Semigroups and one-way functions

Jean-Camille Birget

To Stuart Margolis on his 60th birthday.

CS Dept., Rutgers U. (Camden Campus), Camden, New Jersey

Goal:

Find semigroups (and groups) whose elements represent computational devices or computable functions.

1. Thompson-Higman groups and monoids: They represent all finite functions and acyclic digital circuits.
2. Monoids of polynomial-time computable functions: Their properties depend on P -vs.-NP.

Study complexity classes through functions and semigroups (instead of only as sets of languages).
arXiv:1306.1447 [math.GR] 6 Jun 2013

Preliminary definitions

Fix a finite alphabet A.
$A^{*}=$ set of all finite words over A.
View A^{*} as the rooted, regular, infinite, oriented tree, directed away from the root.
$A^{\omega}=$ set of all ω-words over A (the ends of A^{*}), with the Cantor space topology.

Def. $R \subseteq A^{*}$ is right ideal iff $R A^{*} \subseteq R$.

Def. $C\left(\subseteq A^{*}\right)$ generates a right ideal R iff R is the intersection of all right ideals that contain C.

Equivalently, $R=C A^{*}$.
In A^{ω}, the open sets of the Cantor space are of the form $C A^{\omega}=\operatorname{ends}\left(C A^{*}\right)$.

Def. A right ideal R is essential iff R intersects every right ideal of A^{*}.
I.e., ends (R) is dense in A^{ω}.

Def. $C \subseteq A^{*}$ is a prefix code (prefix-free code) iff no element of C is a prefix of another element of C.
(Shannon-Fano coding, 1948; Huffman, 1951.)
"Prefix": any initial segment of a word.
Def. A prefix code C is maximal iff
C is not a strict subset of another prefix code.

Fact. A right ideal R has a unique minimal (for \subseteq) generating set C;
this minimum C is a prefix code.

Fact. A prefix code C is maximal iff
$C A^{*}$ is an essential right ideal.

Def. (end-equivalence):

For right ideals $R^{\prime}, R \subseteq A^{*}: \quad R^{\prime} \cong R \quad$ iff
R^{\prime} and R intersect the same right ideals iff ends (R) and ends $\left(R^{\prime}\right)$ "are the same up to density", i.e.,
$\overline{\operatorname{ends}(R)}=\overline{\operatorname{ends}\left(R^{\prime}\right)}$, where overlining denotes closure in the Cantor set topology.

Def. A right ideal homomorphism of A^{*} is a function $\varphi: R_{1} \rightarrow A^{*}$ such that R_{1} is a right ideal of A^{*}, and for all $x_{1} \in R_{1}$ and all $w \in A^{*}$:

$$
\varphi\left(x_{1} w\right)=\varphi\left(x_{1}\right) w
$$

Notation: Domain $R_{1}=\operatorname{Dom}(\varphi)$,
image set $=\operatorname{Im}(\varphi)$.
Fact. $\operatorname{Dom}(\varphi)$ and $\operatorname{Im}(\varphi)$ are right ideals.

Fact. φ acts as a continuous partial function on A^{ω}.

Def. $\mathcal{R} \mathcal{M}_{|A|}^{\text {fin }}$ is the set of all right-ideal morphisms, whose domains are finitely generated right ideals of A^{*} (i.e., the ends of the domain are a clopen set).

Fact. If $\operatorname{Dom}(\varphi)$ is finitely generated then $\operatorname{Im}(\varphi)$ is also finitely generated.

Prop. (R. Thompson, G. Higman, E. Scott, for groups) Every $\varphi \in \mathcal{R} \mathcal{M}_{|A|}^{\text {fin }}$ has a unique maximal end-equivalent extension (within $\mathcal{R} \mathcal{M}_{|A|}^{\text {fin }}$).
This max. extension is denoted by $\max (\varphi)$.

Definition of the Higman-Thompson monoid $M_{k, 1}$:
$M_{k, 1}=\{\max (\varphi): \varphi$ is a right-ideal morphism between finitely generated right ideals of A^{*}. $(k=|A|)$.

Multiplication: function composition followed by maximal essentially equal extension.
(This is associative.)

Prop. $M_{k, 1}$ is the faithful action of $\mathcal{R} \mathcal{M}_{k}^{\text {fin }}$ on A^{ω}.

Definition of the Higman-Thompson group:

$G_{k, 1}=\{\max (\varphi): \varphi$ is a right-ideal isomorphism between finitely generated essential right ideals of $\left.A^{*}\right\}$.

Prop. $\quad G_{k, 1}$ is the faithful action on A^{ω} of the isomorphisms between finitely generated essential right ideals.

Properties of $M_{k, 1}$

$M_{k, 1}$ is congruence-simple.
$G_{k, 1}$ is simple iff k is even.
$G_{k, 1}$ is the group of units (invertible elements) of $M_{k, 1}$.
$M_{k, 1} \hookrightarrow \mathcal{O}_{k} \quad$ (Cuntz algebra).
$M_{k, 1}$ contains all finite monoids,
$G_{k, 1}$ contains all finite groups.

