Graphs

Simplicial complexes

Boolean representations of simplicial complexes

John Rhodes

University of California at Berkeley

Ramat Gan, 11th June 2013

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

The results presented in this talk are joint work with Pedro V. Silva (Porto):

イロン イヨン イヨン イヨン

æ

Graphs

Simplicial complexes

Shellability

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Basic notions	Graphs	Simplicial complexes	Shellability
●00000	೦೦೦೦೦೦೦೦		೦೦೦೦೦೦
Abstract simplicia	l complexes		

- Let V be a finite set and let $H \subseteq 2^V$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets

• • = • • =

Basic notions	Graphs	Simplicial complexes	Shellability
●00000	೦೦೦೦೦೦೦೦		೦೦೦೦೦೦
Abstract simplicia	complexes		

- Let V be a finite set and let $H \subseteq 2^V$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets
- (V, H) is simple if H contains all the 2-subsets
- $rk(V, H) = max\{|X| : X \in H\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic notions	Graphs	Simplicial complexes	Shellability
●0000	೦೦೦೦೦೦೦೦		೦೦೦೦೦೦
Abstract simplicia	l complexes		

- Let V be a finite set and let $H \subseteq 2^V$
- (V, H) is a simplicial complex (or hereditary collection) if H is nonempty and closed under taking subsets
- (V, H) is simple if H contains all the 2-subsets
- $rk(V, H) = max\{|X| : X \in H\}$
- Graphs are simplicial complexes of rank 2
- Matroids are simplicial complexes satisfying
 (EP) For all I, J ∈ H with |I| = |J| + 1, there exists some i ∈ I \ J such that J ∪ {i} ∈ H.

A (2) > (

Basic notions 0●000		Graphs 00000000	Simplicial complexes	Shellab 00000

The superboolean semiring

 $\mathbb{SB} = \{0,1,1^\nu\}$

+	0	1	$1^{ u}$	•		0	1	$1^{ u}$
0	0	1	$1^{ u}$	0		0	0	0
1	1	$1^{ u}$	$1^{ u}$	1		0	1	$1^{ u}$
$1^{ u}$	1^{ν}	$1^{ u}$	$1^{ u}$	1^{i}	/	0	$1^{ u}$	$1^{ u}$

イロン イヨン イヨン イヨン

æ

lity

Basic notions ○●○○○		Graphs 00000000	Simplicial complexes	Shellability 000000

The superboolean semiring

 $\mathbb{SB}=\{0,1,1^\nu\}$

+	0	1	$1^{ u}$	•	0	1	$1^{ u}$
0	0	1	$1^{ u}$	 0	0	0	0
1	1	$1^{ u}$	$1^{ u}$	1	0	1	$1^{ u}$
$1^{ u}$	1^{ν}	$1^{ u}$	$1^{ u}$	1^{ν}	0	$1^{ u}$	$1^{ u}$

- The vectors $C_1, \ldots, C_m \in \mathbb{SB}^n$ are dependent if $\lambda_1 C_1 + \ldots \lambda_m C_m \in \{0, 1^{\nu}\}$ for some $\lambda_1, \ldots, \lambda_m \in \{0, 1\}$ not all zero
- The permanent is the positive version of the determinant

▲御▶ ★理▶ ★理≯

Basic notions	Graphs	Simplicial complexes	Shellability
00●00	00000000		000000
Superboolean	matrices		

Proposition (Izhakian and Rhodes 2011)

The following conditions are equivalent for every $M \in \mathcal{M}_n(\mathbb{SB})$:

- (i) the column vectors of *M* are independent;
- (ii) Per M = 1;

 (iii) *M* can be transformed into some lower triangular matrix of the form

/1	0	0		0)
?	1	0		0
?	?	1		0
1	- :	1	(1,1)	1
?	?	?		1/

by permuting rows and permuting columns independently.

Rank of a matrix

A square matrix with permanent 1 is nonsingular.

