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The results presented in this talk are joint work with Pedro V. Silva

(Porto):
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Abstract simplicial complexes

Let V be a �nite set and let H ⊆ 2V

(V ,H) is a simplicial complex (or hereditary collection) if H is

nonempty and closed under taking subsets

(V ,H) is simple if H contains all the 2-subsets

rk(V ,H) = max{|X | : X ∈ H}
Graphs are simplicial complexes of rank 2

Matroids are simplicial complexes satisfying

(EP) For all I , J ∈ H with |I | = |J|+ 1, there exists some i ∈ I \ J
such that J ∪ {i} ∈ H.
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The superboolean semiring

SB = {0, 1, 1ν}

+ 0 1 1ν

0 0 1 1ν

1 1 1ν 1ν

1ν 1ν 1ν 1ν

· 0 1 1ν

0 0 0 0

1 0 1 1ν

1ν 0 1ν 1ν

The vectors C1, . . . ,Cm ∈ SBn are dependent if

λ1C1 + . . . λmCm ∈ {0, 1ν} for some λ1, . . . , λm ∈ {0, 1} not
all zero

The permanent is the positive version of the determinant
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Superboolean matrices

Proposition (Izhakian and Rhodes 2011)

The following conditions are equivalent for every M ∈Mn(SB):

(i) the column vectors of M are independent;

(ii) PerM = 1;

(iii) M can be transformed into some lower triangular matrix of the

form 
1 0 0 . . . 0

? 1 0 . . . 0

? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1


by permuting rows and permuting columns independently.
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Rank of a matrix

A square matrix with permanent 1 is nonsingular.

Proposition (Izhakian 2006)

The following are equal for a given m × n superboolean matrix M:

(i) the maximum number of independent column vectors in M;

(ii) the maximum number of independent row vectors in M;

(iii) the maximum size of a nonsingular submatrix of M.

This number is the rank of M.
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Representation of ∨-generated lattices

If X ∨-generates the lattice L, let M(L,X ) = (m`,x) be the boolean

L× X matrix de�ned by

m`,x =

{
0 if x ≤ `
1 otherwise

Proposition

(i) The column subset X ′ ⊆ X is independent if and only if it

admits an enumeration x1, . . . , xk such that

x1 < (x1 ∨ x2) < . . . < (x1 ∨ . . . ∨ xk).

(ii) The rank of M(L,X ) equals the height of the lattice L.
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Graphs
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The boolean representation

Let Γ = (V ,E ) be a �nite graph with V = {1, . . . , n}.
The adjacency matrix of Γ is the n × n boolean matrix

AΓ = (aij) de�ned by

aij =

{
1 if {i , j} ∈ E
0 otherwise

But we shall prefer the matrix AcΓ obtained by interchanging 0

and 1 all over AΓ.
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The lattice of stars

If Γ = (V ,E ) and v ∈ V , let St(v) be the set of vertices

adjacent to v

If W ⊆ V , let St(W ) = ∩w∈WSt(w)

St Γ = {St(W ) |W ⊆ V } ordered by inclusion is a lattice

(with intersection as meet, and determined join)

{y1, . . . , yk} is a transversal of the partition of the successive

di�erences for the chain X0 ⊃ . . . ⊃ Xk if yi ∈ Xi−1 \ Xi for
i = 1, . . . , k .
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Matrices versus lattices

Theorem

Given a �nite graph Γ = (V ,E ) and W ⊆ V , the following

conditions are equivalent:

(i) the column vectors Ac [w ] (w ∈W ) are independent;

(ii) W is a transversal of the partition of successive di�erences for

some chain of St Γ.

The height of a lattice L is the length of the longest chain in L.

Theorem

Let Γ = (V ,E ) be a �nite graph. Then rkAcΓ = ht St Γ.
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Partial euclidean geometries

Let P be a �nite nonempty set (points) and let L be a nonempty

subset of 2P (lines). We say that (P,L) is a PEG if:

(P1) P ⊆ ∪L;
(P2) if L, L′ ∈ L are distinct, then |L ∩ L′| ≤ 1;

(P3) |L| ≥ 2 for every L ∈ L.