The Green relations of a monoid M :

Let $s, t \in M$.
$t \leq_{\mathcal{J}} s \quad$ iff $\quad M t M \subseteq M s M$
iff $(\exists x, y \in M) t=x s y . \quad(t$ is a two-sided multiple of $s)$
$t \leq_{\mathcal{R}} s \quad$ iff $\quad t M \subseteq s M$
iff $(\exists y \in M) t=s y . \quad(t$ is a right multiple of $s)$
$t \leq_{\mathcal{L}} s \quad$ iff $\quad M t \subseteq M s$ contain t
iff $\quad(\exists x \in M) t=x s . \quad(t$ is a left multiple of $s)$
$t \equiv_{\mathcal{D}} s \quad$ iff $\quad\left(\exists p_{1} \in M\right) t \equiv_{\mathcal{R}} p_{1} \equiv_{\mathcal{L}} s$
iff $\quad\left(\exists p_{2} \in M\right) t \equiv_{\mathcal{L}} p_{2} \equiv_{\mathcal{R}} s$.

Prop. ($\mathcal{J}): \quad M_{k, 1}$ is \mathcal{J}^{0}-simple
(the only ideals are $\mathbf{0}$ and $M_{k, 1}$ itself).

Prop. (\mathcal{D}) : $M_{k, 1}$ has $k-1$ non-zero $\equiv_{\mathcal{D}}$-classes. In particular, $M_{2,1}$ is \mathcal{D}^{0}-simple ("0-bisimple").

For all non-zero $\varphi, \psi \in M_{k, 1}$:

$$
\begin{aligned}
& \psi \equiv_{\mathcal{D}} \varphi \quad \text { iff } \\
& |\operatorname{imC}(\psi)| \equiv|\operatorname{imC}(\varphi)| \quad \bmod k-1
\end{aligned}
$$

Prop. $M_{k, 1}$ is regular (i.e., $\forall f \exists f^{\prime}: f f^{\prime} f=f$).

Prop. $\psi \leq_{\mathcal{R}} \varphi \quad$ iff
ends $(\operatorname{lm}(\psi)) \subseteq$ ends $(\operatorname{lm}(\varphi)) \quad$ iff for some end-equivalent restrictions Ψ, Φ : $\operatorname{imC}(\Psi) \subseteq \operatorname{imC}(\Phi)$.

Def. $\bmod \varphi$ is the partition on ends $(\operatorname{Dom}(\varphi))$, defined by $u \equiv_{\bmod \varphi} v \quad$ iff $\quad \varphi(u)=\varphi(v)$.

Prop. $\psi \leq_{\mathcal{L}} \varphi$ iff ends $(\operatorname{Dom}(\psi)) \subseteq$ ends $(\operatorname{Dom}(\varphi))$, and $\bmod \psi$ is coarser than $\bmod \varphi$ on ends $(\operatorname{Dom}(\psi))$

Prop. $<_{\mathcal{R}^{-c h a i n s}}$ and $<_{\mathcal{L}^{-}}$-chains are dense.
(If $x<y$ then $\exists z: \quad x<z<y$.)

Prop. $\quad M_{k, 1}$ is finitely generated.
Prop. (Thompson, Higman): $\quad G_{k, 1}$ is finitely presented.
Open question: Is $M_{k, 1}$ (not) finitely presented ?

Theorem.

Over any finite generating set Γ of $M_{k, 1}$:
The word problem of $M_{k, 1}$ is in P .
Deciding the Green relations of $M_{k, 1}$ is in P .

Input: $\quad \psi, \varphi \in M_{k, 1}$, given by words over Γ.
Question: $\psi \leq_{\mathcal{J}} \varphi$? $\quad\left(\right.$ or $\left.\leq_{\mathcal{R}}, \leq_{\mathcal{L}}, \equiv_{\mathcal{D}}\right)$

Connection with combinational circuits (acyclic digital circuits)

$M_{2,1}$ acts (partially) on the set of bit-strings $\{0,1\}^{*}$; so the elements of $M_{2,1}$ are boolean functions.

We now use a "circuit-like" generating set $\Gamma \cup \tau$;
Γ is any finite generating set of $M_{k, 1}$ (generalized gates),
τ consists of the position transpositions on strings;
$\tau=\left\{\tau_{i, i+1}: i \geq 1\right\} \quad\left(\subset G_{k, 1}\right)$
$\tau_{i, i+1}: \quad x_{1} \ldots x_{i-1} x_{i} x_{i+1} x_{i+2} \ldots \longmapsto$

$$
x_{1} \ldots x_{i-1} x_{i+1} x_{i} x_{i+2} \ldots
$$

$\tau_{i, i+1}$ undefined on short words.
(wire-crossing).

Theorem.

For every combinational circuit C there is a word w over $\Gamma \cup \tau$ such that:
(1) $\quad C$ and w represent the same function,
(2) $\quad|w| \leq c \cdot|C| . \quad(c$ is a const.)

