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Complexity of formal language classes

Given L ⊆ A∗. What is the complexity of its Word Problem
WP(L)? Input: w ∈ A∗. Question: w ∈ L?.

I L regular: WP(L) real time by reading the input.

I L context-free: WP(L) is roughly cubic time.

I L context-sensitive: WP(L) is in PSPACE.

I L recursively enumerable: WP(L) is recursively enumerable.

If L is deterministic context-free, then WP(L) is solvable in linear
time.

Idea: Go beyond deterministic context-free and keep linear time.



Semi-Thue systems

I S ⊆ A∗ × A∗ semi-Thue system, S finite

I elements of S are rules `→ r

I derivation u =⇒
S

v if u = p`q, v = prq, (`→ r) ∈ S

I A∗/S are the congruence classes modulo
∗⇐⇒
S

I S is length-reducing if |`| > |r | for all (`→ r) ∈ S

I S is confluent if
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I unique normal forms =⇒ efficient parsing



Go beyond det.c.f. by confluent string rewriting

McNaughton, Narendran, and Otto, JACM 1988
L ⊆ A∗ is called a Church-Rosser congruential language (CRCL), if
there is some finite, confluent and length reducing semi-Thue
system S ⊆ A∗ × A∗ such that L is a finite union of congruence
classes mod S .

Algorithm to decide WP:

I Input: w ∈ A∗.

I Compute in linear time w
∗

=⇒
S

ŵ ∈ IRR(S).

I Check whether ŵ appears in a finite precomputed table.

Conjecture 1988-2012

All regular languages are in CRCL.



Our contribution: Solution of the 1988 conjecture

Theorem [DKRW2012] Let L ⊆ A∗. The following are equivalent:

I L is regular.

I L is strongly Church-Rosser congruential.

L is strongly Church-Rosser congruential (sCRCL), if there is some
semi-Thue system S ⊆ A∗ × A∗ such that

1. S is finite, confluent and length reducing.

2. S is of finite index, i.e., the quotient monoid A∗/S is finite.

3. L is a union of congruence classes mod S .

Best known result before 2012 was in an unfinished manuscript by
Reinhardt and Thérien (2003): Conjecture is true, if the syntactic
monoid is a group.
Idea 2011: Let’s use the concept of Local Divisor.



Examples (1)

I L1 = {anbn | n ≥ 0}
I S = {aabb → ab}
I L1 = [ab]S ∪ [ε]S , L1 is Church-Rosser congruential
I A∗/S is infinite, contains {[an]S | n ≥ 1}

I L2 = {ambn | m ≥ n ≥ 0}
I not Church-Rosser congruential since am is irreducible

I L3 = {a, b}∗ a {a, b}∗

I S = {aa→ a, b → ε}
I L3 = [a]S
I A∗/S is finite, L3 is strongly Church-Rosser congruential



Examples (2)

I L4 = (ab)∗

I S = {aba→ a}
I L4 = [ab]S ∪ [ε]S
I A∗/S is infinite

I T = {aaa→ aa, aab → aa, baa→ aa,
bbb → aa, bba→ aa, abb → aa,
aba→ a, bab → b}

I L4 = [ab]T ∪ [ε]T
I A∗/T has 7 elements



Examples (3)

I L5 = {w ∈ a∗ | |w | ≡ 0 mod 3}
I S = {aaa→ ε}

I L6 = {w ∈ {a, b}∗ | |w | ≡ 0 mod 3}
I S = {u → ε | |u| = 3}?
I NO: S is not confluent: a⇐=

S
aabb =⇒

S
b

I T = {aaa→ 1, baab → b, (ba)3b → b}
∪ {bb u bb → b|u|+1 | 1 ≤ |u| ≤ 3}

I L6 is a union of elements in A∗/T
I A∗/T contains 272 elements,

longest irreducible word has length 16

I L7 = {w ∈ {a, b, c}∗ | |w | ≡ 0 mod 3} ???



Simple non-cyclic groups

I ϕ : A∗ → G surjective hom., G simple non-cyclic group

I LG = {w | ϕ(w) = 1}
I Assume |w | ≡ 0 mod n > 1 for all w ∈ LG .

I Then w 7→ |w | mod n induces surjective hom. G → Z/nZ.

I Contradiction.

I Thus we find u, v ∈ LG such that |u| − |v | = 1.
I Padding with u and v yields normal forms vg ∈ A∗ for g ∈ G :

I ϕ(vg ) = g ,
I |vg | = |vh| for all g , h ∈ G .

I S =
{
w → vϕ(w)

∣∣ |w | = |vg |+ 1
}

,
works for any language recognized by ϕ



Local divisors

I Let M be a monoid and let c ∈ M.

I Composition ◦ on cM ∩Mc defined by xc ◦ cy = xcy .

I Let xc = x ′c and cy = cy ′. Then

xc ◦ cy = xcy = x ′cy = x ′cy ′ = x ′c ◦ cy ′.

I Let cx = x ′c and cy be elements in cM ∩Mc . Then

cx ◦ cy = x ′c ◦ cy = x ′cy = cxy .

I It follows

I (cM ∩Mc , ◦, c) is a monoid.
I If c is not invertible, then |cM ∩Mc | < |M|.



Weights

I Let ‖·‖ : A→ N assign a positive weight to each letter.

I ‖a1 · · · an‖ = ‖a1‖+ · · ·+ ‖an‖.

I Theorem: For every weighted alphabet (A, ‖·‖) and every
homomorphism ϕ : A∗ → M there exists a weight-reducing
confluent semi-Thue system S of finite index such that ϕ
factorizes through A∗/S .

A∗ M

A∗/S

ϕ



Proof sketch

I ϕ : A∗ → M homomorphism, c ∈ A not invertible

I Define B = A \ {c}
I ϕc : B∗ → M restriction

I Induction on the alphabet: system R for ϕc

I K = IRRR(B∗)c

I K inherits its weights from A

I ψ : K ∗ → ϕ(c)M ∩Mϕ(c) : uc 7→ ϕ(cuc) homomorphism

I Induction on the monoid: system T for ψ.

I Combine R and T in order to get a system S for ϕ.

I Base case: A = ∅ is trivial.

I Base case: M is a group is highly non-trivial.



Open problems

I Complexity improvements: size of S , size of A∗/S

I Lower bounds on size of S and A∗/S

I Parikh-reducing systems



Thank you!


