Regular Languages Are Church-Rosser Congruential

Volker Diekert
University of Stuttgart

Klaus Reinhardt University of Tübingen

Manfred Kufleitner
University of Stuttgart

Tobias Walter
University of Stuttgart

Dedicated to the 60th birthday of Stuart Margolis
International Conference on Geometric, Combinatorial and
Dynamics aspects of Semigroup and Group Theory
Bar Ilan University, June 13th, 2013

Complexity of formal language classes

Given $L \subseteq A^{*}$. What is the complexity of its Word Problem $W P(L)$? Input: $w \in A^{*} . \quad$ Question: $w \in L$?.

- L regular: WP (L) real time by reading the input.
- L context-free: WP (L) is roughly cubic time.
- L context-sensitive: WP (L) is in PSPACE.
- L recursively enumerable: WP (L) is recursively enumerable. If L is deterministic context-free, then $\operatorname{WP}(L)$ is solvable in linear time.

Idea: Go beyond deterministic context-free and keep linear time.

Semi-Thue systems

- $S \subseteq A^{*} \times A^{*}$ semi-Thue system, S finite
- elements of S are rules $\ell \rightarrow r$
- derivation $u \Longrightarrow \underset{s}{\Longrightarrow} v$ if $u=p \ell q, v=p r q,(\ell \rightarrow r) \in S$
- A^{*} / S are the congruence classes modulo $\stackrel{*}{\stackrel{*}{\longrightarrow}}$
- S is length-reducing if $|\ell|>|r|$ for all $(\ell \rightarrow r) \in S$
- S is confluent if

- unique normal forms \Longrightarrow efficient parsing

Go beyond det.c.f. by confluent string rewriting

McNaughton, Narendran, and Otto, JACM 1988
$L \subseteq A^{*}$ is called a Church-Rosser congruential language (CRCL), if there is some finite, confluent and length reducing semi-Thue system $S \subseteq A^{*} \times A^{*}$ such that L is a finite union of congruence classes mod S.

Algorithm to decide WP:

- Input: $w \in A^{*}$.
- Compute in linear time $w \underset{S}{*} \widehat{w} \in \operatorname{IRR}(S)$.
- Check whether \widehat{w} appears in a finite precomputed table.

Conjecture 1988-2012
All regular languages are in CRCL.

Our contribution: Solution of the 1988 conjecture

Theorem [DKRW2012] Let $L \subseteq A^{*}$. The following are equivalent:

- L is regular.
- L is strongly Church-Rosser congruential.
L is strongly Church-Rosser congruential (sCRCL), if there is some semi-Thue system $S \subseteq A^{*} \times A^{*}$ such that

1. S is finite, confluent and length reducing.
2. S is of finite index, i.e., the quotient monoid A^{*} / S is finite.
3. L is a union of congruence classes mod S.

Best known result before 2012 was in an unfinished manuscript by Reinhardt and Thérien (2003): Conjecture is true, if the syntactic monoid is a group. Idea 2011: Let's use the concept of Local Divisor.

Examples (1)

- $L_{1}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $S=\{a a b b \rightarrow a b\}$
- $L_{1}=[a b]_{S} \cup[\varepsilon]_{S}, \quad L_{1}$ is Church-Rosser congruential
- A^{*} / S is infinite, contains $\left\{\left[a^{n}\right]_{S} \mid n \geq 1\right\}$
- $L_{2}=\left\{a^{m} b^{n} \mid m \geq n \geq 0\right\}$
- not Church-Rosser congruential since a^{m} is irreducible
- $L_{3}=\{a, b\}^{*} a\{a, b\}^{*}$
- $S=\{a a \rightarrow a, b \rightarrow \varepsilon\}$
- $L_{3}=[a]_{S}$
- A^{*} / S is finite, L_{3} is strongly Church-Rosser congruential

Examples (2)

- $L_{4}=(a b)^{*}$
- $S=\{a b a \rightarrow a\}$
- $L_{4}=[a b]_{S} \cup[\varepsilon]_{S}$
- A^{*} / S is infinite
- $T=\{$ aaa $\rightarrow a a, a a b \rightarrow a a, b a a \rightarrow a a$, $b b b \rightarrow a a, b b a \rightarrow a a, a b b \rightarrow a a$, $a b a \rightarrow a, b a b \rightarrow b\}$
- $L_{4}=[a b]_{T} \cup[\varepsilon]_{T}$
- A^{*} / T has 7 elements

