multi-way spectral partitioning and higher-order Cheeger inequalities

James R. Lee
University of Washington

Shayan Oveis Gharan Luca Trevisan Stanford University

Consider a d-regular graph $G=(V, E)$.
Define the normalized Laplacian: $L=I-\frac{1}{d} A$
(where A is the adjacency matrix of G)
L is positive semi-definite with spectrum

$$
0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{|V|} \leq 2
$$

Fact: $\quad \lambda_{2}=0 \Longleftrightarrow G$ is disconnected.

$$
\lambda_{2}=\min _{f \perp \mathbf{1}} \frac{\langle f, L f\rangle}{\langle f, f\rangle}=\min _{f \perp \mathbf{1}} \frac{\frac{1}{d} \sum_{u \sim v}|f(u)-f(v)|^{2}}{\sum_{u \in V} f(u)^{2}}
$$

Cheeger's inequality

Expansion: For a subset $S \subseteq V$, define

$$
\phi(S)=\frac{|E(S)|}{d|S|}
$$

$E(S)=$ set of edges with one endpoint in S.

k-way expansion constant:

$$
\rho_{G}(k)=\min \left\{\max \phi\left(S_{i}\right): S_{1}, S_{2}, \ldots, S_{k} \subseteq V \text { disjoint }\right\}
$$

Theorem [Cheeger70, Alon-Milman85, Sinclair-Jerrum89]:

$$
\frac{\lambda_{2}}{2} \cdot \rho_{G}(2) \cdot \sqrt{2 \lambda_{2}}
$$

$$
\lambda_{2}=0 \Longleftrightarrow G \text { is disconnected. }
$$

$\lambda_{k}=0 \Longleftrightarrow G$ has at least k connected components.
$f_{1}, f_{2}, \ldots, f_{k}: V \rightarrow \mathbb{R}$ first k (orthonormal) eigenfunction spectral embedding: $F: V \rightarrow \mathbb{R}^{k}$

$$
F(v)=\left(f_{1}(v), f_{2}(v), \ldots, f_{k}(v)\right)
$$

Higher-order Cheeger Conjecture [Miso 08]: For every graph G and $k \in \mathbb{N}$, we have

$$
\frac{\lambda_{k}}{2} \cdot \rho_{G}(k) \cdot C(k) \sqrt{\lambda_{k}}
$$

for some $C(k)$ depending only on k.

$$
\rho_{G}(k)=\min \left\{\max \phi\left(S_{i}\right): S_{1}, S_{2}, \ldots, S_{k} \subseteq V \text { disjoint }\right\}
$$

Theorem: For every graph G and $k \in \mathbb{N}$, we have

$$
\frac{\lambda_{k}}{2} \cdot \rho_{G}(k) \cdot O\left(k^{2}\right) \sqrt{\lambda_{k}}
$$

Also, $\rho_{G}(k) \cdot O\left(\sqrt{\lambda_{2 k} \log k}\right)$

- actually, can put $\lambda_{(1+\delta) k}$ for any $\delta>0$
- tight up to this $(1+\delta)$ factor
- proved independently by [Louis-Raghavendra-Tetali-Vempala 11]

If G is planar (or more generally, excludes a fixed minor), then

$$
\rho_{G}(k) \cdot O\left(\sqrt{\lambda_{2 k}}\right)
$$

Corollary: For every graph G and $k \in \mathbb{N}$, there is a subset of vertices S such that $|S| \leq \frac{n}{2 k}$ and,

$$
\phi(S) \cdot O\left(\sqrt{\lambda_{k} \log k}\right)
$$

Previous bounds:

$$
|S| \cdot \frac{n}{\sqrt{k}} \quad \text { and } \quad \phi(S) \cdot O\left(\sqrt{\lambda_{k} \log k}\right)
$$

[Louis-Raghavendra-Tetali-Vempala 11]

$$
|S| \cdot \frac{n}{k^{0.01}} \quad \text { and } \quad \phi(S) \cdot O\left(\sqrt{\lambda_{k} \log _{k} n}\right)
$$

[Arora-Barak-Steurer 10]