Graphs and Coxeter's con�gurations are particular cases of PEGs.
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From graphs to PEGs

A graph is sober if St|V is injective

Every graph admits a retraction onto a sober connected

restriction with the same lattice of stars

The class of sober connected graphs of rank 3 (SC3) contains

all cubic graphs of girth ≥ 5 and has many interesting features

Given a graph Γ = (V ,E ), let
LΓ = {W ∈ St Γ \ {V } : |W | ≥ 2} and let Geo Γ = (V ,LΓ)

Theorem

If Γ ∈ SC3, then Geo Γ is a PEG.
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Starting with the Petersen graph. . .
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. . . we get the Desargues con�guration!
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PEGs, graphs and lattices

In the dual of a PEG, lines become the points

The Levi graph of a PEG (P,L) has P ∪ L as vertex set and

all the natural edges between points and lines

Theorem

Let G and G′ be PEG's with mindegG,mindegG′ ≥ 2. Then the

following conditions are equivalent:

(i) G ∼= G′ or Gd ∼= G′;
(ii) LeviG ∼= LeviG′;
(iii) St LeviG ∼= St LeviG′.

John Rhodes Boolean representations of simplicial complexes



Basic notions Graphs Simplicial complexes Shellability

PEGs, graphs and lattices

In the dual of a PEG, lines become the points

The Levi graph of a PEG (P,L) has P ∪ L as vertex set and

all the natural edges between points and lines

Theorem

Let G and G′ be PEG's with mindegG,mindegG′ ≥ 2. Then the

following conditions are equivalent:

(i) G ∼= G′ or Gd ∼= G′;
(ii) LeviG ∼= LeviG′;
(iii) St LeviG ∼= St LeviG′.

John Rhodes Boolean representations of simplicial complexes



Basic notions Graphs Simplicial complexes Shellability

Simplicial complexes
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Boolean representations

A simplicial complex (V ,H) is boolean representable if there

exists some R × V boolean matrix M such that

X ∈ H ⇔ the column vectors M[x ] (x ∈ X )
are independent over SB

holds for every X ⊆ V

The representation is reduced if all rows are distinct

All matroids are boolean representable (Izhakian and Rhodes

2011), unlike �eld representable

Not all simplicial complexes are boolean representable
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Example: tetrahedra

The nature of the simplicial complex having K4 as its 2-skeleton

depends on the number of 3-faces:

•

























4444444444444444444444

•

ppppppppppppp

NNNNNNNNNNNNN

• •

0, 3 or 4 3-faces: matroid, hence boolean representable

2 3-faces: not a matroid, but boolean representable

1 3-face: not boolean representable
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Flats

X ⊆ V is a �at if

∀I ∈ H ∩ 2X ∀v ∈ V \ X I ∪ {v} ∈ H

The set of all �ats of (V ,H) is denoted by Fl(V ,H)

Fl(V ,H) ordered by inclusion is a lattice (with intersection as

meet, and determined join)
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The canonical representation

M(Fl(V ,H)) = (mFv ) is the Fl(V ,H)× V matrix de�ned by

mFv =

{
0 if v ∈ F
1 otherwise

Theorem

Let (V ,H) be a simple simplicial complex. Then the following

conditions are equivalent:

(i) (V ,H) is boolean representable;

(ii) M(Fl(V ,H)) is a reduced boolean representation of (V ,H).

