Semigroups and one-way functions

Jean-Camille Birget

To Stuart Margolis on his 60th birthday.

CS Dept., Rutgers U. (Camden Campus), Camden, New Jersey

Goal:

Find semigroups (and groups) whose elements represent computational devices or computable functions.

- 1. Thompson-Higman groups and monoids: They represent all *finite functions* and *acyclic digital circuits*.
- 2. Monoids of polynomial-time computable functions: Their properties depend on P-vs.-NP.

Study complexity classes through functions and semigroups (instead of only as sets of languages).

arXiv:1306.1447 [math.GR] 6 Jun 2013

Preliminary definitions

Fix a finite alphabet A.

 $A^* = \text{set of all finite words over } A.$

View A^* as the rooted, regular, infinite, oriented **tree**, directed away from the root.

 $A^{\omega} = \text{set of all } \omega$ -words over A (the **ends** of A^*), with the Cantor space topology.

Def. $R \subseteq A^*$ is **right ideal** iff $R A^* \subseteq R$.

Def. $C (\subseteq A^*)$ generates a right ideal R iff R is the intersection of all right ideals that contain C. Equivalently, $R = CA^*$.

In A^{ω} , the open sets of the Cantor space are of the form $CA^{\omega} = \text{ends}(CA^*)$.

Def. A right ideal R is **essential** iff R intersects every right ideal of A^* .

I.e., ends(R) is *dense* in A^{ω} .

Def. $C \subseteq A^*$ is a **prefix code** (prefix-free code) iff no element of C is a *prefix* of another element of C. (Shannon-Fano coding, 1948; Huffman, 1951.)

"Prefix": any initial segment of a word.

Def. A prefix code C is **maximal** iff C is not a strict subset of another prefix code.

Fact. A right ideal R has a *unique minimal* (for \subseteq) generating set C; this minimum C is a prefix code.

Fact. A prefix code C is *maximal* iff CA^* is an *essential* right ideal.

Def. (end-equivalence): For right ideals $R', R \subseteq A^*$: $R' \cong R$ iff R' and R intersect the same right ideals iff $\operatorname{ends}(R)$ and $\operatorname{ends}(R')$ "are the same up to density", i.e., $\overline{\operatorname{ends}(R)} = \overline{\operatorname{ends}(R')}$, where overlining denotes closure in the Cantor set topology. **Def.** A right ideal homomorphism of A^* is a function $\varphi : R_1 \to A^*$ such that R_1 is a right ideal of A^* , and for all $x_1 \in R_1$ and all $w \in A^*$: $\varphi(x_1w) = \varphi(x_1) w$. Notation: Domain $R_1 = \mathsf{Dom}(\varphi)$,

image set = $Im(\varphi)$.

Fact. $\mathsf{Dom}(\varphi)$ and $\mathsf{Im}(\varphi)$ are right ideals.

Fact. φ acts as a continuous partial function on A^{ω} .

Def. $\mathcal{RM}_{|A|}^{\text{fin}}$ is the set of all *right-ideal morphisms*, whose domains are *finitely generated* right ideals of A^* (i.e., the ends of the domain are a clopen set).

Fact. If $\mathsf{Dom}(\varphi)$ is finitely generated then $\mathsf{Im}(\varphi)$ is also finitely generated.

Prop. (R. Thompson, G. Higman, E. Scott, for *groups*) Every $\varphi \in \mathcal{RM}_{|A|}^{\mathsf{fin}}$ has a **unique** maximal end-equivalent extension (within $\mathcal{RM}_{|A|}^{\mathsf{fin}}$).

This max. extension is denoted by $\max(\varphi)$.

Definition of the **Higman-Thompson monoid** $M_{k,1}$:

$$\begin{split} M_{k,1} &= \{ \max(\varphi) \ : \ \varphi \text{ is a right-ideal morphism} \\ & \text{between finitely generated right ideals of } A^* \}. \\ (k &= |A|). \end{split}$$

Multiplication: *function composition* followed by *maximal essentially equal extension*. (This is associative.)

Prop. $M_{k,1}$ is the faithful action of $\mathcal{RM}_k^{\mathsf{fin}}$ on A^{ω} .

Definition of the **Higman-Thompson group**: $G_{k,1} = \{\max(\varphi) : \varphi \text{ is a right-ideal isomorphism}$ between finitely generated **essential** right ideals of $A^*\}.$

Prop. $G_{k,1}$ is the faithful action on A^{ω} of the isomorphisms between finitely generated essential right ideals.

Properties of $M_{k,1}$

 $M_{k,1}$ is congruence-simple.

 $G_{k,1}$ is **simple** iff k is even.

