Sieve Methods in Group Theory

Alex Lubotzky Hebrew University Jerusalem, Israel

joint with: Chen Meiri

Primes

1 (2) (3) 4 (5) 6 (7) $99101112 \cdots$

Let $\mathbf{P}(x)=\{p \leq x \mid p$ prime $\}, \pi(x)=\# \mathbf{P}(x)$

To get all primes up to \mathcal{N} and greater than $\sqrt{\mathcal{N}}$ - erase those which are divided by primes less $\leq \sqrt{\mathcal{N}}$.

Ex:
$\pi(\mathcal{N})-\pi(\sqrt{\mathcal{N}})=\sum_{A \subseteq \mathbf{P}(\sqrt{\mathcal{N}})}(-1)^{|A|}\left[\frac{N}{{\underset{p \in A}{ } p}]}\right.$

Sieve methods are sophisticated inclusionexclusion inequalities.

Dirichlet: primes on arithmetic progression
$\exists \infty$ many primes on $a+d \mathbb{Z}$ if $(a, d)=1$.
Think of it as \mathbb{Z} acts on \mathbb{Z} by

$$
n: z \mapsto z+n d
$$

if $(a, d)=1$ the orbit of a meets ∞ many primes.

Open problem(s): \mathbb{Z} acts on \mathbb{Z}^{m}
$\mathrm{n}:\left(a_{1}, \ldots, a_{m}\right) \rightarrow\left(a_{1}, \ldots, a_{m}\right)+n\left(d_{1}, \ldots, d_{m}\right)$ are there ∞ many vectors on the orbit whose coordinates are all primes?
e.g. $n:(1,3) \rightarrow(1,3)+n(1,1)$

Twin prime conjecture!

But true for $\mathbb{Z}^{r}, r \geq 2$ acting on \mathbb{Z}^{m} (Green-Tau-Zigler).
but Brun's sieve: there exist ∞ many almost primes, i.e. \exists a constant c s.t. the orbit has ∞ many vectors $\left(v_{1}, \ldots, v_{m}\right)$ where coordinates are product of at most c primes.

Affine Sieve Method

(Sarnak, Bourgain-Gamburd, Helfgott, Breuillard-Tao-Green, Pyber-Szabo, Salehi-Golsefidy-Varju)

Let $\Gamma \leq \operatorname{GLm}(\mathbb{Z})$ be a finitely generated infinite subgroup.
Assume $G=\bar{\Gamma}^{Z}=$ Zariski closure of Γ is such that G^{0} has no central torus (e.g. G semi-simple), $v \in \mathbb{Z}^{m}$. Then $G v$ has ∞ many almost primes.

Key point: (Salehi-Golsefidy-Varju)

$$
\begin{aligned}
& \Gamma \leq \mathrm{GLn}(\mathbb{Z}), \quad \Gamma=\langle\mathrm{S}\rangle,|\mathrm{S}|<\infty, \mathrm{G}^{0}=(\bar{\Gamma})^{0} \text { perfect } \\
& \quad q \in \mathbb{N}, \quad \pi_{q}: \mathrm{GLn}_{n}(\mathbb{Z}) \rightarrow \mathrm{GLn}(\mathbb{Z} / \mathrm{q} \mathbb{Z})
\end{aligned}
$$

Then the Cayley graphs

$$
\operatorname{Cay}\left(\pi_{q}\left(\ulcorner) ; \pi_{q}(S)\right)\right.
$$

form a family of expanders when q runs over square-free integers (and conj: for all q).

Property (τ)

Expanders

$X k$-regular graph on n vertices.
$A_{X}=$ adjacency matrix of X
an $n \times n$ matrix, e.v.'s

$$
\lambda_{0}=k \geq \lambda_{1} \geq \cdots \geq \lambda_{n-1}
$$

Def: A family of k regular graphs (k fixed, $n \rightarrow \infty$) is a family of expanders if $\exists \varepsilon>0$ s.t. $\lambda_{1} \leq k-\varepsilon$ for all of them.

Main point: In a family of expanders X_{i} the random walk on X_{i} converges to the uniform distribution exponentially fast and uniformly on i.

The expansion property enables to apply Brun's method in this non-commutative setting!

