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Introduction

Gromov’s monster group M: a “quite simple two-dimensional
creature” with surprising properties
• M does not coarsely embeds into a Hilbert space.
• M does not satisfy the Baum-Connes conjecture with

coefficients.

Particularity: M coarsely contains an infinite expander.

Definition
A map f : X → Y between two metric spaces is a coarse
embedding if for every (xn), (x ′n) ∈ XN

lim
n→+∞

∣∣xn − x ′n
∣∣ = +∞ iff lim

n→+∞

∣∣f (xn)− f (x ′n)
∣∣ = +∞
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Usual small cancellation theory

Ḡ = 〈S |R〉 = F(S)/� R �.
(elements of R are cyclically reduced).
R∗ is the set of all cyclic conjugates of R ∪ R−1.

A piece is a common prefix of two distinct elements of R∗.

Small cancellation condition

Ḡ = 〈S |R〉 satisfies C ′(λ) if

length of the largest piece
length of the smallest relation

6 λ.
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Theorem

Let Ḡ = 〈S |R〉 satisfying C ′(λ) for λ < 1
6 .

• Ḡ is non-elementary, word-hyperbolic.
• (Greendlinger Lemma) If w is a reduced word, trivial in Ḡ , it

contains “1− 3λ” of a relation.

In particular the map F(S)→ Ḡ induces an isometry from B(1, r)
onto its image where r = 1−3λ

2 .(length of the smallest relation).

Rémi Coulon based on Example of random groups by G. Arzhantseva and T. DelzantGromov’s Monster Group



Small cancellation theory for graphs

Let G be a torsion free, non-elementary δ-hyperbolic group
generated by S .

Let θ be a graph labelled by S ∪ S−1, T its universal cover and
f : T → Cay(G ) the map given by the labeling.

∆ and ρ are the small cancellation parameters associated to the
pair (f (T ), π1(θ)). We assume that π1(θ) ⊂ G does not contain a
proper power.

Rémi Coulon based on Example of random groups by G. Arzhantseva and T. DelzantGromov’s Monster Group



Theorem
Let α > 1. There exists positive numbers ε, and K which only
depend on α with the following property. Let β > 0. Assume that
f is a (α, β, 1

2 girth(θ))-local quasi-isometry such that

δ

ρ
,
β

ρ
,

∆

ρ
6 ε.

Then
• Ḡ = G/� π1(θ)� is torsion-free, non-elementary,

word-hyperbolic. Its hyperbolicity constant only depends on δ,
α, β, ∆ and ρ.
• The map G → Ḡ induces an isometry from B(1,Kρ) onto its

image

In particular, the map f̄ : θ → Cay(Ḡ ) given by the labeling satisfies∣∣f̄ (x)− f̄ (y)
∣∣ > Kρ

diam θ

(
α−1

2
|x − y | − β

)
,∀x , y ∈ θ.
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Random groups

Theorem
Fix a density d between 0 and 1. Choose a length l and pick at
random a set R of (2k)dl uniformly chosen words of length l in the
letters a±1

1 ,...,a±1
k .

• If d < 1
2 then the probability that the group 〈a1, . . . , ak |R〉 is

hyperbolic tends to 1 as l approaches +∞.
• If d > 1

2 then the probability that the group 〈a1, . . . , ak |R〉 is
trivial or Z/2Z tends to 1 as l approaches +∞.
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Let G be a group of rank k . We denote by Pt the probability that a
random walk on G (with respect to the generating set) starting at
1 comes back to 1 after time t.

Definition
The spectral radius of the random walk on G is the number κG
such that

lnκG = lim sup
t→+∞

1
t
lnPt .

Critical density for a torsion-free hyperbolic group G with k
generators: − lnκG

ln 2k (Y. Ollivier 2004)
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Let Θ = (θn) be a sequence of graphs of girth ρn with
limn→+∞ ρn = +∞. We assume that the vertices of Θ are of
uniformly bounded degree. Given l > 0, bn(l) denotes the number
of distinct simple paths of length l in θn.

Definition

Let b > 0 and ξ0 ∈ (0, 1
2). The family Θ is (b, ξ0)-thin if there

exists C > 0 such that for all ξ ∈ [ξ0,
1
2) we have

bn(ξρn) 6 Cebξρn

“Density condition” : b � − lnκG .
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Let G be a non-elementary torsion-free hyperbolic group of rank k .
Let Θ = (θn) be a (b, ξ0)-thin sequence of graphs and Tn the
universal cover of θn.

Assumption: there exists κ > κG such that b + lnκ < 0.

Put α = −2 ln(2k−1)
b+lnκ .

Fix ` : R+ → R+ a function such that limx→+∞ `(x) = +∞.

Quasi-geodesic labeling
For each n pick a random labeling of θn. The probability that every
simple path w of length ‖w‖ 6 1

2ρn of θn satisfies

|mn(w)|G > α−1‖w‖ − `(ρn)− α−1ξ0ρn,

goes to 1 as n approaches +∞.
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Small cancellation condition
Let λ > 0. With asymptotic probability 1 as n approaches + ∞, a
random labeling of θn induces an (α, βn,

1
2 girth(θn))-local

quasi-isometric embedding Tn → Cay(G ), where

βn = `(ρn) + α−1ξ0ρn.

Moreover it satisfies ∆(θn) 6 λ girth(θn)
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Uniform control on κG

Let G be group with Kazhdan’s property (T ) generated by a set S .
Let κ be the Kazhdan constant of the pair (G , S). Then for every
quotient Ḡ of G , κḠ 6 κ.
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Small cancellation (Recall)

Let α > 1. There exists positive numbers ε, and K which only
depend on α with the following property. Let β > 0. Assume that
f is a (α, β, 1

2 girth(θ))-local quasi-isometry such that

δ

ρ
,
β

ρ
,

∆

ρ
6 ε.

Then
• Ḡ = G/� π1(θ)� is torsion-free, non-elementary,

word-hyperbolic. Its hyperbolicity constant only depends on δ,
α, β, ∆ and ρ.
• The map G → Ḡ induces an isometry from B(1,Kρ) onto its

image

In particular, the map f̄ : θ → Cay(Ḡ ) given by the labeling satisfies∣∣f̄ (x)− f̄ (y)
∣∣ > Kρ

diam θ

(
α−1

2
|x − y | − β

)
,∀x , y ∈ θ.
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