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.. Some recent results

Joint work with Shmuel Weinberger and Guoliang Yu.

Let M = Γ\G/K be a noncompact arithmetic manifold whose
Q-rank is at least 3.
.
Theorem (BW 1999)
..
.
. ..

.

.

The manifold M admits a metric of positive scalar curvature.

.
Theorem (CW 2008)
..

.

. ..

.

.

Then M has a finite-sheeted cover N whose topological proper
structure STop

p (N) set is nontrivial; i.e. the manifold M is
virtually properly nonrigid. (In some particular cases strictly so
[2012].)
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.. Low-dimensional results

.
Theorem (CWY 2010)
..

.

. ..

.

.

The only noncompact contractible 3-manifold with positive
scalar curvature is R3.

.
Theorem (CWY 2010)
..

.

. ..

.

.

The only noncompact oriented 3-manifolds with positive scalar
curvature are connected sums of space forms and S2 × S1.
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.. Some high-dimensional results

.
Theorem (CWY 2012)
..

.

. ..

.

.

There are (contractible) noncompact manifolds with
uncountably many positive scalar curvature components.

.
Theorem (CWY 2012)
..

.

. ..

.

.

There are (contractible) manifolds M with a positively curved
exhaustion but which itself cannot carry a positive scalar
curvature metric.
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.. Scalar Curvature

Given a Riemannian metric g on a manifold M of dimension n,
we can define a function κg : M → R measuring the scalar
curvature of the manifold M at each point.

.
Definition
..

.

. ..

.

.

If g is a Riemannian metric on M of dimension n, the scalar
curvature is a smooth function κg : M → R obtained from the
curvature tensor by contracting twice.

volgBr (M, p)

volgsBr (Rn, 0)
= 1− κg (p)

6(n + 2)
r2 + · · · .
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.. Volumes of Balls

Let M be an n-dimensional manifold endowed with a
Riemannian metric g , and let p ∈ M. Suppose that κ(p) ̸= 0;
i.e. M is not flat at p. Then there is an ε > 0 such that, for all
r ∈ (0, ε), one of the following is true:

...1 volgBr (M, p) < volgBr (Rn, 0);

...2 volgBr (M, p) > volgBr (Rn, 0).

In these cases, we say that M is (1) positively curved, (2)
negatively curved at p.
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.. Trichotomy Theorem

.
Theorem (Kazdan-Warner)
..

.

. ..

.

.

Let Mn be a closed differentiable manifold of dimension n.
Then M belongs to exactly one of the following three classes:

...1 those admitting some Riemannian metric g for which
κg > 0 (positive manifolds);

...2 those admitting no Riemannian metric h with κh > 0, but
admitting a metric g with κg ≡ 0;

...3 those admitting no Riemannian metric h with κh ≥ 0, but
admitting a metric g with κg < 0.
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.. Surgery

.
Definition
..

.

. ..

.

.

Let N be a manifold of dimension n and suppose that
there is an embedding of Sk × Dn−k in N. Let M be the
manifold obtained by glueing the complement of

Sk × Dn−k ⊂ N and Dk+1 × Sn−k−1

along their common boundary Sk × Sn−k−1. We say that M is
obtained from N by k-surgery (or surgery of codimension
n − k).
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.. A theorem of Gromov-Lawson and Schoen-Yau

.
Theorem (GL 1980, SY 1979)
..

.

. ..

.

.

Let N be a closed manifold with a positive scalar curvature
metric, not necessarily connected, and let M be obtained from
N by surgery of codimension ≥ 3. Then M has a positive
scalar curvature metric.

.
Corollary
..

.

. ..

.

.

The connected sum M1#M2 of two n-dimensional manifolds is
obtained from their disjoint union by a 0-surgery. If M1 and M2

are closed manifolds of dimension n ≥ 3 with pscm, then the
connected sum M1#M2 also admits a metric of positive scalar
curvature.
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.. Aspherical manifolds

.
Definition
..
.
. ..

.

.