Examples (3)

- $L_{5}=\left\{w \in a^{*}| | w \mid \equiv 0 \bmod 3\right\}$
- $S=\{a a a \rightarrow \varepsilon\}$
- $L_{6}=\left\{w \in\{a, b\}^{*}| | w \mid \equiv 0 \bmod 3\right\}$
- $S=\{u \rightarrow \varepsilon| | u \mid=3\}$?
- NO: S is not confluent: $a \Longleftarrow$
- $T=\left\{a a a \rightarrow 1, b a a b \rightarrow b,(b a)^{3} b \rightarrow b\right\}$
$\cup\left\{b b u b b \rightarrow b^{|u|+1}|1 \leq|u| \leq 3\}\right.$
- L_{6} is a union of elements in A^{*} / T
- A^{*} / T contains 272 elements, longest irreducible word has length 16
- $L_{7}=\left\{w \in\{a, b, c\}^{*}| | w \mid \equiv 0 \bmod 3\right\} ? ? ?$

Simple non-cyclic groups

- $\varphi: A^{*} \rightarrow G$ surjective hom., G simple non-cyclic group
- $L_{G}=\{w \mid \varphi(w)=1\}$
- Assume $|w| \equiv 0 \bmod n>1$ for all $w \in L_{G}$.
- Then $w \mapsto|w| \bmod n$ induces surjective hom. $G \rightarrow \mathbb{Z} / n \mathbb{Z}$.
- Contradiction.
- Thus we find $u, v \in L_{G}$ such that $|u|-|v|=1$.
- Padding with u and v yields normal forms $v_{g} \in A^{*}$ for $g \in G$:
- $\varphi\left(v_{g}\right)=g$,
- $\left|v_{g}\right|=\left|v_{h}\right|$ for all $g, h \in G$.
- $S=\left\{w \rightarrow v_{\varphi(w)}| | w\left|=\left|v_{g}\right|+1\right\}\right.$, works for any language recognized by φ

Local divisors

- Let M be a monoid and let $c \in M$.
- Composition \circ on $c M \cap M c$ defined by $x c \circ c y=x c y$.
- Let $x c=x^{\prime} c$ and $c y=c y^{\prime}$. Then

$$
x c \circ c y=x c y=x^{\prime} c y=x^{\prime} c y^{\prime}=x^{\prime} c \circ c y^{\prime} .
$$

- Let $c x=x^{\prime} c$ and $c y$ be elements in $c M \cap M c$. Then

$$
c x \circ c y=x^{\prime} c \circ c y=x^{\prime} c y=c x y .
$$

- It follows
- $(c M \cap M c, o, c)$ is a monoid.
- If c is not invertible, then $|c M \cap M c|<|M|$.

Weights

- Let $\|\cdot\|: A \rightarrow \mathbb{N}$ assign a positive weight to each letter.
- $\left\|a_{1} \cdots a_{n}\right\|=\left\|a_{1}\right\|+\cdots+\left\|a_{n}\right\|$.
- Theorem: For every weighted alphabet $(A,\|\cdot\|)$ and every homomorphism $\varphi: A^{*} \rightarrow M$ there exists a weight-reducing confluent semi-Thue system S of finite index such that φ factorizes through A^{*} / S.

Proof sketch

- $\varphi: A^{*} \rightarrow M$ homomorphism, $c \in A$ not invertible
- Define $B=A \backslash\{c\}$
- $\varphi_{c}: B^{*} \rightarrow M$ restriction
- Induction on the alphabet: system R for φ_{c}
- $K=\operatorname{IRR}_{R}\left(B^{*}\right) c$
- K inherits its weights from A
- $\psi: K^{*} \rightarrow \varphi(c) M \cap M \varphi(c): u c \mapsto \varphi(c u c)$ homomorphism
- Induction on the monoid: system T for ψ.
- Combine R and T in order to get a system S for φ.
- Base case: $A=\emptyset$ is trivial.
- Base case: M is a group is highly non-trivial.

Open problems

- Complexity improvements: size of S, size of A^{*} / S
- Lower bounds on size of S and A^{*} / S
- Parikh-reducing systems

Thank you!