Theorem: For every graph G and $k \in \mathbb{N}$, we have

$$
\rho_{G}(k) \cdot O\left(k^{2}\right) \sqrt{\lambda_{k}}
$$

Theorem: For every graph G and $k \in \mathbb{N}$, we have

$$
\rho_{G}(k) \cdot k^{O(1)} \sqrt{\overline{\lambda_{k}}}
$$

Dirichlet Cheeger inequality

For a mapping $F: V \rightarrow \ell_{2}$, define the Rayleigh quotient:

$$
\mathcal{R}(F)=\frac{\frac{1}{d} \sum_{u \sim v}\|F(u)-F(v)\|^{2}}{\sum_{u \in V}\|F(u)\|^{2}}
$$

Lemma: For any mapping $F: V \rightarrow \ell_{2}$, there exists a subset

$$
S \subseteq \operatorname{supp}(F)=\{v \in V: F(v) \neq 0\}
$$

such that: $\phi(S) \leq \sqrt{2 \mathcal{R}(F)}$

Miclo's disjoint support conjecture

Conjecture [Mido 08]:
For every graph G and $k \in \mathbb{N}$, there exist disjointly supported functions $\psi_{1}, \psi_{2}, \ldots, \psi_{k}: V \rightarrow \mathbb{R}$ so that for $i=1,2, \ldots, k$,

$$
\mathcal{R}\left(\psi_{i}\right) \leq C(k) \lambda_{k}
$$

Localizing eigenfunctions: $F(v)=\left(f_{1}(v), f_{2}(v), \ldots, f_{k}(v)\right)$

\mathbb{R}^{k}

Isotropy: For every unit vector $x \in \mathbb{R}^{k}$

$$
M=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{k}
\end{array}\right) \quad \begin{gathered}
\sum_{v \in V}\langle x, F(v)\rangle^{2}=1 \\
x^{T} M M^{T} x=\|x\|^{2}
\end{gathered}
$$

Total mass: $\quad \sum_{v \in V}\|F(v)\|^{2}=k$

Define the radial projection distance on V by,

$$
d_{F}(u, v)=\left\|\frac{F(u)}{\|F(u)\|}-\frac{F(v)}{\|F(v)\|}\right\|
$$

Fact: $\quad\|F(u)\| \cdot d_{F}(u, v) \leq 2\|F(u)-F(v)\|$
Isotropy gives: For every subset $S \subseteq V$, $\operatorname{diam}\left(S, d_{F}\right) \cdot \frac{1}{2} \Longrightarrow \sum_{v \in S}\|F(v)\|^{2} \cdot \frac{2}{k} \sum_{v \in V}\|F(v)\|^{2}$

smooth localization

Want to find k regions $S_{1}, S_{2}, \ldots, S_{k} \subseteq V$ such that,

$$
\text { mass: } \quad \sum_{v \in S_{i}}\|F(v)\|^{2} \asymp 1
$$

separation: $\quad d_{F}\left(S_{i}, S_{j}\right) \geq \varepsilon(k)$ for all $i \neq j$
Then define $\psi_{i}: V \rightarrow \mathbb{R}^{k}$ by,

$$
\psi_{i}(v)=F(v) \cdot \max \left(0,1-\frac{2 d_{F}\left(v, S_{i}\right)}{\varepsilon(k)}\right)
$$

so that $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ are disjointly supported and $\left.\left.\psi_{i}\right|_{S_{i}} \equiv F\right|_{S_{i}}$

Want to find k regions $S_{1}, S_{2}, \ldots, S_{k} \subseteq V$ such that,

$$
\text { mass: } \quad \sum_{v \in S_{i}}\|F(v)\|^{2} \asymp 1
$$

separation: $\quad d_{F}\left(S_{i}, S_{j}\right) \geq \varepsilon(k)$ for all $i \neq j$
Then define $\psi_{i}: V \rightarrow \mathbb{R}^{k}$ by,

$$
\psi_{i}(v)=F(v) \cdot \max \left(0,1-\frac{2 d_{F}\left(v, S_{i}\right)}{\varepsilon(k)}\right)
$$

so that $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ are disjointly supported and $\left.\left.\psi_{i}\right|_{S_{i}} \equiv F\right|_{S_{i}}$
Claim: $\quad \mathcal{R}\left(\psi_{i}\right) \leq \frac{O(k)}{\varepsilon(k)^{2}} \cdot \mathcal{R}(F)$