Conversely:
If $f: A^{m} \rightarrow A^{n}$ is represented by $w \in(\Gamma \cup \tau)^{*}$ then f has a combinational circuit C with

$$
|C| \leq c \cdot|w|^{2}
$$

Decision problems over a "circuit-like" generating set $\Gamma \cup \tau$

Theorem.

The word problem of $M_{k, 1}$ over $\Gamma \cup \tau$ is coNP-complete (similar to the circuit equivalence problem).

Theorem. Over $\Gamma \cup \tau$:
deciding $\leq_{\mathcal{R}}$ is Π_{2}^{P}-complete (similar to the surjectiveness problem for circuits);
deciding $\leq_{\mathcal{L}}$ is coNP-complete
(similar to the injectiveness problem for circuits).
$\operatorname{coNP}=\{L: \bar{L} \in \mathrm{NP}\}$.
$\Sigma_{2}^{P}=N P^{N P}=$ all languages accepted by polyn.-time nondet. Turing machines, with oracle in NP (or equivalently, with oracle in coNP).
$\Pi_{2}^{\mathrm{P}}=(\mathrm{coNP})^{\mathrm{NP}}=$ all languages accepted by polyn.time co-nondet. Turing machines, with oracle in NP (or equivalently, with oracle in coNP).

Monoids of polyn.-time functions

Motivation:

Use (finitely generated) semigroups to study NP and oneway functions.

Definition scheme:

A partial function $f: A^{*} \rightarrow A^{*}$ is called "one-way" iff (1) $f(x)$ is "easy" to compute (knowing f and x),
(2) knowing f and $y \in \operatorname{Im}(f)$, it is "difficult" to find any $x \in A^{*}$ such that $f(x)=y$.
(Old idea, William Stanley Jevons 1873; ex. of multiplication vs. factorization. Diffie \& Hellman 1976, discr. log.)

The function semigroup fP

We fix an alphabet A (typically, $\{0,1\}$).
Def. A partial function $f: A^{*} \rightarrow A^{*}$ is polynomially balanced iff there exists polynomials p, q such that for all $x \in \operatorname{Dom}(f):|f(x)| \leq p(|x|)$ and $|x| \leq q(|f(x)|)$.

Def. $\mathrm{fP}=$ set of partial functions $f: A^{*} \rightarrow A^{*}$ such that - $x \longmapsto f(x)$ is computable in det. polyn. time;

- f is polynomially balanced.

The first property implies $\operatorname{Dom}(f) \in \mathrm{P}$.
Prop. fP is closed under composition.

Def. (worst-case one-way function; not "cryptographic"):
A function f is one-way iff $f \in \mathrm{fP}$, but there does not exist any deterministic polyn.-time algorithm which,

- on input $y \in A^{*}$,
- finds any $x \in A^{*}$ such that $f(x)=y$ when $y \in \operatorname{Im}(f)$.
(There is no requirement in when $y \notin \operatorname{Im}(f)$.)
Prop. (well known, 1980s or 1970s):
One-way functions exist iff $\mathrm{P} \neq \mathrm{NP}$.
Lemma. (Definition of "inverse"): The following are equivalent for partial functions $f, f^{\prime}: A^{*} \rightarrow A^{*}$.
- For all $y \in \operatorname{Im}(f), f^{\prime}(y)$ is defined and $f\left(f^{\prime}(y)\right)=y$. (Thus, $\operatorname{Im}(f) \subseteq \operatorname{Dom}\left(f^{\prime}\right)$.)
- $\left.f \cdot f^{\prime}\right|_{\operatorname{Im}(f)}=\left.\mathrm{id}\right|_{\operatorname{Im}(f)}$.
- $f \cdot f^{\prime} \cdot f=f$.

Such an f^{\prime} is called an inverse of f.

How any inverse f^{\prime} of f is made:

(1) Choose $\operatorname{Dom}\left(f^{\prime}\right)$ arbitrarily, with $\operatorname{Im}(f) \subseteq \operatorname{Dom}\left(f^{\prime}\right)$.

For every $y \in \operatorname{Im}(f)$, choose $f^{\prime}(y)$ to be any $x \in f^{-1}(y)$.
$\left(\left.f^{\prime}\right|_{\operatorname{Im}(f)}\right.$ is the choice function of $\left.f^{\prime}.\right)$
(2) For every $y \in \operatorname{Dom}\left(f^{\prime}\right)-\operatorname{Im}(f)$, choose $f^{\prime}(y)$ arbitrarily in A^{*}.
Then $f f^{\prime} f=f$. Any inverse of f arises in this way.
Prop. $f \mathrm{P}$ is regular iff one-way functions do not exist.

Prop.

(1) If $f \in \mathbf{f P}$ then $\operatorname{Im}(f) \in \mathbf{N P}$.
(2) For every language $L \in \mathrm{NP}$ there exists $f_{L} \in \mathrm{fP}$ such that $L=\operatorname{Im}\left(f_{L}\right)$.
Proof. (2) Let M_{L} be a non-det. polyn.-time Turing machine accepting L. Define

$$
f_{L}(x, s)=x \quad \text { iff }
$$

M_{L}, with choice sequence s, accepts x; $f_{L}(x, s)$ is undefined otherwise. $\quad \square$

Prop. If $f \in \mathrm{fP}$ is regular then $\operatorname{Im}(f) \in \mathrm{P}$.