Proposition (Izhakian 2006)

The following are equal for a given $m \times n$ superboolean matrix M:

(i) the maximum number of independent column vectors in *M*;

(ii) the maximum number of independent row vectors in *M*;

(iii) the maximum size of a nonsingular submatrix of M.

This number is the rank of M.

イロト イポト イヨト イヨト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	00000000	00000000	000000
Democratica	f) /	- Address -	

Representation of V-generated lattices

If X V-generates the lattice L, let $M(L, X) = (m_{\ell,x})$ be the boolean $L \times X$ matrix defined by

$$\mathit{m}_{\ell,x} = \left\{egin{array}{cc} \mathsf{0} & ext{if } x \leq \ell \ \mathsf{1} & ext{otherwise} \end{array}
ight.$$

Proposition

(i) The column subset X' ⊆ X is independent if and only if it admits an enumeration x₁,..., x_k such that

$$x_1 < (x_1 \lor x_2) < \ldots < (x_1 \lor \ldots \lor x_k).$$

(ii) The rank of M(L, X) equals the height of the lattice L.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Graphs

John Rhodes Boolean representations of simplicial complexes

イロン イヨン イヨン イヨン

3

Basic notions	Graphs o●ooooooo	Simplicial complexes	Shellability 000000
The boolean ren	recentation		

- Let $\Gamma = (V, E)$ be a finite graph with $V = \{1, \dots, n\}$.
- The adjacency matrix of Γ is the $n \times n$ boolean matrix $A_{\Gamma} = (a_{ij})$ defined by

$$a_{ij} = \left\{ egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise} \end{array}
ight.$$

2

Basic notions	Graphs	Simplicial complexes	Shellability
00000	○●○○○○○○○		೦೦೦೦೦೦
The boolean	representation		

- Let $\Gamma = (V, E)$ be a finite graph with $V = \{1, \dots, n\}$.
- The adjacency matrix of Γ is the $n \times n$ boolean matrix $A_{\Gamma} = (a_{ij})$ defined by

$$a_{ij} = \left\{egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• But we shall prefer the matrix A_{Γ}^{c} obtained by interchanging 0 and 1 all over A_{Γ} .

(四) (日) (日)

Basic notions	Graphs	Simplicial complexes	Shellability
00000	00000000	00000000	000000
The lattice o	fatore		

- If $\Gamma = (V, E)$ and $v \in V$, let St(v) be the set of vertices adjacent to v
- If $W \subseteq V$, let $St(W) = \bigcap_{w \in W} St(w)$

э

The lattice of stars

- If $\Gamma = (V, E)$ and $v \in V$, let St(v) be the set of vertices adjacent to v
- If $W \subseteq V$, let $St(W) = \bigcap_{w \in W} St(w)$
- St Γ = {St(W) | W ⊆ V} ordered by inclusion is a lattice (with intersection as meet, and determined join)
- $\{y_1, \ldots, y_k\}$ is a transversal of the partition of the successive differences for the chain $X_0 \supset \ldots \supset X_k$ if $y_i \in X_{i-1} \setminus X_i$ for $i = 1, \ldots, k$.

Basic notions	Graphs ooo●ooooo	Simplicial complexes	Shellability ೦೦೦೦೦೦
Matrices versus			

Theorem

Given a finite graph $\Gamma = (V, E)$ and $W \subseteq V$, the following conditions are equivalent:

- (i) the column vectors $A^{c}[w]$ ($w \in W$) are independent;
- (ii) W is a transversal of the partition of successive differences for some chain of St Γ .

イロト イポト イヨト イヨト

Basic notions	Graphs ०००●०००००	Simplicial complexes	Shellability ೦೦೦೦೦೦
Matrices versus	alattices		

Theorem

Given a finite graph $\Gamma = (V, E)$ and $W \subseteq V$, the following conditions are equivalent:

(i) the column vectors $A^{c}[w]$ ($w \in W$) are independent;

(ii) W is a transversal of the partition of successive differences for some chain of St Γ .