Want to find k regions $S_{1}, S_{2}, \ldots, S_{k} \subseteq V$ such that,
mass: $\quad \sum_{v \in S_{i}}\|F(v)\|^{2} \asymp 1$
separation: $\quad d_{F}\left(S_{i}, S_{j}\right) \geq \varepsilon(k)$ for all $i \neq j$
For every subset $S \subseteq V$,
$\operatorname{diam}\left(S, d_{F}\right) \cdot \frac{1}{2} \Longrightarrow \sum_{v \in S}\|F(v)\|^{2} \cdot \frac{2}{k} \sum_{v \in V}\|F(v)\|^{2}$

How to break into subsets? Randomly...

random partitioning

smooth localization

We found k regions $S_{1}, S_{2}, \ldots, S_{k} \subseteq V$ such that,

$$
\text { mass: } \quad \sum_{v \in S_{i}}\|F(v)\|^{2} \asymp 1
$$

separation: $\quad d_{F}\left(S_{i}, S_{j}\right) \geq \frac{1}{2 k \sqrt{k}}$ for all $i \neq j$

$$
\rho_{G}(k) \cdot O\left(\sqrt{\lambda_{2 k} \log k}\right)
$$

- Take only best $k / 2$ regions (gains a factor of k)
- Before partitioning, take a random projection into $O(\log k)$ dimensions Recall the spreading property: For every subset $S \subseteq V$,

$$
\operatorname{diam}\left(S, d_{F}\right) \cdot \frac{1}{2} \Longrightarrow \sum_{v \in S}\|F(v)\|^{2} \cdot \frac{2}{k} \sum_{v \in V}\|F(v)\|^{2}
$$

- With respect to a random ball in dimensions...

k-way spectral partitioning algorithm

Algorithm:

1) Compute the spectral embedding

$$
F(v)=\left(f_{1}(v), f_{2}(v), \ldots, f_{k}(v)\right)
$$

2) Partition the vertices according to the radial projection

$$
d_{F}(u, v)=\left\|\frac{F(u)}{\|F(u)\|}-\frac{F(v)}{\|F(v)\|}\right\|
$$

3) Peform a "Cheeger sweep" on each piece of the partition

planar graphs: spectral + intrinsic geometry

2) Partition the vertices according to the radial projection

$$
d_{F}(u, v)=\left\|\frac{F(u)}{\|F(u)\|}-\frac{F(v)}{\|F(v)\|}\right\|
$$

For planar graphs, we consider the induced shortest-path metric on G, where an edge $\{u, v\}$ has length $d_{F}(u, v)$.

Now we can analyze the shortest-path geometry using
[Klein-Plotkin-Rao 93]

planar graphs: spectral + intrinsic geometry

2) Partition the vertices according to the radial projection

$$
d_{F}(u, v)=\left\|\frac{F(u)}{\|F(u)\|}-\frac{F(v)}{\|F(v)\|}\right\|
$$

open questions

1) $\quad \rho_{G}(k) \leq O\left(k^{2}\right) \sqrt{\lambda_{k}} \quad$ Can this be made poly $(\log k)$?
2) Can [Arora-Barak-Steurer] be done geometrically? We use k eigenvectors, find $\asymp k$ sets, lose $\sqrt{\log k}$. What about using \sqrt{n} eigenvectors to find $n^{0.01}$ sets?
3) Small set expansion problem

There is a subset $S \subseteq V$ with

$$
|S| \leq \frac{n}{2 k} \quad \text { and } \quad \phi(S) \leq O\left(\sqrt{\lambda_{k} \log k}\right)
$$

Tight for $k \leq \operatorname{poly}(\log n) \quad$ (noisy hypercubes)
Tight for $k \leq 2^{(\log n)^{\varepsilon}} \quad$ (short code graph)
[Barak-Gopalan-Hastad-Meka-Raghvendra-Steurer 11]