In the classical case (number theory) we know the "error term" of taking $[1,2, \ldots, \mathcal{N}]$ $\bmod q$ when $q \leq \sqrt{\mathcal{N}}$. Here we need to know that the ball of radius n in Γ w.r.t. S (with $\mathcal{N} \approx C^{n}$ points) is mapped approx uniformly to $\pi_{q}(\Gamma)$ for $q \sim \mathcal{N}^{\delta}$.

Up to now, Γ is acting on \mathbb{Z}^{n}. Let now Γ act on itself!

The Group Sieve

How to measure sets in countable group?

Ex: $G=S L_{n}(\mathbb{C})$, For almost every $\gamma \in$ $G, C_{G}(g)$ is abelian.
Pf: Almost every $\gamma \in G$ is diagonalizable with distinct eigenvalues.

What about a similar property for $\Gamma=S L_{n}(\mathbb{Z}) ?$
How to measure a subset Y of Γ ?

Basic setting:

Let $\Gamma=\langle S\rangle$ a finitely generated group $|S|<\infty, S=S^{-1}, 1 \in S$.
A random walk on Γ (or better on $\operatorname{Cay}(\Gamma ; s)$)
is $\left(w_{k}\right)_{k \in \mathbb{N}}$, with $w_{0}=e$ and $w_{k+1}=w_{k} \cdot s$ with $s \in S$ chosen randomly.

For a subset $Y \subseteq \Gamma$ put:

$$
p_{k}\left(\ulcorner, S, Y)=\operatorname{Prob}\left(w_{k} \in Y\right)=\right.
$$

"probability the walk visits Y in the k-th step"

The Basic Theorem:

Let $\left\{\mathcal{N}_{i}\right\}_{i} \in \mathbb{N}$ be a sequence of finite index normal subgroups of $\Gamma, \Gamma_{i}=\Gamma / \mathcal{N}_{i}$. Assume $\exists d \in \mathbb{N}, \varepsilon>0$ and $\beta<1$ s.t.
(1) $\forall i \neq j \in \mathbb{N}, \operatorname{Cay}\left(\Gamma / \mathcal{N}_{i} \cap \mathcal{N}_{j}\right.$; S) are ε-expanders.
(2) $\left|Y_{i}\right| /\left|\Gamma_{i}\right| \leq \beta$ where $Y_{i}=Y \mathcal{N}_{i} / \mathcal{N}_{i}$
(3) $\left|\Gamma_{i}\right| \leq i^{d}$
(4) $\Gamma / \mathcal{N}_{i} \cap \mathcal{N}_{j} \xrightarrow{\sim} \Gamma / \mathcal{N}_{i} \times \Gamma / \mathcal{N}_{j}$

Then $\exists \tau>0$ s.t. $\quad p_{k}(G, S, Y) \leq e^{-\tau k}$ for every $k \in \mathbb{N}$ (i.e. Y is exponentially small).

A typical example:

$\Gamma=\operatorname{SLm}(\mathbb{Z})$ (or a Zariski dense subgroup).
$\mathcal{N}_{p}=\operatorname{Ker}(\operatorname{SLm}(\mathbb{Z}) \rightarrow \operatorname{SLm}(\mathbb{Z} / \mathrm{p} \mathbb{Z}))$
p-prime.
$Y \subseteq \Gamma$ an interesting subset.
Easy cases: Y a subvariety; $\mathrm{SL}_{n-1}(\mathbb{Z})$, the unipotent elements, non semisimple elements
cor: each of these sets is exponentially small.

Compare to: Almost every element of $\mathrm{SLm}_{\mathrm{m}}(\mathbb{C})$ is semisimple.

Compare to works of Borovick, Kapovich, Myasnikov, Schupp, Shpilrain ...
also: Arzhantseva-Ol'shanskii and of course Gromov, ... random groups;
also: Bassino-Martino-Nicaud-VenturaWeil.

Our main application: Powers in linear groups

Background:

Malcev (60's):
Γ fin. gen. nilpotent group, $m \in \mathbb{N}$, then the set $\Gamma^{m}=\left\{x^{m} \mid x \in \Gamma\right\}$ contains a finite index subgroup of Γ (like in \mathbb{Z}^{r}).