 $G_{k,1}$ is the **group of units** (invertible elements) of $M_{k,1}$.

 $M_{k,1} \hookrightarrow \mathcal{O}_k$ (Cuntz algebra).

 $M_{k,1}$ contains all finite monoids, $G_{k,1}$ contains all finite groups.

The Green relations of a monoid M:

Let $s, t \in M$. $t \leq_{\mathcal{J}} s$ iff $MtM \subseteq MsM$ iff $(\exists x, y \in M)$ t = xsy. (t is a two-sided multiple of s) $t \leq_{\mathcal{R}} s$ iff $tM \subseteq sM$ iff $(\exists y \in M)$ t = sy. (t is a right multiple of s) $t \leq_{\mathcal{L}} s$ iff $Mt \subseteq Ms$ contain t iff $(\exists x \in M)$ t = xs. (t is a left multiple of s) $t \equiv_{\mathcal{D}} s$ iff $(\exists p_1 \in M)$ $t \equiv_{\mathcal{R}} p_1 \equiv_{\mathcal{L}} s$ iff $(\exists p_2 \in M)$ $t \equiv_{\mathcal{L}} p_2 \equiv_{\mathcal{R}} s$. **Prop.** (\mathcal{J}) : $M_{k,1}$ is \mathcal{J}^0 -simple (the only ideals are **0** and $M_{k,1}$ itself).

Prop. (\mathcal{D}): $M_{k,1}$ has k-1 non-zero $\equiv_{\mathcal{D}}$ -classes. In particular, $M_{2,1}$ is \mathcal{D}^0 -simple ("0-bisimple").

For all non-zero $\varphi, \psi \in M_{k,1}$:

$$\begin{split} \psi &\equiv_{\mathcal{D}} \varphi \quad \text{iff} \\ |\text{im}\mathsf{C}(\psi)| &\equiv |\text{im}\mathsf{C}(\varphi)| \mod k-1. \end{split}$$

Prop. $M_{k,1}$ is regular (i.e., $\forall f \exists f' : ff'f = f$).

Prop.
$$\psi \leq_{\mathcal{R}} \varphi$$
 iff
 $\mathsf{ends}(\mathsf{Im}(\psi)) \subseteq \mathsf{ends}(\mathsf{Im}(\varphi))$ iff
for some end-equivalent restrictions Ψ, Φ :
 $\mathsf{imC}(\Psi) \subseteq \mathsf{imC}(\Phi).$

Def. $\operatorname{mod}\varphi$ is the partition on $\operatorname{ends}(\operatorname{Dom}(\varphi))$, defined by $u \equiv_{\operatorname{mod}\varphi} v$ iff $\varphi(u) = \varphi(v)$.

Prop. $\psi \leq_{\mathcal{L}} \varphi$ iff ends(Dom(ψ)) \subseteq ends(Dom(φ)), and mod ψ is coarser than mod φ on ends(Dom(ψ))

Prop. $<_{\mathcal{R}}$ -chains and $<_{\mathcal{L}}$ -chains are **dense**. (If x < y then $\exists z : x < z < y$.) **Prop.** $M_{k,1}$ is finitely generated.

Prop. (Thompson, Higman): $G_{k,1}$ is finitely presented. **Open question:** Is $M_{k,1}$ (not) finitely presented?

Theorem.

Over any finite generating set Γ of $M_{k,1}$: The word problem of $M_{k,1}$ is in P . Deciding the Green relations of $M_{k,1}$ is in P .

Input: $\psi, \varphi \in M_{k,1}$, given by words over Γ . Question: $\psi \leq_{\mathcal{J}} \varphi$? (or $\leq_{\mathcal{R}}, \leq_{\mathcal{L}}, \equiv_{\mathcal{D}}$)

<u>Connection with combinational circuits</u> (acyclic digital circuits)

 $M_{2,1}$ acts (partially) on the set of bit-strings $\{0, 1\}^*$; so the elements of $M_{2,1}$ are boolean functions.

We now use a "**circuit-like**" generating set $\Gamma \cup \tau$; Γ is any finite generating set of $M_{k,1}$ (generalized gates),

 τ consists of the position transpositions on strings; $\tau = \{\tau_{i,i+1} : i \ge 1\} \ (\subset G_{k,1})$

$$\tau_{i,i+1}: \qquad x_1 \ldots x_{i-1} x_i x_{i+1} x_{i+2} \ldots \qquad \longmapsto \\ x_1 \ldots x_{i-1} x_{i+1} x_i x_{i+2} \ldots$$

 $\tau_{i,i+1}$ undefined on short words.

(wire-crossing).

Theorem.