A compact manifold of the form K (π, 1) is called aspherical.

In dimension 2 the aspherical manifolds are precisely the ones
which lack a positive scalar curvature metric.

The Borel conjecture (for curvature): Any compact aspherical
manifold lacks a metric of positive scalar curvature.
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.. Another theorem of Gromov-Lawson

.
Theorem
..

.

. ..

.

.

If M is a simply connected manifold of dimension n ≥ 5 that
does not admit a spin structure, then M admits a metric of
positive scalar curvature.
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.. Dirac operator methods

.
Theorem (Lichnerowicz)
..

.

. ..

.

.

If M is a closed spin manifold of dimension 4k, endowed with
the Atiyah-Singer Dirac bundle S. If D is the Dirac operator on
this bundle and ∇ is the standard Levi-Cività connection, then

D2 = ∇∗∇+
κ

4
.

.
Corollary
..

.

. ..

.

.

If κ > 0, then the index of D, given by

ind(D) ≡ dim ker(D)− dim coker(D),

must vanish. Note: The Atiyah-Singer index theorem says that
ind(D) is equal to the topological invariant Â(M).
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.. A necessary condition

.
Theorem (Atiyah, Singer 1963)
..

.

. ..

.

.

If the closed spin manifold M4k admits a metric with positive
scalar curvature, then Â(M) = 0 in Z.

.
Theorem (Hitchin)
..

.

. ..

.

.

If the closed spin manifold Mn admits a metric with positive
scalar curvature, then α(M) = 0 in KO−n(∗), where

KO−n(∗) =


Z, n ≡ 0 mod 4,
Z2, n ≡ 1, 2 mod 8,
0, otherwise.
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.. Indicial Receptacles

For particular types of manifolds M, we can define an Dirac-like
index that lies in the following groups.

Atiyah Z 1963
Hitchin KO−∗(pt) 1974
Gromov KO∗(Bπ) 1980
Rosenberg KO∗(C

∗
r π) 1986

Roe K∗(C
∗(M)) 1995

General idea: If M can be endowed with a positive scalar
curvature metric, then the index vanishes.
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.. The Gromov-Lawson-Rosenberg Conjecture

Conjecture: (Borel) If M = K (π, 1) is a closed aspherical
manifold, then it is not positive.

Conjecture: (GLR) Suppose that M is a connected closed spin
manifold of dimension n ≥ 5. Then M is positive iff a
particular Dirac index α̂(M) vanishes in KO∗(C

∗
r π).

Counterexample: Take π = Z3 × Z4. (Schick 1998)
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.. Summary of results

Necessary vanishing condition to positive scalar curvature in
compact manifolds of dimension ≥ 5.

spin nonspin

simply connected Hitchin invariant none
in KO−∗(pt)

Dirac index Universal class
not simply connected in K∗(C

∗
r π) in Hn(Bπ)

(False: Z4 × Z3) (False: Z4 × Z3)
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.. Definition of S(V )

Let Cat = Top (topological), PL (piecewise linear) or Diff
(smooth).

.
Definition
..

.

. ..

.

.

Let V be a connected space, say a finite CW-complex. A Cat
manifold structure on V is a homotopy equivalence M → V ,
where M is a Cat manifold.

.
Definition
..

.

. ..

.

.

Let SCat(V ) be the set of equivalence classes of manifold
structures on V . Then SCat(V ) is called the Cat structure set
of V .
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.. Results about the structure set

...1 If V does not satisfy Poincaré duality, then SCat(V ) = ∅.

...2 Milnor discovers that SDiff(S7) has 28 elements and that
SDiff(Sn) forms a group.

...3 The Poincaré conjecture states that STop(Sn) and SPL(Sn)
are trivial; i.e. the n-sphere is topologically and PL rigid.

...4 The structure set STop(RP4k+1) is nontrivial and finite.
The structure set STop(RP4k+3) is infinite. (BL 1973)

...5 If n = 4k + 3 and π1(M
n) has torsion, then STop(Mn) is

infinite. (CW 2004)
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.. More results about the structure set

...1 The structure set STop(Sk × Sn) is trivial iff k and n are
both odd (k + n ̸= 3).

