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spectral theory of the Laplacian

Consider a d-regular graph G = (V, E).
Define the normalized Laplacian: [ — [ — (—]iA

(where A is the adjacency matrix of G)

L is positive semi-definite with spectrum
O=A <A < - <Ay <2

Fact: Ao =0 <= (G is disconnected.
1
= > 1f(u) = f(o)?
Ao = min \f, LS) — min ’ Z
M (f, f) > f(u)’




Cheeger’s inequality

Expansion: For a subset S C V, define

= B |

E(S) = set of edges with one endpoint in §.

k-way expansion constant:
pc (k) = min{max ¢(5;) : S1,5,...,5r CV disjoint}

Theorem [Cheeger70, Alon-Milman8, Sinclair-Jerrum89]:

) pa(2) - V/2X

2
Ao =0 <= G is disconnected.



Miclo’s conjecture

M. =0 <= @ has at least k connected components.

Fis for e Ji : V= R first k (orthonormal) eigenfunctions
spectral embedding: F': V — R*

F(”U) — (fl(v)va(v)v RE afk(v))

Higher-order Cheeger Conjecture [Mico 08]:
For every graph G and k € N, we have

Ak

5 pc(k) - C(k)vAx

for some C(k) depending only on k.



our results

pc (k) = min {max ¢(5;) : S1,5,...,5r CV disjoint}

Theorem: For every graph G and k € N, we have

2—’“ pak) - O/
Aiso, pc(k) \/ Ao log k)

- actually, can put A (1455 for any 6>0
- tight up to this (1+0) factor
- proved independently by [Louis-Raghavendra-Tetali-Vempala 11]

If G is planar (or more generally, excludes a fixed minor), then

pc(k) - O(v/ o)



small set expansion

Corollary: For every graph G and k € N, there is a subset
of vertices S such that |S| < o+ and,

#(S) - O(v/Axlogk)

Previous bounds:

5] - N ad  ¢(S) - O/ M\ logk)

[Louis-Raghavendra-Tetali-Vempala 11]

|S‘ 1.0.01 and Qb(S) O(\/)\klngn)

[Arora-Barak-Steurer 10]




proof

Theorem: For every graph G and k € N, we have

pc(k) - O(k*)\/ N



proof

Theorem: For every graph G and k € N, we have
pa(k) - kKON



Dirichlet Cheeger inequality

For a mapping ' : V' —> {5, define the Rayleigh quotient:

Lemma:  For any mapping F' : V' —> £, there exists a subset
S Csupp(F)=4{veV:F(v)#0}

such that: 4(S) < 1/2R(F)



Miclo’s disjoint support conjecture

Conjecture [Miclo 08):

For every graph G and k € N, there exist disjointly supported
functions 1,1, ..., 0, : V — R so that for =1, 2, .., k,

R(¢i) < C(k) g

Localizing eigenfunctions: F'(v) = (f1(v), f2(v),..., fx(v))




isotropy and spreading

Isotropy: For every unit vector £ € IR¥ o
Py Y o2 ‘o‘o
Y (z,F(v))* =1
(fl\ veV >
J2 | o
M=\ o&
: el MMy = ||z||?
\ &/




radial projection

Define the radial projection distance on V' by,

dr(u,v)

B H [F@)] TFO) H
fact: || F(u)]) - dp(u,v) < 2||F(u) — F(v)]

Isotropy gives: For every subset S C V,
2
diam(S,dr) - = = Z | F'(v) H2 s Z HF(U)H2

veS veV



smooth localization

Want to find &k regions S, S,, ..., S € Vsuch that,

mass: Yy ||[F(v)]]* =<1

veS;
separation:  dp(S;,S5;) > (k) for all ¢ # j
Then define ; : V — R" by,

i(e) = F () (01— )
50 that 1,2, ..,k are disjointly supported and ¥ils, = Fs,

Y




smooth localization

Want to find &k regions S, S,, ..., S € Vsuch that,

mass: Yy [[F(v)]]* <1

vES;
separation:  dp(S;,S5;) > (k) for all ¢ # j
Then define <; : V — R” by,

i(e) = F () (01— )
s0 that 11, %2, ..., ¢k are disjointly supported and ¥ils, = Fls,

Claim: R(v;) < -



disjoint regions

Want to find &k regions S, S,, ..., S € Vsuch that,

mass. Y [|F(v)]? <1

vES;

separation:  dp(S;,S5;) > (k) for all ¢ # j

For every subset S C V,

1 2
diam(S, dp) - 5 = Z |F(v)]|* - 7 Z IF(v)])?

VES veV

How to break into subsets? Randomly...



random partitioning




random partitioning

spreadlng —> < 0.5 mass

llunln-l
EENGEYZAEE
117

separation ¢(k) < —=




smooth localization

We found K regions S, S, .., S; € V such that,
mass: Y [[F(v)|]* < 1

vES;
separation:  dr(S;,S;) > —~ for all 1 # j

2kV'k




improved quantitative bounds

pc(k) - O(v/ Ao log k)

- Take only best k/2 regions (gains a factor of k)

- Before partitioning, take a random projection into O(log k) dimensions

Recall the spreading property: For every subset S C V,

2 2
diam(S, dp) - —:>Z||F )2 - kZHF v)||

veS veV

- With respect to a random ball in d dimensions...
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k-way spectral partitioning algorithm

ALGORITHM:
1) Compute the spectral embedding

F(U) — (fl(v)va(U)v e afk(v))

2) Partition the vertices according to the radial projection

| Flw) F(v)
dF(U,U) — H | E(u)| | F(v)] H

3) Peform a “Cheeger sweep” on each piece of the partition



planar graphs: spectral + intrinsic geometry

2) Partition the vertices according to the radial projection

_ || F) — Fv)
dp(u,v) = H [F(w)]  [[F)] H

For planar graphs, we consider the induced shortest-path metric
on G, where an edge {u,v} has length d{u,v).

Now we can analyze the shortest-path geometry using
[Klein-Plotkin-Rao 93]



planar graphs: spectral + intrinsic geometry

2) Partition the vertices according to the radial projection

F(u) _Fv) H

dr(u,v) = H TFE) — TE@

[Jordan-Ng-Weiss 01]



open questions

1) pa(k) < O(k?)v/ Ak Can this be made poly(log k)?

2) Can [Arora-Barak-Steurer] be done geometrically?

We use K eigenvectors, find =< Kk sets, lose \/log .
What about using /7 eigenvectors to find 1,0-01 sets?

3) Small set expansion problem

There is a subset S C V with
S| < £ ad () < O(/ Ay Togh)

Tight for & < poly(logn) (noisy hypercubes)
Tight for k& < 2Uogn)” (short code graph)

[Barak-Gopalan-Hastad-Meka-Raghvendra-Steurer 11]