For every combinational circuit Cthere is a word w over $\Gamma \cup \tau$ such that:

(1) C and w represent the same function,

(2) $|w| \le c \cdot |C|.$ (*c* is a const.)

Conversely:

If $f: A^m \to A^n$ is represented by $w \in (\Gamma \cup \tau)^*$ then f has a combinational circuit C with

 $|C| \le c \cdot |w|^2.$

$\frac{\textbf{Decision problems over a "circuit-like"}}{\textbf{generating set } \Gamma \cup \tau}$

Theorem.

The word problem of $M_{k,1}$ over $\Gamma \cup \tau$ is **coNP**-complete (similar to the circuit equivalence problem).

Theorem. Over $\Gamma \cup \tau$: deciding $\leq_{\mathcal{R}}$ is Π_2^{P} -complete (similar to the surjectiveness problem for circuits); deciding $\leq_{\mathcal{L}}$ is **coNP**-complete (similar to the injectiveness problem for circuits).

 $\mathsf{coNP} = \{L : \overline{L} \in \mathsf{NP}\}.$

 $\Sigma_2^{\mathsf{P}} = \mathsf{N}\mathsf{P}^{\mathsf{N}\mathsf{P}} =$ all languages accepted by polyn.-time *nondet.* Turing machines, with oracle in $\mathsf{N}\mathsf{P}$ (or equivalently, with oracle in $\mathsf{co}\mathsf{N}\mathsf{P}$).

 $\Pi_2^{\mathsf{P}} = (\mathsf{coNP})^{\mathsf{NP}} =$ all languages accepted by polyntime *co-nondet*. Turing machines, with oracle in NP (or equivalently, with oracle in coNP).

Motivation:

Use (finitely generated) semigroups to study NP and one-way functions.

Definition scheme:

A partial function $f: A^* \to A^*$ is called "one-way" iff

- (1) f(x) is "easy" to compute (knowing f and x),
- (2) knowing f and $y \in \text{Im}(f)$, it is "difficult" to find any $x \in A^*$ such that f(x) = y.

(Old idea, William Stanley Jevons 1873; ex. of multiplication vs. factorization. Diffie & Hellman 1976, discr. log.)

The function semigroup fP

We fix an alphabet A (typically, $\{0, 1\}$).

Def. A partial function $f : A^* \to A^*$ is polynomially balanced iff there exists polynomials p, q such that for all $x \in \mathsf{Dom}(f) : |f(x)| \le p(|x|)$ and $|x| \le q(|f(x)|)$.

Def. $fP = set of partial functions <math>f : A^* \to A^*$ such that

- $x \mapsto f(x)$ is computable in det. polyn. time;
- f is polynomially balanced.

The first property implies $\mathbf{Dom}(f) \in \mathsf{P}$.

Prop. fP is closed under composition.

Def. (worst-case one-way function; not "cryptographic"): A function f is **one-way** iff $f \in \mathsf{fP}$, but there does *not* exist any deterministic polyn.-time algorithm which,

- on input $y \in A^*$,
- finds any $x \in A^*$ such that f(x) = y when $y \in \mathsf{Im}(f)$. (There is no requirement in when $y \notin \mathsf{Im}(f)$.)

Prop. (well known, 1980s or 1970s): One-way functions exist iff $P \neq NP$.

Lemma. (Definition of "inverse"): The following are equivalent for partial functions $f, f' : A^* \to A^*$.

• For all $y \in \mathsf{Im}(f)$, f'(y) is defined and f(f'(y)) = y. (Thus, $\mathsf{Im}(f) \subseteq \mathsf{Dom}(f')$.)

•
$$f \cdot f'|_{\mathsf{Im}(f)} = \mathsf{id}|_{\mathsf{Im}(f)}$$
.

•
$$f \cdot f' \cdot f = f$$
.

Such an f' is called an **inverse** of f.

How any inverse f' of f is made:

(1) Choose $\mathsf{Dom}(f')$ arbitrarily, with $\mathsf{Im}(f) \subseteq \mathsf{Dom}(f')$. For every $y \in \mathsf{Im}(f)$, choose f'(y) to be any $x \in f^{-1}(y)$.

 $(f'|_{\mathsf{Im}(f)}$ is the *choice function* of f'.)

(2) For every $y \in \mathsf{Dom}(f') - \mathsf{Im}(f)$, choose f'(y) arbitrarily in A^* .

Then ff'f = f. Any inverse of f arises in this way.

Prop. fP is *regular* iff one-way functions do *not* exist.

Prop.

(1) If $f \in \mathbf{fP}$ then $\mathsf{Im}(f) \in \mathsf{NP}$.