...2 There are topological manifolds M for which SPL(M) = ∅
and PL manifolds N for which SDiff(N) = ∅.

...3 There are PL manifolds M for which SPL(M) is nontrivial
but STop(M) is trivial.

The set SCat(V ) measures the extent to which a homotopy
equivalence M → V is homotopy equivalent to a
homeomorphism.
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.. Mostow’s rigidity theorem

.
Theorem (Mostow 1973, Marden 1974, Prasad 1973)
..

.

. ..

.

.

Suppose M and N are complete finite-volume hyperbolic
n-manifolds with n ≥ 3. If there exists an isomorphism
f : π1(M)→ π1(N), then it is induced by a unique isometry
from M to N.

Another version is to state that any homotopy equivalence
from M to N can be homotoped to a unique isometry.

Borel conjecture (1953): If M = K (π, 1) is compact, then any
homotopy equivalence from M to N can be homotoped to
homeomorphism; i.e. STop(M) is trivial.
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.. A brief review of the surgery exact sequence

Fundamental Result in Surgery (Browder, Novikov, Sullivan,
Wall 1960s; Kirby, Siebenmann 1970s): If M is a Cat manifold
of dimension n ≥ 5 with fundamental group π, there is an
exact sequence

· · · → Ln+1(Zπ)→ SCat(M)→ [M : F/Cat]→ Ln(Zπ)

where F/Cat is a particular classifying space encoding bundle
data.
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.. The Wall groups Ln(Γ)

If π is trivial, then

Ln(Zπ) =


Z if n ≡ 0 mod 4 (signature),
0 if n ≡ 1 mod 4,
Z2 if n ≡ 2 mod 4 (Arf invariant),
0 if n ≡ 3 mod 4.

We can use the Poincaré conjecture and the sequence

[ΣS6 : F/Top]→ L7(Z)→ STop(ΣS5)→

[ΣS5 : F/Top]→ L6(Z)→ STop(S5)→ [S5 : F/Top]→ L5(Z)

to conclude that πn(F/Top) ∼= Ln(Z) for large n.
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.. Arithmetic manifolds

Let G be a connected, real, semisimple Lie group with finite
center and Γ a lattice in G . Let K be a maximal compact
subgroup of G .

Topic of interest: the locally symmetric spaces Γ\G/K .

Oftentimes we include the additional assumptions:

• the center of G is trivial;

• the lattice Γ is torsion-free.
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.. Rational rank

.
Definition
..

.

. ..

.

.

The rational rank rankGQ(Γ) of Γ in G is the smallest r , for which there
exists a collection of finitely many (closed, simply connected) r -dimensional
flats, such that all of Γ\G/K is within a bounded distance of the union of
these flats.

.
Example
..

.

. ..

.

.

...1 If Γ is cocompact in G , then rankGQ(Γ) = 0.

...2 rank
SL(n,R)
Q (SL(n,Z)) = n − 1

...3 rank
SO(m,n)
Q (SO(m, n)Z) = min{m, n}

More geometrically, the rational rank of Γ is the dimension of the tangent
cone at infinity of Γ\G/K . Also

rankGQ(Γ) + cd(Γ\G/K) = dim(Γ\G/K).
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.. Locally symmetric spaces

The topological analogue of characteristic class obstructions to
positive scalar curvature are similar obstructions to proper
homotopy equivalence. By Farrell-Jones we get the ridigity
versions:

.
Theorem (Farrell-Jones 1998)
..

.

. ..

.

.

Let M = Γ\G/K as previously described.
...1 If Γ is arithmetic of rational rank 0 or 1, then M is
properly rigid.

...2 If the rational rank is 2, then M is properly rigid if one
knows that the Borel conjecture for the fundamental group
at infinity is known.
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.. Some recent results

Can Borel’s conjecture be extended to provide a homotopy from homotopy
equivalence of a nonuniform lattice quotient to a homeomorphism?

