Gromov's Monster Group

Rémi Coulon based on *Example of random groups* by G. Arzhantseva and T. Delzant

Geometry and analysis of large networks.

March 13, 2012

Gromov's monster group M: a "quite simple two-dimensional creature" with surprising properties

- *M* does not coarsely embeds into a Hilbert space.
- *M* does not satisfy the Baum-Connes conjecture with coefficients.

Particularity: *M* coarsely contains an infinite expander.

Definition

A map $f : X \to Y$ between two metric spaces is a *coarse* embedding if for every $(x_n), (x'_n) \in X^{\mathbb{N}}$

$$\lim_{n \to +\infty} |x_n - x'_n| = +\infty \text{ iff } \lim_{n \to +\infty} |f(x_n) - f(x'_n)| = +\infty$$

Usual small cancellation theory

 $\overline{G} = \langle S | R \rangle = \mathbf{F}(S) / \ll R \gg$. (elements of R are cyclically reduced). R^* is the set of all cyclic conjugates of $R \cup R^{-1}$.

A piece is a common prefix of two distinct elements of R^* .

Theorem

Let $\overline{G} = \langle S | R \rangle$ satisfying $C'(\lambda)$ for $\lambda < \frac{1}{6}$.

- \bar{G} is non-elementary, word-hyperbolic.
- (Greendlinger Lemma) If w is a reduced word, trivial in \overline{G} , it contains " $1 3\lambda$ " of a relation.

In particular the map $F(S) \rightarrow \overline{G}$ induces an isometry from B(1, r) onto its image where $r = \frac{1-3\lambda}{2}$.(length of the smallest relation).

Let G be a torsion free, non-elementary $\delta\text{-hyperbolic}$ group generated by S.

Let θ be a graph labelled by $S \cup S^{-1}$, T its universal cover and $f: T \to Cay(G)$ the map given by the labeling.

 Δ and ρ are the small cancellation parameters associated to the pair $(f(T), \pi_1(\theta))$. We assume that $\pi_1(\theta) \subset G$ does not contain a proper power.

Theorem

Let $\alpha > 1$. There exists positive numbers ε , and K which only depend on α with the following property. Let $\beta > 0$. Assume that f is a $(\alpha, \beta, \frac{1}{2} \operatorname{girth}(\theta))$ -local quasi-isometry such that

$$\frac{\delta}{\rho}, \frac{\beta}{\rho}, \frac{\Delta}{\rho} \leqslant \varepsilon.$$

Then

- $\overline{G} = G / \ll \pi_1(\theta) \gg$ is torsion-free, non-elementary, word-hyperbolic. Its hyperbolicity constant only depends on δ , α , β , Δ and ρ .
- The map $G o ar{G}$ induces an isometry from B(1, K
 ho) onto its image

In particular, the map $ar{f}: heta
ightarrow {\sf Cay}(ar{G})$ given by the labeling satisfies

$$\left|\bar{f}(x)-\bar{f}(y)\right| \ge \frac{K\rho}{\operatorname{diam}\theta} \left(\frac{\alpha^{-1}}{2}|x-y|-\beta\right), \forall x,y \in \theta.$$

Theorem

Fix a density *d* between 0 and 1. Choose a length *l* and pick at random a set *R* of $(2k)^{dl}$ uniformly chosen words of length *l* in the letters $a_1^{\pm 1}, \ldots, a_k^{\pm 1}$.

- If d < ¹/₂ then the probability that the group ⟨a₁,..., a_k|R⟩ is hyperbolic tends to 1 as l approaches +∞.
- If d > ¹/₂ then the probability that the group ⟨a₁,..., a_k|R⟩ is trivial or Z/2Z tends to 1 as l approaches +∞.

Let G be a group of rank k. We denote by P_t the probability that a random walk on G (with respect to the generating set) starting at 1 comes back to 1 after time t.

