
(ii) $\mathrm{M}(\mathrm{FI}(V, H))$ is a reduced boolean representation of (V, H).

Moreover, in this case any other reduced boolean representation of (V, H) is congruent to a submatrix of $M(F I(V, H))$.

The lattice of boolean representations

- These submatrices correspond to certain \cap-subsemilattices of FI(V, H)
- This helps to define a lattice structure on the set of boolean representations of (V, H)

The lattice of boolean representations

- These submatrices correspond to certain \cap-subsemilattices of Fl(V, H)
- This helps to define a lattice structure on the set of boolean representations of (V, H)
- In this lattice, the strictly join irreducible representations deserve special attention, and among these the minimal representations

The Fano matroid

We take $V=\{0, \ldots, 6\}$ and (V, H) of rank 3 by excluding the 7 lines in the Fano plane (the projective plane of order 2 over \mathbb{F}_{2} :

Minimal representations: lattices

The flats are \emptyset, V, the points and the 7 lines. We obtain lattices of the form below (where p, q, r, s are lines and $p q=p \cap q$):

Minimal representations: matrices

... which can be realized by matrices of the form:

$$
\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Shelling

- A basis of a simplicial complex (V, H) is a maximal element of H
- If all the bases have the same cardinal (such as in matroids), (V, H) is pure

Shelling

- A basis of a simplicial complex (V, H) is a maximal element of H
- If all the bases have the same cardinal (such as in matroids), (V, H) is pure
- (V, H) is shellable if we can order its bases as B_{1}, \ldots, B_{t} so that, for $I\left(B_{k}\right)=\left(\cup_{i=1}^{k-1} 2^{B_{i}}\right) \cap 2^{B_{k}}$,

$$
\left(B_{k}, I\left(B_{k}\right)\right) \text { is pure of rank }\left|B_{k}\right|-1
$$

for $k=2, \ldots, t$

- Such an ordering is called a shelling

Geometric realization

- Every (abstract) simplicial complex (V, H) admits an euclidean geometric realization, denoted by $\|(V, H)\|$
- The topological space $\|(V, H)\|$ is unique up to homeomorphism

Geometric realization

- Every (abstract) simplicial complex (V, H) admits an euclidean geometric realization, denoted by $\|(V, H)\|$
- The topological space $\|(V, H)\|$ is unique up to homeomorphism
- A wedge of mutually disjoint connected topological spaces X_{i} is obtained by selecting a base point $x_{i} \in X_{i}$ and then identifying all the x_{i}
- If B_{1}, \ldots, B_{t} is a shelling of (V, H), we say that $B_{k}(k>1)$ is a homology basis in this shelling if $2^{B_{k}} \backslash\left\{B_{k}\right\} \subseteq \cup_{i=1}^{k-1} 2^{B_{i}}$.

Geometric perspective of shellability

Theorem (Björner and Wachs (1996)

Let (V, H) be a shellable simplicial complex of rank r. Then:
(i) $\|(V, H)\|$ has the homotopy type of a wedge $W(V, H)$ of spheres of dimensions from 1 to $r-1$;
(ii) for $i=1, \ldots, r-1$, the number $\beta_{i}(V, H)$ of i-spheres in the construction of $W(V, H)$ is the number of homology $(i+1)$-bases in a shelling of (V, H).

Indeed, $\beta_{i}(V, H)$ is the i th Betti number of the topological space $\|(V, H)\|$.

The graph of flats

- To understand shellability for simple simplicial complexes of rank 3, we need the concept of graph of flats
- The graph of flats $\Gamma \mathrm{FI}(V, H)$ has vertex set V and edges of the form $v-w$ whenever $v \neq w$ and $v, w \in F$ for some $F \in \mathrm{Fl}(V, H) \backslash\{V\}$

Characterizing the graphs of flats

An anticlique is a totally disconnected subset of vertices.

Theorem

Let $\Gamma=(V, E)$ be a finite graph. Then $\Gamma \cong \Gamma \mathrm{FI}(V, H)$ for some boolean representable simple (V, H) of rank 3 if and only if the following conditions are satisfied:
(i) $|V| \geq 3$;
(ii) $A \neq \emptyset$;
(iii) for every nontrivial anticlique X of Γ, there exists some 3-anticlique Y such that $|X \cap Y|=2$.

The graph of flats determines shellability

Theorem

Let (V, H) be a boolean representable simple simplicial complex of rank 3. Then the following conditions are equivalent:
(i) (V, H) is shellable;
(ii) $\operatorname{\Gamma Fl}(V, H)$ has at most 2 connected components or at most 1 nontrivial connected component.

The graph of flats determines shellability

Theorem

Let (V, H) be a boolean representable simple simplicial complex of rank 3. Then the following conditions are equivalent:
(i) (V, H) is shellable;
(ii) $\Gamma \mathrm{Fl}(V, H)$ has at most 2 connected components or at most 1 nontrivial connected component.

We have also obtained formulae to compute the Betti numbers $\beta_{i}(V, H)$.