(2) For every language $L \in \mathsf{NP}$ there exists $f_L \in \mathsf{fP}$ such that $L = \mathsf{Im}(f_L)$.

Proof. (2) Let M_L be a non-det. polyn.-time Turing machine accepting L. Define

 $f_L(x,s) = x$ iff

 M_L , with choice sequence s, accepts x;

 $f_L(x,s)$ is undefined otherwise. \Box

Prop. If $f \in \mathsf{fP}$ is regular then $\mathsf{Im}(f) \in \mathsf{P}$.

Thm. (JCB 2011) If $\Pi_2^{\mathsf{P}} \neq \Sigma_2^{\mathsf{P}}$ then there exist surjective one-way functions.

Consequence: For $f \in \mathsf{fP}$, $\mathsf{Im}(f) \in \mathsf{P}$ is not equivalent to f being regular (if $\Pi_2^{\mathsf{P}} \neq \Sigma_2^{\mathsf{P}}$).

Prop. (regular \mathcal{L} - and \mathcal{R} -orders): If $f, r \in \mathsf{fP}$ and r is *regular* with an inverse $r' \in \mathsf{fP}$ then:

- $f \leq_{\mathcal{R}} r$ iff f = rr'f iff $\operatorname{Im}(f) \subseteq \operatorname{Im}(r)$.
- $f \leq_{\mathcal{L}} r$ iff f = fr'r iff $mod f \leq mod r$.

<u>The \mathcal{D} -relation:</u>

It is not known which infinite languages in P can be mapped onto each other by maps in fP .

Are all regular elements of fP with infinite image in the \mathcal{D} -class of $\mathsf{id}|_{A^*}$?

Prop. Let $P \subseteq A^*$ be a prefix code in P , and let $p_0 \in P$. All *regular* elements $f \in \mathsf{fP}$ with $\mathsf{Im}(f)$ of the form

 $L_P = (P - \{p_0\}) A^* \cup p_0 (p_0 A^* \cup \overline{PA^*})$

are in the \mathcal{D} -class of $\mathsf{id}|_{A^*}$.

 L_P is an "approximation" of the right ideal PA^* , since $(P - \{p_0\})A^* \subset L_P \subset PA^*.$

In general, P is infinite, in P; so, $P - \{p_0\}$ is "almost" P.

Lemma.

(1) $L \in \mathsf{P}$ implies $LA^* \in \mathsf{P}$. (2) Let R be a right ideal in P , let P be the prefix code P of R (i.e., $R = PA^*$); then $P \in \mathsf{P}$. **Def.** $\mathcal{RM}_{|A|}^{\mathsf{P}} = \{f \in \mathsf{fP} : f \text{ is a right ideal morphism of } A^*\}.$ If f is a right ideal morphism, $\mathsf{Dom}(f)$ is a right ideal.

$$\mathcal{RM}^{\mathsf{fin}}_{|A|} \ \subset \ \mathcal{RM}^{\mathsf{P}}_{|A|}.$$

Prop. $\mathcal{RM}_{|A|}^{\mathsf{P}}$ is \mathcal{J}^{0} -simple. **Proof.** Let $(v \leftarrow u)$ denote $uz \mapsto vz$ (for all $z \in A^{*}$). So, $(\varepsilon \leftarrow \varepsilon) = \mathsf{id}|_{A^{*}}$. For $f \neq \mathbf{0}$, let $f(x_{0}) = y_{0}$. Then $(\varepsilon \leftarrow \varepsilon) = (\varepsilon \leftarrow y_{0}) \circ f \circ (x_{0} \leftarrow \varepsilon)$. \Box

Prop. fP is not \mathcal{J}^0 -simple.

It has regular continuous (prefix-order preserving) elements in different non-0 \mathcal{J} -classes.

Prop. Every regular $f \in \mathcal{RM}_2^P$ is "close" to an element of **fP** belonging to the \mathcal{D} -class of $\mathsf{id}|_{A^*}$.

Restrict f from $Im(f) = PA^*$, with $p_0 \in P$, to

$$L = (P - \{p_0\}) A^* \cup p_0 (p_0 A^* \cup \overline{PA^*});$$

then

$$\operatorname{Im}(f) - p_0 A^* \subset L \subset \operatorname{Im}(f).$$

Prop. The \mathcal{D} -class of id in $\mathcal{RM}_2^{\mathsf{P}}$ is \mathcal{H} -trivial.

Def. The polyn.-time Thompson-Higman monoid $\mathcal{M}_2^{\mathsf{P}}$ consists of the end-equivalence classes of elements of $\mathcal{RM}_2^{\mathsf{P}}$.