Definition

The *spectral radius* of the random walk on *G* is the number κ_G such that

$$\ln \kappa_{\mathcal{G}} = \limsup_{t \to +\infty} \frac{1}{t} \ln P_t.$$

Critical density for a torsion-free hyperbolic group G with k generators: $-\frac{\ln \kappa_G}{\ln 2k}$ (Y. Ollivier 2004)

Let $\Theta = (\theta_n)$ be a sequence of graphs of girth ρ_n with $\lim_{n \to +\infty} \rho_n = +\infty$. We assume that the vertices of Θ are of uniformly bounded degree. Given l > 0, $b_n(l)$ denotes the number of distinct simple paths of length l in θ_n .

Definition

Let b > 0 and $\xi_0 \in (0, \frac{1}{2})$. The family Θ is (b, ξ_0) -thin if there exists C > 0 such that for all $\xi \in [\xi_0, \frac{1}{2})$ we have

 $b_n(\xi\rho_n)\leqslant Ce^{b\xi
ho_n}$

"Density condition" : $b \ll -\ln \kappa_G$.

Let G be a non-elementary torsion-free hyperbolic group of rank k. Let $\Theta = (\theta_n)$ be a (b, ξ_0) -thin sequence of graphs and T_n the universal cover of θ_n .

Assumption: there exists $\kappa > \kappa_{G}$ such that $b + \ln \kappa < 0$.

Put $\alpha = -\frac{2 \ln(2k-1)}{b+\ln \kappa}$. Fix $\ell : \mathbf{R}_+ \to \mathbf{R}_+$ a function such that $\lim_{x \to +\infty} \ell(x) = +\infty$.

Quasi-geodesic labeling

For each *n* pick a random labeling of θ_n . The probability that every simple path *w* of length $||w|| \leq \frac{1}{2}\rho_n$ of θ_n satisfies

$$|m_n(w)|_{\mathcal{G}} \ge \alpha^{-1} \|w\| - \ell(\rho_n) - \alpha^{-1} \xi_0 \rho_n,$$

goes to 1 as *n* approaches $+\infty$.

Small cancellation condition

Let $\lambda > 0$. With asymptotic probability 1 as *n* approaches $+\infty$, a random labeling of θ_n induces an $(\alpha, \beta_n, \frac{1}{2} \operatorname{girth}(\theta_n))$ -local quasi-isometric embedding $T_n \to \operatorname{Cay}(G)$, where

$$\beta_n = \ell(\rho_n) + \alpha^{-1} \xi_0 \rho_n.$$

Moreover it satisfies $\Delta(\theta_n) \leq \lambda \operatorname{girth}(\theta_n)$

Uniform control on κ_G

Let *G* be group with Kazhdan's property (*T*) generated by a set *S*. Let κ be the Kazhdan constant of the pair (*G*, *S*). Then for every quotient \overline{G} of *G*, $\kappa_{\overline{G}} \leq \kappa$.

Small cancellation (Recall)

Let $\alpha > 1$. There exists positive numbers ε , and K which only depend on α with the following property. Let $\beta > 0$. Assume that f is a $(\alpha, \beta, \frac{1}{2} \operatorname{girth}(\theta))$ -local quasi-isometry such that

$$\frac{\delta}{\rho}, \frac{\beta}{\rho}, \frac{\Delta}{\rho} \leqslant \varepsilon.$$

Then

- $\bar{G} = G / \ll \pi_1(\theta) \gg$ is torsion-free, non-elementary, word-hyperbolic. Its hyperbolicity constant only depends on δ , α , β , Δ and ρ .
- The map $G
 ightarrow ar{G}$ induces an isometry from B(1, K
 ho) onto its image

In particular, the map $ar{f}: heta
ightarrow {\sf Cay}(ar{G})$ given by the labeling satisfies

$$\left|\overline{f}(x) - \overline{f}(y)\right| \ge \frac{K\rho}{\operatorname{diam}\theta} \left(\frac{\alpha^{-1}}{2}|x-y|-\beta\right), \forall x, y \in \theta.$$

Rémi Coulon based on Example of random groups by G. A Gromov's Monster Group

æ