The height of a lattice L is the length of the longest chain in L.

Theorem

Let $\Gamma = (V, E)$ be a finite graph. Then $\operatorname{rk} A_{\Gamma}^{c} = \operatorname{ht} \operatorname{St} \Gamma$.

イロト イポト イヨト イヨト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	oooo●oooo		೦೦೦೦೦೦
Partial euclidean	geometries		

Let P be a finite nonempty set (points) and let \mathcal{L} be a nonempty subset of 2^P (lines). We say that (P, \mathcal{L}) is a PEG if: (P1) $P \subseteq \cup \mathcal{L}$; (P2) if $L, L' \in \mathcal{L}$ are distinct, then $|L \cap L'| \leq 1$; (P3) $|L| \geq 2$ for every $L \in \mathcal{L}$.

Graphs and Coxeter's configurations are particular cases of PEGs.

Basic notions	Graphs	Simplicial complexes	Shellability
00000	ooooooooo		000000
From graphs to P	FGs		

- A graph is sober if $St|_V$ is injective
- Every graph admits a retraction onto a sober connected restriction with the same lattice of stars
- The class of sober connected graphs of rank 3 (SC3) contains all cubic graphs of girth ≥ 5 and has many interesting features

Basic notions	Graphs ○○○○○●○○○	Simplicial complexes	Shellability ೦೦೦೦೦೦
From graphs to	PFGs		

- A graph is sober if $St|_V$ is injective
- Every graph admits a retraction onto a sober connected restriction with the same lattice of stars
- The class of sober connected graphs of rank 3 (SC3) contains all cubic graphs of girth \geq 5 and has many interesting features
- Given a graph $\Gamma = (V, E)$, let $\mathcal{L}_{\Gamma} = \{W \in \mathsf{St}\,\Gamma \setminus \{V\} : |W| \ge 2\}$ and let $\mathsf{Geo}\,\Gamma = (V, \mathcal{L}_{\Gamma})$

Theorem

If $\Gamma \in SC3$, then Geo Γ is a PEG.

• • E • • E

Basic notions
occordGraphs
occordSimplicial complexes
occordStarting with the Petersen graph...

Shellability 000000

~8

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

 Basic notions
 Graphs
 Simplicial complexes
 Shellability

 00000
 00000000
 00000000
 00000000

 ... we get the Desargues configuration!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Basic notions	Graphs ooooooooo	Simplicial complexes	Shellability 000000
PEGs, graphs and	lattices		

- In the dual of a PEG, lines become the points
- The Levi graph of a PEG (P, L) has P ∪ L as vertex set and all the natural edges between points and lines

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	oooooooo●		೦೦೦೦೦೦
PEGs, graphs and	lattices		

- In the dual of a PEG, lines become the points
- The Levi graph of a PEG (P, L) has P ∪ L as vertex set and all the natural edges between points and lines

Theorem

Let \mathcal{G} and \mathcal{G}' be PEG's with mindeg \mathcal{G} , mindeg $\mathcal{G}' \geq 2$. Then the following conditions are equivalent:

(i)
$$\mathcal{G} \cong \mathcal{G}'$$
 or $\mathcal{G}^d \cong \mathcal{G}'$;

- (ii) Levi $\mathcal{G} \cong$ Levi \mathcal{G}' ;
- (iii) St Levi $\mathcal{G} \cong$ St Levi \mathcal{G}' .