 $\mathcal{M}_2^{\mathsf{P}}$ is the faithful action of $\mathcal{R}\mathcal{M}_2^{\mathsf{P}}$ on A^{ω} .

The Thompson-Higman monoid $M_{k,1}$ is a submonoid of $\mathcal{M}_{|A|}^{\mathsf{P}}$ (where k = |A|).

Padding arguments:

Time-complexity is defined as a function of the input length. By making inputs longer, without changing the essential difficulty of a problem, one obtains a new (but "similar") problem with lower time-complexity.

Padding can mean, e.g., to replace x by all words of the form xw for $w \in A^n$.

This padding preserves end-equivalence.

The padding argument implies that $\mathcal{M}_2^{\mathsf{P}} = \mathcal{M}_2^{\mathsf{rec}}$, i.e., the faithful action on A^{ω} of $\mathcal{RM}_2^{\mathsf{rec}}$. Here, $\mathcal{RM}_2^{\mathsf{rec}} =$ all right-ideal morphisms that are recursive partial functions, with recursive domain, recursively balanced.

Prop. $\mathcal{M}_2^{\mathsf{P}}$ is regular and \mathcal{D}^0 -simple (hence \mathcal{J}^0 -simple).

One can define a *Thompson group* of polynomial-time functions by taking the group of units of $\mathcal{M}_2^{\mathsf{P}}$.

Embedding fP into $\mathcal{RM}_2^{\mathsf{P}}$

Def. fP uses the alphabet $\{0, 1\}$; let # be a new letter. For any $f \in fP$, define $f_{\#} : \{0, 1, \#\}^* \to \{0, 1, \#\}^*$ by $\mathsf{Dom}(f_{\#}) = \mathsf{Dom}(f) \# \{0, 1, \#\}^*$, and $f_{\#}(x \# w) = f(x) \# w$, for all $x \in \mathsf{Dom}(f) (\subseteq \{0, 1\}^*)$, and all $w \in \{0, 1, \#\}^*$.

Prop.

(1) For any $L \subseteq \{0, 1\}^*$, L# is a prefix code in $\{0, 1, \#\}^*$. (2) $f \in \mathsf{fP}$ iff $f_\# \in \mathcal{RM}_3^\mathsf{P}$

- **Def.** Encoding from $\{0, 1, \#\}$ to $\{0, 1\}$: code(0) = 00, code(1) = 01, code(#) = 11.
- **Def.** We define $f^C : \{0,1\}^* \to \{0,1\}^*$ by $\mathsf{Dom}(f^C) = \mathsf{code}(\mathsf{Dom}(f) \#) \{0,1\}^*$, and $f^C(\mathsf{code}(x\#) v) = \mathsf{code}(f(x) \#) v$, for all $x \in \mathsf{Dom}(f) (\subseteq \{0,1\}^*)$, and all $v \in \{0,1\}^*$.

Prop. $f \in \mathsf{fP}$ iff $f^C \in \mathcal{RM}_2^{\mathsf{P}}$.

Prop.

(1) $f \in \mathbf{fP} \mapsto f^C \in \mathcal{RM}_2^{\mathsf{P}}$ is an injective monoid homomorphism.

(2) f is regular in fP iff f^C is regular in \mathcal{RM}_2^P .

Embeddings:

$$\mathsf{fP} \stackrel{C}{\hookrightarrow} \mathcal{RM}^{\mathsf{P}}_{2} \subset [\mathsf{id}]^{0}_{\mathcal{J}(\mathsf{fP})} \subset \mathsf{fP}.$$

Here, $[\mathsf{id}]^0_{\mathcal{J}(\mathsf{fP})}$ is the Rees quotient of the $\mathcal{J}\text{-class}$ of the identity id of $\mathsf{fP}.$

fP embeds into its \mathcal{J} -class of the identity (plus zero).

Evaluation maps

Turing machine evaluation function

 $\mathsf{eval}_{\mathsf{TM}}(w,x) \ = \ f_w(x)$

where f_w is the input-output (partial) function described by the word (program) w.

 $\mathsf{eval}_{\mathsf{TM}}$ is the I/O map of the universal Turing machines, or of TM interpreters.

Evaluation function for acyclic circuits $eval_{circ}(C, x) = f_C(x),$ where f_C is the input-output map of a circuit C.

(Assume f_C is length-preserving, i.e., $|f_C(x)| = |x|$.)

Levin's universal one-way function (1980s): $ev_{Levin}(C, x) = (C, f_C(x)),$

Then, $ev_{Levin} \in fP$.

Thm. (L. Levin) If one-way functions exist then ev_{Levin} is a one-way function.