Thm. (JCB 2011) If $\Pi_{2}^{P} \neq \Sigma_{2}^{P}$ then there exist surjective one-way functions.
Consequence: For $f \in \mathrm{fP}, \operatorname{Im}(f) \in \mathrm{P}$ is not equivalent to f being regular (if $\Pi_{2}^{\mathrm{P}} \neq \Sigma_{2}^{\mathrm{P}}$).

Prop. (regular \mathcal{L} - and \mathcal{R}-orders):
If $f, r \in \mathrm{fP}$ and r is regular with an inverse $r^{\prime} \in \mathrm{fP}$ then:

- $f \leq_{\mathcal{R}} r$ iff $f=r r^{\prime} f$ iff $\operatorname{Im}(f) \subseteq \operatorname{lm}(r)$.
- $f \leq_{\mathcal{L}} r$ iff $f=f r^{\prime} r$ iff $\bmod f \leq \bmod r$.

The \mathcal{D}-relation:

It is not known which infinite languages in P can be mapped onto each other by maps in fP .

Are all regular elements of fP with infinite image in the \mathcal{D}-class of id $\left.\right|_{A^{*}}$?

Prop. Let $P \subseteq A^{*}$ be a prefix code in P , and let $p_{0} \in P$. All regular elements $f \in \mathrm{fP}$ with $\operatorname{Im}(f)$ of the form

$$
L_{P}=\left(P-\left\{p_{0}\right\}\right) A^{*} \cup p_{0}\left(p_{0} A^{*} \cup \overline{P A^{*}}\right)
$$

are in the \mathcal{D}-class of id $\left.\right|_{A^{*}}$.
L_{P} is an "approximation" of the right ideal $P A^{*}$, since

$$
\left(P-\left\{p_{0}\right\}\right) A^{*} \subset L_{P} \subset P A^{*}
$$

In general, P is infinite, in P ; so, $P-\left\{p_{0}\right\}$ is "almost" P.

Lemma.

(1) $L \in \mathrm{P}$ implies $L A^{*} \in \mathrm{P}$.
(2) Let R be a right ideal in P , let P be the prefix code P of R (i.e., $R=P A^{*}$); then $P \in \mathrm{P}$.

Def.

$\mathcal{R} \mathcal{M}_{|A|}^{\mathrm{P}}=\left\{f \in \mathrm{fP}: f\right.$ is a right ideal morphism of $\left.A^{*}\right\}$. If f is a right ideal morphism, $\operatorname{Dom}(f)$ is a right ideal.
$\mathcal{R} \mathcal{M}_{|A|}^{\mathrm{fin}} \subset \mathcal{R} \mathcal{M}_{|A|}^{\mathrm{P}}$.

Prop. $\mathcal{R} \mathcal{M}_{|A|}^{\mathrm{P}}$ is \mathcal{J}^{0}-simple.
Proof. Let $(v \leftarrow u)$ denote $u z \mapsto v z$ (for all $z \in A^{*}$). So, $(\varepsilon \leftarrow \varepsilon)=\left.\mathrm{id}\right|_{A^{*}}$. For $f \neq \mathbf{0}$, let $f\left(x_{0}\right)=y_{0}$. Then $(\varepsilon \leftarrow \varepsilon)=\left(\varepsilon \leftarrow y_{0}\right) \circ f \circ\left(x_{0} \leftarrow \varepsilon\right)$.

Prop. fP is not \mathcal{J}^{0}-simple.
It has regular continuous (prefix-order preserving) elements in different non-0 \mathcal{J}-classes.

Prop. Every regular $f \in \mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ is "close" to an element of $f \mathrm{f}$ belonging to the \mathcal{D}-class of id $\left.\right|_{A^{*}}$.

Restrict f from $\operatorname{Im}(f)=P A^{*}$, with $p_{0} \in P$, to

$$
L=\left(P-\left\{p_{0}\right\}\right) A^{*} \cup p_{0}\left(p_{0} A^{*} \cup \overline{P A^{*}}\right) ;
$$

then

$$
\operatorname{Im}(f)-p_{0} A^{*} \subset L \subset \operatorname{Im}(f)
$$

Prop. The \mathcal{D}-class of id in $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ is \mathcal{H}-trivial.

Def. The polyn.-time Thompson-Higman monoid \mathcal{M}_{2}^{P} consists of the end-equivalence classes of elements of $\mathcal{R} \mathcal{M}_{2}^{P}$. $\mathcal{M}_{2}^{\mathrm{P}}$ is the faithful action of $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ on A^{ω}.

The Thompson-Higman monoid $M_{k, 1}$ is a submonoid of $\mathcal{M}_{|A|}^{\mathrm{P}} \quad($ where $k=|A|)$.

Padding arguments:
Time-complexity is defined as a function of the input length. By making inputs longer, without changing the essential difficulty of a problem, one obtains a new (but "similar") problem with lower time-complexity.
Padding can mean, e.g., to replace x by all words of the form $x w$ for $w \in A^{n}$.