- 同下 - 三下 - 三日

Graphs

Simplicial complexes

Shellability

Simplicial complexes

John Rhodes Boolean representations of simplicial complexes

æ

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦	o●ooooooo	000000
Boolean represent	ations		

• A simplicial complex (V, H) is boolean representable if there exists some $R \times V$ boolean matrix M such that

$X \in H \Leftrightarrow$ the column vectors M[x] ($x \in X$) are independent over SB

holds for every $X \subseteq V$

Basic notions	Graphs	Simplicial complexes	Shellability
	೦೦೦೦೦೦೦೦	○●○○○○○○	೦೦೦೦೦೦
Boolean represen	tations		

• A simplicial complex (V, H) is boolean representable if there exists some $R \times V$ boolean matrix M such that

 $X \in H \Leftrightarrow$ the column vectors M[x] ($x \in X$) are independent over SB

holds for every $X \subseteq V$

- The representation is reduced if all rows are distinct
- All matroids are boolean representable (Izhakian and Rhodes 2011), unlike field representable
- Not all simplicial complexes are boolean representable

< 同 > < 三 > < 三 >

Basic notions	Graphs 000000000	Simplicial complexes ००●००००००	Shellability
Example: tetrahe	dra		

The nature of the simplicial complex having K_4 as its 2-skeleton depends on the number of 3-faces:

- 0, 3 or 4 3-faces: matroid, hence boolean representable
- 2 3-faces: not a matroid, but boolean representable
- 1 3-face: not boolean representable

Graphs

• $X \subseteq V$ is a flat if $\forall I \in H \cap 2^X \ \forall v \in V \setminus X \qquad I \cup \{v\} \in H$

• The set of all flats of (V, H) is denoted by Fl(V, H)

э

• $X \subseteq V$ is a flat if

 $\forall I \in H \cap 2^X \; \forall v \in V \setminus X \qquad I \cup \{v\} \in H$

- The set of all flats of (V, H) is denoted by Fl(V, H)
- Fl(V, H) ordered by inclusion is a lattice (with intersection as meet, and determined join)

(日) (四) (日) (日) (日)

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦	००००●००००	೦೦೦೦೦೦
The canonical	representation		

 $M(Fl(V, H)) = (m_{Fv})$ is the $Fl(V, H) \times V$ matrix defined by

 $m_{Fv} = \left\{ egin{array}{cc} 0 & ext{if } v \in F \ 1 & ext{otherwise} \end{array}
ight.$

(ロ) (部) (E) (E) (E)

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦		೦೦೦೦೦೦
	1 A.		

The canonical representation

 $M(Fl(V, H)) = (m_{Fv})$ is the $Fl(V, H) \times V$ matrix defined by

 $m_{Fv} = \begin{cases} 0 & \text{if } v \in F \\ 1 & \text{otherwise} \end{cases}$

Theorem

Let (V, H) be a simple simplicial complex. Then the following conditions are equivalent:

(i) (V, H) is boolean representable;

(ii) M(Fl(V, H)) is a reduced boolean representation of (V, H).

Moreover, in this case any other reduced boolean representation of (V, H) is congruent to a submatrix of M(Fl(V, H)).

イロト イポト イヨト イヨト

Basic notions	Graphs 00000000	Simplicial complexes ०००००●०००	Shellability
The lettice of her		at a sec	

The lattice of boolean representations

- These submatrices correspond to certain ∩-subsemilattices of FI(V, H)
- This helps to define a lattice structure on the set of boolean representations of (V, H)

• • = • • = •

The lattice of boolean representations

- These submatrices correspond to certain ∩-subsemilattices of Fl(V, H)
- This helps to define a lattice structure on the set of boolean representations of (V, H)
- In this lattice, the strictly join irreducible representations deserve special attention, and among these the minimal representations

イロト イポト イヨト イヨト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦	ooooooo●oo	000000
The Fano matroid			

We take $V = \{0, ..., 6\}$ and (V, H) of rank 3 by excluding the 7 lines in the Fano plane (the projective plane of order 2 over \mathbb{F}_2 :

Image: A image: A

The flats are \emptyset , V, the points and the 7 lines. We obtain lattices of the form below (where p, q, r, s are lines and $pq = p \cap q$):

< 🗇 🕨 🖌 🚍 🕨

 Basic notions
 Graphs
 Simplicial complexes
 Shellability

 Minimal representations: matrices

...which can be realized by matrices of the form:

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

臣

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦		●○○○○○
Shelling			

- A basis of a simplicial complex (V, H) is a maximal element of H
- If all the bases have the same cardinal (such as in matroids),
 (V, H) is pure

< 同 > < 三 > < 三 >

Basic notions	Graphs ೦೦೦೦೦೦೦೦	Simplicial complexes	Shellability ●೦೦೦೦೦
Shelling			

- A basis of a simplicial complex (V, H) is a maximal element of H
- If all the bases have the same cardinal (such as in matroids),
 (V, H) is pure
- (V, H) is shellable if we can order its bases as B_1, \ldots, B_t so that, for $I(B_k) = (\bigcup_{i=1}^{k-1} 2^{B_i}) \cap 2^{B_k}$,

 $(B_k, I(B_k))$ is pure of rank $|B_k| - 1$

for k = 2, ..., t

• Such an ordering is called a shelling

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦		○●○○○○
Geometric realizat			

- Every (abstract) simplicial complex (V, H) admits an euclidean geometric realization, denoted by ||(V, H)||
- The topological space ||(V, H)|| is unique up to homeomorphism

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic notions	Graphs	Simplicial complexes	Shellability
00000	೦೦೦೦೦೦೦೦		○●○○○○
Geometric realiza	tion		

- Every (abstract) simplicial complex (V, H) admits an euclidean geometric realization, denoted by ||(V, H)||
- The topological space ||(V, H)|| is unique up to homeomorphism
- A wedge of mutually disjoint connected topological spaces X_i is obtained by selecting a base point x_i ∈ X_i and then identifying all the x_i
- If B_1, \ldots, B_t is a shelling of (V, H), we say that B_k (k > 1) is a homology basis in this shelling if $2^{B_k} \setminus \{B_k\} \subseteq \bigcup_{i=1}^{k-1} 2^{B_i}$.

(日) (周) (日) (日) (日)

Geometric perspective of shellability

Theorem (Björner and Wachs (1996)

Let (V, H) be a shellable simplicial complex of rank r. Then:

- (i) ||(V, H)|| has the homotopy type of a wedge W(V, H) of spheres of dimensions from 1 to r 1;
- (ii) for i = 1, ..., r 1, the number $\beta_i(V, H)$ of *i*-spheres in the construction of W(V, H) is the number of homology (i + 1)-bases in a shelling of (V, H).

Indeed, $\beta_i(V, H)$ is the *i*th Betti number of the topological space ||(V, H)||.

Graphs

The graph of flats

- To understand shellability for simple simplicial complexes of rank 3, we need the concept of graph of flats
- The graph of flats FFI(V, H) has vertex set V and edges of the form v w whenever v ≠ w and v, w ∈ F for some F ∈ FI(V, H) \ {V}

(日) (四) (日) (日) (日)

э

Characterizing the graphs of flats

An anticlique is a totally disconnected subset of vertices.

Theorem

Let $\Gamma = (V, E)$ be a finite graph. Then $\Gamma \cong \Gamma Fl(V, H)$ for some boolean representable simple (V, H) of rank 3 if and only if the following conditions are satisfied:

(日) (四) (日) (日) (日)

Basic notions

Graphs

Simplicial complexes

Shellability 00000●

The graph of flats determines shellability

Theorem

Let (V, H) be a boolean representable simple simplicial complex of rank 3. Then the following conditions are equivalent:

(i) (V, H) is shellable;

(ii) $\Gamma Fl(V, H)$ has at most 2 connected components or at most 1 nontrivial connected component.

イロト イポト イヨト イヨト

Basic notions

Graphs

Simplicial complexes

Shellability 00000●

The graph of flats determines shellability

Theorem

Let (V, H) be a boolean representable simple simplicial complex of rank 3. Then the following conditions are equivalent:

(i) (V, H) is shellable;

(ii) $\Gamma Fl(V, H)$ has at most 2 connected components or at most 1 nontrivial connected component.

We have also obtained formulae to compute the Betti numbers $\beta_i(V, H)$.

イロト イポト イヨト イヨト