Hrushovski-Kropholler-Lubotzky-Shalev (1995) If Γ is either a solvable or linear fin. gen. group s.t. Γ^{m} contains a finite index subgroup of Γ, then Γ is virtually nilpotent.

Remark:

\exists solvable 「 (not virt. nilp.) with Γ^{m} contains a coset of finite index subgroup, but for non-solv linear Γ^{m} is never "of finite index".

Thm (Lubotzky-Meiri): Let 「 be a fin. generated subgroup of $\mathrm{GL}_{\mathrm{d}}(\mathbb{C})$ that is not virtually solvable. Then

$$
\begin{aligned}
Y=\{g \in \Gamma \mid \exists m & \left.\geq 2, \quad x \in \Gamma \text { s.t. } g=x^{m}\right\} \\
& =\bigcup_{m \geq 2} \Gamma^{m}
\end{aligned}
$$

is exponentially small.

Note:

Much stronger than [HKLS]:
(i) There only "not of finite index", here a quantitative estimate - "exp small"
(ii) All m 's together!

It is possible to prove (ii) only due to (i)!

Open problem: The set of commutators in Γ (even $\Gamma=S L(3, \mathbb{Z})$).

Other applications:

Thm (Breuillard-de Cornulier-LubotzkyMeiri)
Γ a fin. gen. group, $\Gamma=\langle S\rangle$.
$C n(\Gamma)=\#$ conj classes of Γ represented by elements of length $\leq n$ w.r.t. S.

If Γ is non-virt-solvable linear group then $C n(\Gamma)$ grows exponentially
(conj by Guba \& Sapir).
True also with \# characteristic polynomials.

Thm (Lubotzky-Rosenzweig)
Γ a finitely generated group $\leq G L_{n}(\mathbb{F})$
\mathbb{F} a finitely generated field, char $=0$, $G=\bar{\Gamma}$
G^{0} without central torus
$\exists \Pi: \quad G / G^{0} \rightarrow$ FINITE GROUPS
s.t. $P_{r}\left(\operatorname{Gal}(\mathbb{F}(\gamma) / \mathbb{F}) \neq \Pi\left(\gamma G_{0}\right)\right)$ is exponentially small
$\mathbb{F}(\gamma)=$ splitting field of the characteristic poly of γ.

This generalizes special cases by Rivin, Jouve, Kowalski, Zywina
(compare: Gallagher, Prasad-Rapinchuk, Gorodnik-Nevo)

Thm: (Rivin, Kowalski)

$\Gamma=$ mapping class group $=M C G(g)$

Then the non pseudo-Anasov elements is an exp. small subset

Conj of Thurston (see also Maher).

Thm: (Lubotzky-Meiri)/(MalesteinSouto)

A similar result for the Torelli subgroup $\operatorname{Ker}(M C G(g) \rightarrow S p(2 g, \mathbb{Z}))$
(asked by Kowalski)

Analogous results for $\operatorname{Aut}(F n)$

Thm: (Rivin, Kapovich)
The non iwip and the non hyperbolic elemnts of $\operatorname{Aut}\left(F_{n}\right)$ are exp. small subsets.

Thm: (Lubotzky-Meiri)
A similar result for
$I A\left(F_{n}\right)=\operatorname{Ker}\left(\operatorname{Aut}\left(F_{n}\right) \rightarrow G L_{n}(\mathbb{Z})\right)$

The key ingredient for the last result:
Let $A=A u t\left(F_{n}\right)$, and $|G|<\infty$.
$\pi: F_{n} \rightarrow G, R=\operatorname{Ker}(\pi)$.
$\Gamma(\pi)=\{\alpha \in A \mid \pi \circ \alpha=\pi\}$

Then $[A: \Gamma(\pi)]<\infty$ and $\Gamma(\pi)$ preserves R and induces $\bar{\pi}: \Gamma \rightarrow G L(\bar{R}=R /[R, R])$. The image is in $C_{G}(\bar{R})$ and:

Thm(Grunewald-Lubotzky) under suitable conditions, $\operatorname{Im}(\Gamma(\pi))$ is an arithmetic group (and so is $\operatorname{Im}(\operatorname{IA}(F)=$ Torelli) $)$.

This enables to apply the above machinery.

Potentials applications

Apply sieve method on MCG to get results on random 3-manifolds á la Dunfield \& Thurston.