This padding preserves end-equivalence.
The padding argument implies that $\mathcal{M}_{2}^{\mathrm{P}}=\mathcal{M}_{2}^{\text {rec }}$, i.e., the faithful action on A^{ω} of $\mathcal{R} \mathcal{M}_{2}^{\text {rec }}$. Here, $\mathcal{R} \mathcal{M}_{2}^{\text {rec }}=$ all right-ideal morphisms that are recursive partial functions, with recursive domain, recursively balanced.

Prop. $\mathcal{M}_{2}^{\mathrm{P}}$ is regular and \mathcal{D}^{0}-simple (hence \mathcal{J}^{0}-simple).

One can define a Thompson group of polynomial-time functions by taking the group of units of \mathcal{M}_{2}^{P}.

Embedding fP into $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$
Def. fP uses the alphabet $\{0,1\}$; let $\#$ be a new letter. For any $f \in \mathrm{fP}$, define $f_{\#}:\{0,1, \#\}^{*} \rightarrow\{0,1, \#\}^{*}$ by

$$
\begin{aligned}
\operatorname{Dom}\left(f_{\#}\right) & =\operatorname{Dom}(f) \#\{0,1, \#\}^{*}, \text { and } \\
f_{\#}(x \# w) & =f(x) \# w
\end{aligned}
$$

for all $x \in \operatorname{Dom}(f)\left(\subseteq\{0,1\}^{*}\right)$, and all $w \in\{0,1, \#\}^{*}$.

Prop.

(1) For any $L \subseteq\{0,1\}^{*}, L \#$ is a prefix code in $\{0,1, \#\}^{*}$.
(2) $f \in \mathrm{fP}$ iff $f_{\#} \in \mathcal{R} \mathcal{M}_{3}^{\mathrm{P}}$

Def. Encoding from $\{0,1, \#\}$ to $\{0,1\}$:

$$
\operatorname{code}(0)=00, \quad \operatorname{code}(1)=01, \quad \operatorname{code}(\#)=11
$$

Def. We define $f^{C}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ by
$\operatorname{Dom}\left(f^{C}\right)=\operatorname{code}(\operatorname{Dom}(f) \#)\{0,1\}^{*}$, and $f^{C}(\operatorname{code}(x \#) v)=\operatorname{code}(f(x) \#) v$, for all $x \in \operatorname{Dom}(f)\left(\subseteq\{0,1\}^{*}\right)$, and all $v \in\{0,1\}^{*}$.

Prop. $f \in \mathfrak{f P}$ iff $f^{C} \in \mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$.

Prop.

(1) $f \in \mathrm{fP} \mapsto f^{C} \in \mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ is an injective monoid homomorphism.
(2) f is regular in fP iff f^{C} is regular in $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$.

Embeddings:

$$
\mathrm{fP} \quad \stackrel{C}{\hookrightarrow} \mathcal{R} \mathcal{M}_{2}^{\mathrm{P}} \subset[\mathrm{id}]_{\mathcal{J}(\mathrm{PP})}^{0} \subset \mathrm{fP} .
$$

Here, $[\mathrm{id}]_{\mathcal{J}(\mathrm{fP})}^{0}$ is the Rees quotient of the \mathcal{J}-class of the identity id of fP.
fP embeds into its \mathcal{J}-class of the identity (plus zero).

Evaluation maps

Turing machine evaluation function

$$
\operatorname{eval}_{\text {тм }}(w, x)=f_{w}(x)
$$

where f_{w} is the input-output (partial) function described by the word (program) w.
$\mathrm{eval}_{\mathrm{TM}}$ is the I/O map of the universal Turing machines, or of TM interpreters.

Evaluation function for acyclic circuits

$$
\operatorname{eval}_{\text {circ }}(C, x)=f_{C}(x)
$$

where f_{C} is the input-output map of a circuit C.
(Assume f_{C} is length-preserving, i.e., $\left|f_{C}(x)\right|=|x|$.)

Levin's universal one-way function (1980s):

$$
\operatorname{ev}_{\text {Levin }}(C, x)=\left(C, f_{C}(x)\right)
$$

Then, $\mathrm{ev}_{\text {Levin }} \in \mathrm{fP}$.

Thm. (L. Levin) If one-way functions exist then $\mathrm{ev}_{\text {Levin }}$ is a one-way function.

Evaluation maps for fP:
Use programs with built-in polyn.-time counter, for time complexity, and for balancing. (1970's, Hartmanis, Lewis, Stearns, et al.)

First attempt: For fP we define

$$
\operatorname{ev}_{\text {poly }}(w, x)=\left(w, f_{w}(x)\right)
$$

where w is any polynomial program, and $f_{w} \in \mathrm{fP}$.
But $\mathrm{ev}_{\text {poly }}$ is not in fP :
complexity on input (w, x) is $>c|w| \cdot p_{w}(|x|)$, and balancing function is $>c\left(|w|+p_{w}(|x|)\right)$; the degree of p_{w} depends on w.