.
Theorem (CW 2008)
..

.

. ..

.

.

Let M = Γ\G/K be an arithmetic manifold whose Q-rank is at least 3.
Then M has a finite-sheeted cover N whose topological proper structure
STop
p (N) set is nontrivial; i.e. the manifold M is virtually properly nonrigid.

Take Γ′ ≤ Γ of finite index and form the cover N, so that H2(N,Z2) ̸= 0.
Use Sullivan’s result that F/Top = Z ×

∏∞
k=1 K(Z2, 4k − 2) for some

space Z . The proper structure group satisfies

Sp(N) = [N,F/Top] = [N,K(Z2, 2)]× [N,K(Z2, 6)]× · · · × [N,Z ].

However [N,K (Z2, 2)] = H2(N,Z2).
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.. Failure to extend Mostow

.
Theorem (CW 2008)
..

.

. ..

.

.

Under the same hypotheses as above, the space M has
finite-sheeted covers N whose proper structure sets STop

p (N)
are arbitrarily large.

.
Corollary
..

.

. ..

.

.

Mostow’s rigidity theorem cannot be weakened to provide a
proper version of Borel’s conjecture for manifolds of
noncompact type.
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.. Failure to extend Mostow

.
Theorem (CW 2012)
..

.

. ..

.

.

In the case of G/K = SLn(R)/SOn(R), one can choose a
lattice Γ so that the proper structure set of Γ\G/K contains
elements that are not merely self-homotopy equivalences.
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.. Results in curvature

Let M = Γ\G/K be an arithmetic manifold.

...1 Gromov and Lawson (1983): If rankGQ(Γ) ≤ 1, then M
admits no metric of positive scalar curvature.

...2 Block and Weinberger (1999): If rankGQ(Γ) ≥ 3, the
manifold M admits a metric of positive scalar curvature.

...1 If q = 0, then M is compact.

...2 If q = 1, then π∞
1 (M) → π1(M) is injective.

...3 If q = 2, there is an exact sequence

1 → F∞ → π∞
1 (M) → π1(M) → 1.

...4 If q ≥ 3, then π∞
1 (M) = π1(M).
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.. Summary of known results

Let M = Γ\G/K be an arithmetic manifold. Recall that we
take these spaces as a way to generalize a particular subclass of
aspherical closed manifolds to aspherical manifolds of
noncompact type.

Q-rank does pscm exist? is (properly) rigid?
0 No GL Yes FJ

1 No GL Yes FJ

2 No BW Yes FJ, BL

≥ 3 Yes BW (No) CW
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.. Low-dimensional results

.
Theorem (CWY 2010)
..

.

. ..

.

.

The only noncompact contractible 3-manifold with positive scalar
curvature is R3.

.
Theorem (CWY 2010)
..

.

. ..

.

.

The only noncompact oriented 3-manifolds with positive scalar curvature
are connected sums of space forms and S2 × S1.

Suppose that M is an oriented n-manifold with Γ = π1(M) and Σ is a
compact separating codimension 1 hypersurface partitioning M into M0

and M1. Denote by ΣΓ the Γ-lift of Σ. Assume that the strong Novikov
conjecture holds for Γ and that the image of [DΣ] is nonzero under the

map f∗ : K
Γ
∗−1(Σ̃) → K∗(BΓ). Then ind(D̃) is nonzero in K∗(C

∗
Γ,b(M̃)).
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.. High-dimensional results

.
Theorem (CWY 2012)
..

.

. ..

.

.

There are (contractible) noncompact manifolds with
uncountably many positive scalar curvature components.

Triangulate the boundary of the Davis manifold and reflect
across the triangulation.
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.. Exhaustions

.
Theorem (CWY 2012)
..

.

. ..

.

.

There are (contractible) manifolds M with a positively curved
exhaustion but which itself cannot carry a positive scalar
curvature metric.

Use the first derived functor lim←−
1 to find exhaustions that have

incompatible positive scalar curvature metrics.
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