Moreover, in this case any other reduced boolean representation of

(V ,H) is congruent to a submatrix of M(Fl(V ,H)).
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The lattice of boolean representations

These submatrices correspond to certain ∩-subsemilattices of

Fl(V ,H)

This helps to de�ne a lattice structure on the set of boolean

representations of (V ,H)

In this lattice, the strictly join irreducible representations

deserve special attention, and among these the minimal

representations
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The Fano matroid

We take V = {0, . . . , 6} and (V ,H) of rank 3 by excluding the 7

lines in the Fano plane (the projective plane of order 2 over F2:
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Minimal representations: lattices

The �ats are ∅,V , the points and the 7 lines. We obtain lattices of

the form below (where p, q, r , s are lines and pq = p ∩ q):

E

}}}}}}}}

BBBBBBBB

PPPPPPPPPPPPPPPP

p q r s

pq

||||||||

nnnnnnnnnnnnnnn
pr

nnnnnnnnnnnnnnn ps

BBBBBBBB

nnnnnnnnnnnnnnn
qr

BBBBBBBB
qs

PPPPPPPPPPPPPPP
rs

PPPPPPPPPPPPPPP

AAAAAAAA

∅

PPPPPPPPPPPPPPP

AAAAAAAA

}}}}}}}}

nnnnnnnnnnnnnnn

iiiiiiiiiiiiiiiiiiiiiii
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Minimal representations: matrices

...which can be realized by matrices of the form:
0 0 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 1 1 0 1

1 1 0 0 0 1 1
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Shelling

A basis of a simplicial complex (V ,H) is a maximal element of

H

If all the bases have the same cardinal (such as in matroids),

(V ,H) is pure

(V ,H) is shellable if we can order its bases as B1, . . . ,Bt so
that, for I (Bk) = (∪k−1i=1

2Bi ) ∩ 2Bk ,

(Bk , I (Bk)) is pure of rank |Bk | − 1

for k = 2, . . . , t

Such an ordering is called a shelling
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Geometric realization

Every (abstract) simplicial complex (V ,H) admits an

euclidean geometric realization, denoted by ||(V ,H)||
The topological space ||(V ,H)|| is unique up to

homeomorphism

A wedge of mutually disjoint connected topological spaces Xi
is obtained by selecting a base point xi ∈ Xi and then

identifying all the xi

If B1, . . . ,Bt is a shelling of (V ,H), we say that Bk (k > 1) is

a homology basis in this shelling if 2Bk \ {Bk} ⊆ ∪k−1i=1
2Bi .
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Geometric perspective of shellability

Theorem (Björner and Wachs (1996)

Let (V ,H) be a shellable simplicial complex of rank r . Then:

(i) ||(V ,H)|| has the homotopy type of a wedge W (V ,H) of

spheres of dimensions from 1 to r − 1;

(ii) for i = 1, . . . , r − 1, the number βi (V ,H) of i-spheres in the

construction of W (V ,H) is the number of homology

(i + 1)-bases in a shelling of (V ,H).

Indeed, βi (V ,H) is the ith Betti number of the topological space

||(V ,H)||.
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The graph of �ats

To understand shellability for simple simplicial complexes of

rank 3, we need the concept of graph of �ats

The graph of �ats ΓFl(V ,H) has vertex set V and edges of

the form v −− w whenever v 6= w and v ,w ∈ F for some

F ∈ Fl(V ,H) \ {V }
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Characterizing the graphs of �ats

An anticlique is a totally disconnected subset of vertices.

Theorem

Let Γ = (V ,E ) be a �nite graph. Then Γ ∼= ΓFl(V ,H) for some

boolean representable simple (V ,H) of rank 3 if and only if the

following conditions are satis�ed:

(i) |V | ≥ 3;

(ii) A 6= ∅;
(iii) for every nontrivial anticlique X of Γ, there exists some

3-anticlique Y such that |X ∩ Y | = 2.
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The graph of �ats determines shellability

Theorem

Let (V ,H) be a boolean representable simple simplicial complex of

rank 3. Then the following conditions are equivalent:

(i) (V ,H) is shellable;

(ii) ΓFl(V ,H) has at most 2 connected components or at most 1

nontrivial connected component.

We have also obtained formulae to compute the Betti numbers

βi (V ,H).
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