For a fixed polynomial q, let

$$
\begin{aligned}
\mathrm{fP}^{(q)}=\{ & f_{w} \in \mathrm{fP}^{(q)}: \text { for all } x \in \operatorname{Dom}(f), \\
& w \text { has time-complexity } T_{w}(|x|) \leq q(|x|) \text { and } \\
& \text { input-balance } \left.|x| \leq q\left(\left|f_{w}(x)\right|\right)\right\} .
\end{aligned}
$$

Let

$$
\mathrm{ev}_{(q)}(w, x)=\left(w, f_{w}(x)\right)
$$

where w is any q-polynomial program.

Encoding:

$$
\operatorname{ev}_{(q)}^{C}(\operatorname{code}(w \#) x)=\operatorname{code}(w \#) f_{w}(x) .
$$

When f_{w} is a right ideal morphism, $\mathrm{ev}_{(q)}^{C}$ is also a right ideal morphism.

Prop. Suppose q satisfies $q(n)>c n^{2}+c$ (for an appropriate constant $c>1$ that depends on the model of computation). Then
$\operatorname{ev}_{(q)}^{C} \in \mathrm{fP}^{(q)}$, and
$\mathrm{ev}_{(q)}^{C}$ is a one-way function if one-way functions exist.

For any fixed word $v \in\{0,1\}^{*}$ we define

$$
\pi_{v}: x \in\{0,1\}^{*} \longmapsto v x
$$

and for any fixed integer $k>0$ we define

$$
\pi_{k}^{\prime}: z x \in\{0,1\}^{*} \longmapsto x, \text { where }|z|=k
$$

$\left(\pi_{k}(t)\right.$ undefined if $\left.|t|<k\right)$.
π_{v} is a composite of the maps π_{0} and π_{1}.
π_{k}^{\prime} is the k th power of π_{1}^{\prime}.
We define the padding map,

$$
\operatorname{expand}(w, x)=\left(\mathrm{e}(w),\left(0^{|x|^{2}}, x\right)\right)
$$

where $\mathbf{e}(w)$ is such that

$$
f_{\mathrm{e}(w)}\left(0^{k}, x\right)=\left(0^{k}, f_{w}(x)\right), \text { for all } k
$$

Encoding:

$$
\begin{aligned}
& \operatorname{expand}(\operatorname{code}(w) 11 x)= \\
& \quad \operatorname{code}(\operatorname{ex}(w)) 110^{|x|^{2}} 11 x
\end{aligned}
$$

now with $\operatorname{ex}(w)$ such that

$$
f_{\operatorname{ex}(w)}\left(0^{k} 11 x\right)=0^{k} 11 f_{w}(x) \text { for all } k \geq 0
$$

We define a repeated padding map,

$$
\begin{gathered}
\text { reexpand }\left(\operatorname{code}(\operatorname{ex}(w)) 110^{k} 11 x\right)= \\
\operatorname{code}(\operatorname{ex}(w)) 110^{k^{2}} 11 x
\end{gathered}
$$

with $\operatorname{ex}(w)$ as above.

Unpadding map:
$\operatorname{contr}\left(\operatorname{ex}(w),\left(0^{|y|^{2}}, y\right)\right)=(w, y)$ (undefined on other inputs).
Encoding:
$\operatorname{contr}\left(\operatorname{code}(\operatorname{ex}(w)) 110^{|y|^{2}} 11 y\right)=w 11 y$ (undefined on other inputs).

Repeated unpadding:
recontr $\left(\operatorname{code}(\operatorname{ex}(w)) 110^{k^{2}} 11 y\right)$
$=\operatorname{code}(\operatorname{ex}(w)) 110^{k} 11 y$
(undefined on other inputs).

Prop. fP is finitely generated.
Proof. The following is a generating set of fP :
$\left\{\right.$ expand, reexpand, contr, recontr, $\left.\pi_{0}, \pi_{1}, \pi_{1}^{\prime}, \mathrm{ev}_{\left(q_{2}\right)}^{C}\right\}$, where $q_{2}(n)=c n^{2}+c$.

For any $f_{w} \in \mathrm{fP}^{(q)}$, let m be an integer $\geq \log _{2}$ of the sum of the degrees and the positive coefficients of q.

$$
\begin{aligned}
f_{w}(x)=\pi_{2|w|+2}^{\prime} & \circ \text { contr } \circ \operatorname{recontr}^{m} \circ \operatorname{ev}_{\left(q_{2}\right)}^{C} \\
& \circ \operatorname{reexpand}^{m} \circ \text { expand } \circ \pi_{\operatorname{code}(w) 11}(x) .
\end{aligned}
$$

Now we have two ways to describe a function by a word.
Prop. (Program vs. generator string).
The maps $s \mapsto w$ and $w \mapsto s$ are in fP , where s is over the generators of fP ,
w is a polynomial program, with $\Pi s=f_{w}$.
(Compiler maps.)

Prop. fP is not finitely presented. Its word problem is co-r.e. but not r.e.
(Undecidability of word probl.:
The problem $L \stackrel{?}{=} A^{*}$ for context-free languages is undecidable. Context-free languages are in P.)
Q. Is $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ finitely generated?

