
Simple-homotopy

Definition
Let K and L be finite CW complexes. There is an elementary
expansion from K to L if L = K ∪f Dn where f : Dn−1

− → K . We
say that there is an elementary collapse from L to K . A homotopy
equivalence is called simple if it is homotopic to a homotopy
equivalence induced by a sequence of elementary expansions and
collapses.

Theorem
If K is simply connected, then every homotopy equivalence K → L
is simple.



Simple-homotopy

Example

There are finite complexes with π1 = Z5 that are homotopy
equivalent but not simple-homotopy equivalent.

K is obtained by attaching D2 to S1 using a map of degree 5. L is
obtained from K by wedging with S2 and then attaching D3

according to the prescription 1− t + t3.1

In general, if K and L have fundamental group π and f : K → L is
a homotopy equivalence, f is simple if and only if a torsion, τ(f ) in
the Whitehead group Wh(π) of π is trivial. Wh(π) measures
whether an invertible matrix with entries in the integral group ring
Zπ can be row and column reduced to a matrix with ± group
elements along the diagonal.

1(1− t + t2)(t + t2 − t4) = 1



Hauptvermutung

Question: If K and L are homeomorphic simplicial complexes,
must K and L be piecewise-linear(ly?) homeomorphic?

Originally, this was thought of as an approach to proving the
topological invariance of simplicial homology. Of course, the
introduction of the notion of homotopy equivalence gave a much
easier proof of a much stronger theorem.

Theorem (Milnor)

There exist finite simplicial complexes K and L that are
homeomorphic but that are not PL homeomorphic.



Topological invariance of torsion

Theorem (Chapman)

If f : K → L is a homeomorphism between simplicial complexes,
then τ(f ) = 0.

Chapman’s proof was modeled on Kirby-Siebenmann’s work on the
Hauptvermutung for PL manifolds, but in the setting of Hilbert
cube manifolds.



Topological invariance of torsion

Definition
We call a homotopy equivalence f : K → L between simplicial
complexes an ε-equivalence if there exist a homotopy equivalence
g : L→ K and homotopies ht : f ◦ g ∼= id and kt : g ◦ f ∼= id so
that diam{ht(x)|0 ≤ t ≤ 1} < ε for each x ∈ L and
diam{f (kt(y))|0 ≤ t ≤ 1} < ε for each y ∈ K .

Theorem (F.)

Given L, there is an ε > 0 so that if f : K → L is an ε-equivalence,
then τ(f ) = 0.

The first proof of this showed that K × Q and L× Q were
homeomorphic, Q being the Hilbert cube, whence the result
followed from Chapman. However, this point of view soon led to
more direct proofs of Chapman’s theorem.



Topological manifolds, n ≥ 5

Theorem (Chapman-F.)

If Mn is a closed connected topological manifold, n ≥ 5, then given
ε > 0, there is a δ > 0 so that if f : N → M is an δ-equivalence, N
closed, then f is ε-homotopic to a homeomorphism.

Due to the efforts of Freedman-Quinn, Perlman, and others, this
result is now known in all dimensions.

Theorem (F)

If Mn is a closed connected topological manifold, n ≥ 5, then there
is an ε > 0 so that if f : M → N is a map to a connected manifold
of the same dimension such that diam f −1(x) < ε for each x ∈ N,
then f is homotopic to a homeomorphism.



Grove-Petersen-Wu
Question: Do such homotopy equivalences occur naturally?
(Yes, in geometric topology, but I’ll give an application to
differential geometry.)

Theorem (Grove-Petersen-Wu)

The collection of closed Riemannian n-manifolds, n ≥ 5, with
diameter < D, volume > v, and sectional curvature > κ contains
only finitely many homeomorphism (and therefore diffeomorphism)
types.

As above, this result is now known for homeomorphisms in all
dimensions. Some of Perlman’s work generalizes
Grove-Petersen-Wu. This example is included to give a general
idea of what applications might look like.

Definition
A monotone function ρ : [0,R)→ [0,∞) is a contractibility
function for a space X if Bt(x) contracts to a point in Bρ(t)(x) for
every x ∈ X and t ∈ [0,R], ρ(0) = 0 and ρ(t) ≥ t.



Theorem (Grove-Petersen)

There is a function ρ : [0,R)→ [0,∞) which is a contractibility
function for every closed Riemannian n-manifold, n ≥ 5, with
diameter < D, volume > v, and sectional curvature > κ.

This collection of Riemannian manifolds is precompact in
Gromov-Hausdorff space. It is easy to see that manifolds with
contractibility function ρ that are close enough together must be
epsilon homotopy equivalent. Therefore, if limit points of the
collection are manifolds, we’re done. An argument involving
crossing with a two-torus and peeling the factors off again removes
this last hurdle.



Theorem (Dranishnikov-F. flexibility)

There exist Riemannian manifolds Mt and Nt , 0 ≤ t < 1 and a
function ρ : [0,R)→ [0,∞) which is a contractibility function for
each Mt and Nt , so that limt→1 Mt = limt→1 Nt with Mt ’s
homeomorphic to each other, Nt ’s homeomorphic to each other,
but Mt ’s not homeomorphic to Nt ’s. These manifolds do have the
same simple-homotopy types and the same rational Pontrjagin
classes.

Theorem (Dranishnikov-F. rigidity)

If Mt is two-connected and the homology of Mt contains no odd
torsion, then the phenomenon above can’t happen.

The difference between this and the situation that Grove-Petersen
encountered is that the common limit of the Mt ’s and Nt ’s can be
infinite-dimensional and in this case the homeomorphism type can
vary, but only by finitely many homeomorphism types.



Theorem (Dranishnikov-F.)

If C is a precompact collection of Riemannian n-manifolds, n 6= 3,
such that there is a contractibility function ρ : [0,R)→ [0,∞)
which is a contractibility function for each M ∈ C, then C contains
only finitely many homeomorphism types.

Actually, this theorem appears earlier in a paper of mine in the
Duke Journal. The argument in the paper with Dranishnikov is
different and more illuminating.