Evaluation maps for fP:

Use programs with *built-in polyn.-time counter*, for time complexity, and for balancing. (1970's, Hartmanis, Lewis, Stearns, et al.)

First attempt: For \mathbf{fP} we define

 $\operatorname{ev}_{\operatorname{poly}}(w, x) = (w, f_w(x)),$

where w is any polynomial program, and $f_w \in \mathsf{fP}$.

But ev_{poly} is *not* in fP: complexity on input (w, x) is $> c |w| \cdot p_w(|x|)$, and balancing function is $> c (|w| + p_w(|x|))$; the degree of p_w depends on w. For a fixed polynomial q, let

$$f\mathsf{P}^{(q)} = \{ f_w \in \mathsf{f}\mathsf{P}^{(q)} : \text{ for all } x \in \mathsf{Dom}(f), \\ w \text{ has time-complexity } T_w(|x|) \le q(|x|) \text{ and} \\ \text{ input-balance } |x| \le q(|f_w(x)|) \}.$$

Let

 $ev_{(q)}(w, x) = (w, f_w(x)),$ where w is any q-polynomial program.

Encoding:

$$\operatorname{ev}_{(q)}^C(\operatorname{code}(w\#) x) = \operatorname{code}(w\#) f_w(x).$$

When f_w is a right ideal morphism, $ev_{(q)}^C$ is also a right ideal morphism.

Prop. Suppose q satisfies $q(n) > c n^2 + c$ (for an appropriate constant c > 1 that depends on the model of computation). Then

 $ev_{(q)}^C \in fP^{(q)}$, and

 $ev_{(q)}^C$ is a one-way function if one-way functions exist.

For any fixed word $v \in \{0, 1\}^*$ we define $\pi_v : x \in \{0, 1\}^* \longmapsto v x$; and for any fixed integer k > 0 we define

> $\pi'_k : z x \in \{0, 1\}^* \longrightarrow x$, where |z| = k $(\pi_k(t) \text{ undefined if } |t| < k).$

 π_v is a composite of the maps π_0 and π_1 . π'_k is the *k*th power of π'_1 .

We define the padding map,

 $expand(w, x) = (e(w), (0^{|x|^2}, x))$ where e(w) is such that

 $f_{\mathbf{e}(w)}(0^k, x) = (0^k, f_w(x)), \text{ for all } k.$

Encoding:

 $\begin{aligned} \mathsf{expand}(\mathsf{code}(w) \ 11 \ x) \ = \\ \mathsf{code}(\mathsf{ex}(w)) \ 11 \ 0^{|x|^2} \ 11 \ x, \end{aligned}$

now with ex(w) such that

 $f_{\mathsf{ex}(w)}(0^k \ 11 \ x) = 0^k \ 11 \ f_w(x) \text{ for all } k \ge 0.$

We define a repeated padding map, $reexpand(code(ex(w)) \ 11 \ 0^k \ 11 \ x) = code(ex(w)) \ 11 \ 0^{k^2} \ 11 \ x,$ with ex(w) as above. Unpadding map: $\operatorname{contr}(\operatorname{ex}(w), (0^{|y|^2}, y)) = (w, y)$ (undefined on other inputs). Encoding: $\operatorname{contr}(\operatorname{code}(\operatorname{ex}(w)) \ 11 \ 0^{|y|^2} \ 11 \ y) = w \ 11 \ y$

(undefined on other inputs).

```
Repeated unpadding:
```

```
recontr(code(ex(w)) \ 11 \ 0^{k^2} \ 11 \ y)
= code(ex(w)) 11 0<sup>k</sup> 11 y
(undefined on other inputs).
```

Prop. fP is finitely generated.

Proof. The following is a generating set of **fP**:

{expand, reexpand, contr, recontr, π_0 , π_1 , π'_1 , $ev^C_{(q_2)}$ }, where $q_2(n) = c n^2 + c$.

For any $f_w \in \mathsf{fP}^{(q)}$, let m be an integer $\geq \log_2$ of the sum of the degrees and the positive coefficients of q.

$$\begin{array}{rcl} f_w(x) &=& \pi'_{2\,|w|+2} \circ \operatorname{contr} \circ \operatorname{recontr}^m \circ \operatorname{ev}^C_{(q_2)} \\ & & \circ \operatorname{reexpand}^m \circ \operatorname{expand} \circ \pi_{\operatorname{code}(w)\,11}(x). \end{array}$$

Now we have two ways to describe a function by a word.

Prop. (Program vs. generator string). The maps $s \mapsto w$ and $w \mapsto s$ are in fP, where s is over the generators of fP, w is a polynomial program, with $\Pi s = f_w$. (Compiler maps.)