The maps $\pi_{0}, \pi_{1}, \pi_{1}^{\prime}$, reexpand, contr, recontr are in $\mathcal{R} \mathcal{M}_{2}^{P}$. There exists an evaluation map that works just for $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$. But the first padding map expand is not in $\mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$.

Prop. fP is finitely generated by regular elements.
Proof. Use $E_{(q)}(w, x)=\left(w, f_{w}(x), x\right)$; clearly, $E_{(q)}$ is not one-way. But $\mathrm{ev}_{(q)}$ can be expressed as a composition of $E_{(q)}$ and the other generators. \square

Prop. There are elements of fP that are non-regular (if $P \neq N P$), whose product is regular.

Reductions

The usual reduction between partial functions:
$f_{1} \preccurlyeq f_{2} \quad$ iff
($\exists \beta, \alpha$, polyn.-time computable) $\left[f_{1}=\beta \circ f_{2} \circ \alpha\right]$.
" f_{1} is simulated by $f_{2} "$

For languages, recall polyn.-time many-to-one reduction:
$L_{1} \preccurlyeq_{\mathrm{m}: 1} L_{2} \quad$ iff
$(\exists$ polyn.-time computable function $\alpha)\left(\forall x \in A^{*}\right)$ $\left[x \in L_{1} \quad \Leftrightarrow \quad \alpha(x) \in L_{2}\right]$.

Fact. $\quad L_{1} \preccurlyeq_{\mathrm{m}: 1} L_{2}$ with α as above iff $L_{1}=\alpha^{-1}\left(L_{2}\right) \quad$ iff $\chi_{L_{1}}=\chi_{L_{2}} \circ \alpha$ (i.e., $\chi_{L_{1}}$ is simulated by $\chi_{L_{2}}$).

For monoids $M_{0} \leq M_{1}$ in general: simulation is $\leq_{\mathcal{J}\left(M_{0}\right)}$ within M_{1} (submonoid \mathcal{J}-order, using multipliers in the submonoid M_{0}).

We want an "inversive reduction" such that if a one-way function f_{1} reduces to a function $f_{2} \in \mathrm{fP}$, then f_{2} is also one-way.

Idea:

f_{1} reduces "inversively" to f_{2} iff
(1) f_{1} is simulated by f_{2}, and
(2) the "easiest inverses" of f_{1} are simulated by the "easiest inverses" of f_{2}.
(The "easiest inverses" are the "minimal inverses" for the simulation preorder. But do minimal inverses exist?)

Def. (inversive reduction).

$f_{1} \leqslant_{\text {inv }} f_{2} \quad$ (" f_{1} reduces inversively to f_{2} ") iff
(1) $f_{1} \preccurlyeq f_{2}$, and
(2) for every inverse f_{2}^{\prime} of f_{2} there exists an inverse f_{1}^{\prime} of f_{1} such that $f_{1}^{\prime} \preccurlyeq f_{2}^{\prime}$.

Here, $f_{1}, f_{2}, f_{1}^{\prime}, f_{2}^{\prime}$ range over all partial functions on strings.
The relation $\leqslant_{\text {inv }}$ can be defined on monoids.
Assume $M_{0} \leq M_{1} \leq M_{2}$, with f_{1}, f_{2} ranging over M_{1}, inverses $f_{1}^{\prime}, f_{2}^{\prime}$ ranging over M_{2}, and simulation being $\leq_{\mathcal{J}\left(M_{0}\right)}$ (i.e., multipliers are in M_{0}).

We should assume that M_{1} is regular within M_{2}, to avoid empty ranges for the quantifiers $\left(\forall f_{2}^{\prime}\right)\left(\exists f_{1}^{\prime}\right)$ (otherwise, $f_{1} \leqslant$ inv f_{2} is trivially equivalent to $f_{1} \preccurlyeq f_{2}$, when f_{2} has no inverse in M_{2}).

Prop. $\leqslant_{\text {inv }}$ is transitive and reflexive (pre-order).

Prop. If $f_{1} \leqslant$ inv $f_{2}, f_{2} \in \mathrm{fP}$, and f_{2} is regular, then $f_{1} \in \mathrm{fP}$ and f_{1} is regular.
Contrapositive: If $f_{1}, f_{2} \in \mathrm{fP}$ and f_{1} is one-way, then f_{2} is one-way.

Prop. The evaluation map $\mathrm{ev}_{\left(q_{2}\right)}^{C}$ is complete in fP with respect to inversive reduction.
Proof. For any $f_{w} \in \mathrm{fP}$ with q-polynomial program w, $f_{w}(x)=\pi_{2|w|+2}^{\prime} \circ$ contr $\circ \operatorname{recontr}^{m} \circ \operatorname{ev}_{\left(q_{2}\right)}^{C}$ \circ reexpand $^{m} \circ$ expand $\circ \pi_{\text {code }(w) 11}(x)$.
Let e^{\prime} be any inverse of $\mathrm{ev}_{\left(q_{2}\right)}^{C}$. Then for any string of the form $\operatorname{code}(w) 11 y$ with $y \in \operatorname{Im}\left(f_{w}\right)$ we have:
$\mathrm{e}^{\prime}(\operatorname{code}(w) 11 y)=\operatorname{code}(w) 11 x_{i}$,
for some $x_{i} \in f_{w}^{-1}(y)$.
So e^{\prime} simulates the inverse of f_{w}, defined by $f_{w}^{\prime}(y)=x_{i}$, where x_{i} is as above (when $y \in \operatorname{Im}\left(f_{w}\right)$).