Prop. fP is *not* finitely presented. Its word problem is co-r.e. but not r.e.

(Undecidability of word probl.:

The problem $L \stackrel{?}{=} A^*$ for *context-free languages* is undecidable. Context-free languages are in P.)

Q. Is $\mathcal{RM}_2^{\mathsf{P}}$ finitely generated?

The maps π_0 , π_1 , π'_1 , reexpand, contr, recontr are in \mathcal{RM}_2^P . There exists an evaluation map that works just for \mathcal{RM}_2^P . But the first padding map expand is not in \mathcal{RM}_2^P .

Prop. fP is finitely generated by regular elements. **Proof.** Use $E_{(q)}(w, x) = (w, f_w(x), x)$; clearly, $E_{(q)}$ is not one-way. But $ev_{(q)}$ can be expressed as a composition of $E_{(q)}$ and the other generators. \Box

Prop. There are elements of fP that are non-regular (if $P \neq NP$), whose product is regular.

Reductions

The usual reduction between partial functions: $f_1 \preccurlyeq f_2$ iff $(\exists \beta, \alpha, \text{ polyn.-time computable}) [f_1 = \beta \circ f_2 \circ \alpha].$ " f_1 is simulated by f_2 "

For languages, recall polyn.-time many-to-one reduction: $L_1 \preccurlyeq_{m:1} L_2$ iff $(\exists \text{ polyn.-time computable function } \alpha)(\forall x \in A^*)$ $[x \in L_1 \iff \alpha(x) \in L_2].$

Fact.
$$L_1 \preccurlyeq_{m:1} L_2$$
 with α as above iff
 $L_1 = \alpha^{-1}(L_2)$ iff
 $\chi_{L_1} = \chi_{L_2} \circ \alpha$ (i.e., χ_{L_1} is simulated by χ_{L_2}).

For monoids $M_0 \leq M_1$ in general: simulation is $\leq_{\mathcal{J}(M_0)}$ within M_1 (submonoid \mathcal{J} -order, using multipliers in the submonoid M_0).

We want an "inversive reduction" such that if a one-way function f_1 reduces to a function $f_2 \in \mathsf{fP}$, then f_2 is also one-way. Idea:

 f_1 reduces "inversively" to f_2 iff

(1) f_1 is simulated by f_2 , and

(2) the "easiest inverses" of f_1 are simulated by the "easiest inverses" of f_2 .

(The "easiest inverses" are the "minimal inverses" for the simulation preorder. But do minimal inverses exist?)

Def. (inversive reduction).

 $f_1 \leq_{inv} f_2$ (" f_1 reduces inversively to f_2 ") iff (1) $f_1 \preccurlyeq f_2$, and

(2) for every inverse f'_2 of f_2 there exists an inverse f'_1 of f_1 such that $f'_1 \preccurlyeq f'_2$.

Here, f_1, f_2, f'_1, f'_2 range over all partial functions on strings.

The relation \leq_{inv} can be defined on monoids.

Assume $M_0 \leq M_1 \leq M_2$, with f_1, f_2 ranging over M_1 , inverses f'_1, f'_2 ranging over M_2 , and simulation being $\leq_{\mathcal{J}(M_0)}$ (i.e., multipliers are in M_0).

We should assume that M_1 is regular within M_2 , to avoid empty ranges for the quantifiers $(\forall f'_2)(\exists f'_1)$ (otherwise, $f_1 \leq_{inv} f_2$ is trivially equivalent to $f_1 \preccurlyeq f_2$, when f_2 has no inverse in M_2). **Prop.** \leq_{inv} is transitive and reflexive (pre-order).

Prop. If $f_1 \leq_{inv} f_2$, $f_2 \in fP$, and f_2 is regular, then $f_1 \in fP$ and f_1 is regular.

Contrapositive: If $f_1, f_2 \in \mathsf{fP}$ and f_1 is one-way, then f_2 is one-way.

Prop. The evaluation map $ev_{(q_2)}^C$ is *complete* in fP with respect to inversive reduction.

Proof. For any $f_w \in \mathsf{fP}$ with q-polynomial program w,

 $\begin{array}{rcl} f_w(x) &=& \pi'_{2\,|w|+2} \circ \operatorname{contr} \circ \operatorname{recontr}^m \circ \operatorname{ev}^C_{(q_2)} \\ & \circ \operatorname{reexpand}^m \circ \operatorname{expand} \circ \pi_{\operatorname{code}(w)\,11}(x). \end{array}$

Let \mathbf{e}' be any inverse of $\mathbf{ev}_{(q_2)}^C$. Then for any string of the form $\mathbf{code}(w) \operatorname{11} y$ with $y \in \operatorname{Im}(f_w)$ we have:

 $\mathsf{e}'(\mathsf{code}(w)\,11\,y) \;=\; \mathsf{code}(w)\,11\,x_i\;,$

for some $x_i \in f_w^{-1}(y)$.