Prop. Levin's critical map ev Levin is $\leqslant_{\text {inv }}$-complete in $\mathrm{fP}_{\mathrm{Ip}}$ (length-preserving partial functions in fP).

Levin's map $\mathrm{ev}_{\text {Levin }}$ is $\leqslant_{\text {inv, } \mathrm{T} \text {-complete in } \mathrm{fP} \text {, where }}$
$\leqslant_{\text {inv, }, ~}$ is polynomial inversive Turing reduction.
Prop. For each $f \in \mathfrak{f P}$ there exists $\ell_{f} \in \mathrm{fP}_{\mathrm{Ip}}$ such that $f \leqslant$ inv, $\boldsymbol{T} \ell_{f}$.

Inversification of any simulation:

For any $\preccurlyeq x$, define $f_{1} \leqslant$ inv, $x f_{2}$ iff
$f_{1} \preccurlyeq x_{x} f_{2}$, and
$\left(\forall\right.$ inverse f_{2}^{\prime} of $\left.f_{2}\right)\left(\exists\right.$ inverse f_{1}^{\prime} of $\left.f_{1}\right) \quad f_{1}^{\prime} \preccurlyeq X f_{2}^{\prime}$.
Prop. If $\preccurlyeq x$ is transitive then $\leqslant_{\text {inv, } X}$ is transitive.

Prop. For every $f, r \in \mathcal{R} \mathcal{M}_{2}^{\mathrm{P}}$ with r regular and f non-empty, we have $r \leqslant_{\text {inv }} f$.

Prop. The $\equiv_{\mathcal{D}}$-relation is a refinement of $\leqslant_{\text {inv }}$-equivalence.

The polynomial hierarchy

The classical polynomial hierarchy for languages:
$\Sigma_{1}^{\mathrm{P}}=\mathrm{NP}, \quad \Pi_{1}^{\mathrm{P}}=\mathrm{coNP} ; \quad$ and for $k>0$:
$\Sigma_{k+1}^{\mathrm{P}}=\mathrm{NP}^{\Sigma_{k}^{\mathrm{P}}}$,
i.e., all languages accepted by non-det. Turing machines with oracle in Σ_{k}^{P} (equivalently, with oracle in Π_{k}^{P});

$$
\begin{aligned}
& \Pi_{k+1}^{\mathrm{P}}=(\operatorname{coNP})^{\Sigma_{k}^{\mathrm{P}}}\left(=\mathrm{co}\left(\mathrm{NP}^{\Sigma_{k}^{\mathrm{P}}}\right)\right) \\
& \mathrm{PH}=\bigcup_{k} \Sigma_{k}^{\mathrm{P}}(\subseteq \mathrm{PS} \text { pace })
\end{aligned}
$$

Polynomial hierarchy for functions:
$\mathrm{fP}^{\Sigma_{k}^{\mathrm{P}}}$ consists of all polynomially balanced partial functions (on A^{*}) computed by det. polyn.-time Turing machines with oracle in Σ_{k}^{P} (equivalently, with oracle in Π_{k}^{P}). $\mathrm{fP}^{\mathrm{PH}}$ consists of all polynomially balanced partial functions (on A^{*}) computed by det. polyn.-time Turing machines with oracle in PH .
fPSpace consists of all polynomially balanced partial functions (on A^{*}) computed by det. polyn.-space Turing machines.

Prop. Every $f \in \mathrm{fP}$ has an inverse in $\mathrm{fP}^{\mathrm{NP}}$. Every $f \in \mathrm{fP}^{\Sigma_{k}^{P}}$ has an inverse in $\mathrm{fP}^{\Sigma_{k+1}^{\mathrm{P}}}$. The monoids $\mathrm{fP}^{\mathrm{PH}}$ and fPS pace are regular.
Proof. The following is an inverse of f :

$$
f^{\prime}(y)= \begin{cases}\min \left(f^{-1}(y)\right) & \text { if } y \in \operatorname{Im}(f) \\ y & \text { otherwise }\end{cases}
$$

where min refers to dictionary order.

If $P=N P$ then $P=P H$ and $f P^{P H}=f P$; so $f P^{P H}$ is a "minimal" regular extension of fP .

Prop.

For each $k \geq 1, \mathrm{fP}^{\Sigma_{k}^{\mathrm{P}}}$ is finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.
fPSpace is also finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.
The monoid $\mathrm{fP}^{\mathrm{PH}}$ is not finitely generated, unless the polyn. hierarchy collapses.