So **e'** simulates the inverse of f_w , defined by $f'_w(y) = x_i$, where x_i is as above (when $y \in \text{Im}(f_w)$). \Box

Prop. Levin's critical map ev_{Levin} is \leq_{inv} -complete in fP_{lp} (length-preserving partial functions in fP).

Levin's map ev_{Levin} is $\leq_{inv,T}$ -complete in fP, where $\leq_{inv,T}$ is polynomial inversive *Turing reduction*.

Prop. For each $f \in \mathsf{fP}$ there exists $\ell_f \in \mathsf{fP}_{\mathsf{lp}}$ such that $f \leq_{\mathsf{inv},\mathsf{T}} \ell_f$.

Inversification of any simulation:

For any \preccurlyeq_X , define $f_1 \leqslant_{\text{inv},X} f_2$ iff $f_1 \preccurlyeq_X f_2$, and $(\forall \text{ inverse } f'_2 \text{ of } f_2) (\exists \text{ inverse } f'_1 \text{ of } f_1) \quad f'_1 \preccurlyeq_X f'_2.$

Prop. If \preccurlyeq_X is transitive then $\leqslant_{inv,X}$ is transitive.

Prop. For every $f, r \in \mathcal{RM}_2^{\mathsf{P}}$ with r regular and f non-empty, we have $r \leq_{\mathsf{inv}} f$.

Prop. The $\equiv_{\mathcal{D}}$ -relation is a refinement of \leq_{inv} -equivalence.

The polynomial hierarchy

The classical polynomial hierarchy for languages:

$$\begin{split} \Sigma_{1}^{\mathsf{P}} &= \mathsf{N}\mathsf{P}, \quad \Pi_{1}^{\mathsf{P}} = \mathsf{co}\mathsf{N}\mathsf{P} \;; \quad \text{and for } k > 0 : \\ \Sigma_{k+1}^{\mathsf{P}} &= \mathsf{N}\mathsf{P}^{\Sigma_{k}^{\mathsf{P}}}, \\ \text{i.e., all languages accepted by non-det. Turing machines with oracle in <math>\Sigma_{k}^{\mathsf{P}}$$
 (equivalently, with oracle in Π_{k}^{P}); $\Pi_{k+1}^{\mathsf{P}} &= (\mathsf{co}\mathsf{N}\mathsf{P})^{\Sigma_{k}^{\mathsf{P}}} \; (= \mathsf{co}(\mathsf{N}\mathsf{P}^{\Sigma_{k}^{\mathsf{P}}})); \\ \mathsf{P}\mathsf{H} \;=\; \bigcup_{k} \Sigma_{k}^{\mathsf{P}} \; (\subseteq \mathsf{P}\mathsf{Space}). \end{split}$

Polynomial hierarchy for functions:

 $f \mathsf{P}^{\Sigma_k^\mathsf{P}}$ consists of all *polynomially balanced* partial functions (on A^*) computed by *det*. polyn.-time Turing machines with *oracle* in Σ_k^P (equivalently, with oracle in Π_k^P).

 fP^{PH} consists of all polynomially balanced partial functions (on A^*) computed by det. polyn.-time Turing machines with oracle in PH.

fPSpace consists of all polynomially balanced partial functions (on A^*) computed by det. polyn.-space Turing machines.

Prop. Every $f \in \mathsf{fP}$ has an inverse in $\mathsf{fP}^{\mathsf{NP}}$. Every $f \in \mathsf{fP}^{\Sigma_k^{\mathsf{P}}}$ has an inverse in $\mathsf{fP}^{\Sigma_{k+1}^{\mathsf{P}}}$. The monoids $\mathsf{fP}^{\mathsf{PH}}$ and $\mathsf{fPSpace}$ are regular. **Proof.** The following is an inverse of f: $f'(y) = \begin{cases} \min(f^{-1}(y)) & \text{if } y \in \mathsf{Im}(f), \\ y & \text{otherwise,} \end{cases}$ where **min** refers to dictionary order. \Box

If P = NP then P = PH and $fP^{PH} = fP$; so fP^{PH} is a "minimal" regular extension of fP.

Prop.

For each $k \ge 1$, $\mathsf{fP}^{\Sigma_k^{\mathsf{P}}}$ is finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.

fPSpace is also finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.

The monoid fP^{PH} is not finitely generated, unless the polyn. hierarchy collapses.