Bratteli Diagrams and the Unitary Duals of Locally Finite Groups

Simon Thomas

Rutgers University "Jersey Roots, Global Reach"

12th March 2012

Unitary Representations of Discrete Groups

Unitary Representations of Discrete Groups

Definition

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi: G \rightarrow U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H}.

Unitary Representations of Discrete Groups

Definition

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi: G \rightarrow U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H}.

Definition

Two representations $\varphi: G \rightarrow U(\mathcal{H})$ and $\psi: G \rightarrow U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$
\psi(g)=A \varphi(g) A^{-1} \quad \text { for all } g \in G
$$

Unitary Representations of Discrete Groups

Definition

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi: G \rightarrow U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H}.

Definition

Two representations $\varphi: G \rightarrow U(\mathcal{H})$ and $\psi: G \rightarrow U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$
\psi(g)=A \varphi(g) A^{-1} \quad \text { for all } g \in G
$$

Definition

The unitary representation $\varphi: G \rightarrow U(\mathcal{H})$ is irreducible if there are no nontrivial proper G-invariant closed subspaces $0<W<\mathcal{H}$.

The Unitary Representations of \mathbb{Z}

The Unitary Representations of \mathbb{Z}

- The irreducible unitary representations of \mathbb{Z} are

$$
\varphi_{z}: \mathbb{Z} \rightarrow U_{1}(\mathbb{C})=\mathbb{T}=\{c \in \mathbb{C}:|c|=1\}
$$

where $z \in \mathbb{T}$ and $\varphi_{z}(k)$ is multiplication by z^{k}.

The Unitary Representations of \mathbb{Z}

- The irreducible unitary representations of \mathbb{Z} are

$$
\varphi_{z}: \mathbb{Z} \rightarrow U_{1}(\mathbb{C})=\mathbb{T}=\{c \in \mathbb{C}:|c|=1\}
$$

where $z \in \mathbb{T}$ and $\varphi_{z}(k)$ is multiplication by z^{k}.

- The multiplicity-free unitary representations of \mathbb{Z} can be parameterized by the Borel probability measures μ on \mathbb{T} so that the following are equivalent:
(i) the representations $\varphi_{\mu}, \varphi_{\nu}$ are unitarily equivalent;
(ii) the measures μ, ν have the same null sets.

The Polish Space of Unitary Representations

The Polish Space of Unitary Representations

- Let G be a countably infinite group.

The Polish Space of Unitary Representations

- Let G be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.

The Polish Space of Unitary Representations

- Let G be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^{G}$ with the product topology is a Polish space.

The Polish Space of Unitary Representations

- Let G be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^{G}$ with the product topology is a Polish space.
- The set $\operatorname{Rep}(G) \subseteq U(\mathcal{H})^{G}$ of unitary representations is a closed subspace and hence $\operatorname{Rep}(G)$ is a Polish space.

The Polish Space of Unitary Representations

- Let G be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^{G}$ with the product topology is a Polish space.
- The set $\operatorname{Rep}(G) \subseteq U(\mathcal{H})^{G}$ of unitary representations is a closed subspace and hence $\operatorname{Rep}(G)$ is a Polish space.
- The set $\operatorname{lrr}(G)$ of irreducible representations is a G_{δ} subset of $\operatorname{Rep}(G)$ and hence $\operatorname{lrr}(G)$ is also a Polish space.

Borel equivalence relations

Definition

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

Borel equivalence relations

Definition

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

Theorem (Mackey)

The unitary equivalence relation \approx_{G} on $\operatorname{lrr}(G)$ is an F_{σ} equivalence relation.

Theorem (Hjorth-Törnquist)

The unitary equivalence relation \approx_{G}^{+}on $\operatorname{Rep}(G)$ is an $F_{\sigma \delta}$ equivalence relation.

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $f: X \rightarrow \mathbb{R}$ such that

$$
x E y \quad \Longleftrightarrow \quad f(x)=f(y) .
$$

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $f: X \rightarrow \mathbb{R}$ such that

$$
x E y \quad \Longleftrightarrow \quad f(x)=f(y)
$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on a Polish spaces are smooth.

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $f: X \rightarrow \mathbb{R}$ such that

$$
x E y \quad \Longleftrightarrow \quad f(x)=f(y)
$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on a Polish spaces are smooth.

Corollary

If G is a countable group, then unitary equivalence for finite dimensional irreducible unitary representations of G is smooth.

The Glimm-Thoma Theorem

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:
(i) G is not abelian-by-finite.
(ii) G has an infinite dimensional irreducible representation.
(iii) The unitary equivalence relation \equiv_{G} on the space $\operatorname{lrr}(G)$ of infinite dimensional irreducible unitary representations of G is not smooth.

The Glimm-Thoma Theorem

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:
(i) G is not abelian-by-finite.
(ii) G has an infinite dimensional irreducible representation.
(iii) The unitary equivalence relation \equiv_{G} on the space $\operatorname{lrr}(G)$ of infinite dimensional irreducible unitary representations of G is not smooth.

Question

Does this mean that we should abandon all hope of finding a "satisfactory classification" for the irreducible unitary representations of the other countable groups?

Borel reductions

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

- $E \leq_{B} F$ if there exists a Borel map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

In this case, f is called a Borel reduction from E to F.

Borel reductions

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

- $E \leq_{B} F$ if there exists a Borel map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_{B} F$ if both $E \leq_{B} F$ and $F \leq_{B} E$.

Borel reductions

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

- $E \leq_{B} F$ if there exists a Borel map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_{B} F$ if both $E \leq_{B} F$ and $F \leq_{B} E$.
- $E<_{B} F$ if both $E \leq_{B} F$ and $E \varkappa_{B} F$.

The Glimm-Effros Dichotomy

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:
(i) E is smooth; or
(ii) $E_{0} \leq_{B} E$.

Definition

E_{0} is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

$$
x E_{0} y \quad \Longleftrightarrow \quad x_{n}=y_{n} \quad \text { for all but finitely many } n .
$$

The Glimm-Effros Dichotomy

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:
(i) E is smooth; or
(ii) $E_{0} \leq_{B} E$.

Definition

E_{0} is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

$$
x E_{0} y \quad \Longleftrightarrow \quad x_{n}=y_{n} \quad \text { for all but finitely many } n .
$$

Example

Baer's classification of the rank 1 torsion-free abelian groups is essentially a Borel reduction to E_{0}.

When it's bad, it's worse ...

When it's bad, it's worse ...

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite, then there exists a $U(\mathcal{H})$-invariant Borel subset $X \subseteq \operatorname{Irr}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

When it's bad, it's worse ...

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite, then there exists a $U(\mathcal{H})$-invariant Borel subset $X \subseteq \operatorname{Irr}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

Remark

This is a much more serious obstruction to the existence of a "satisfactory classification" of the irreducible unitary representations of G.

When it's bad, it's worse ...

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite, then there exists a $U(\mathcal{H})$-invariant Borel subset $X \subseteq \operatorname{Irr}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

Question (Dixmier-Effros-Thomas)

Do there exist countable groups G, H such that
(i) G, H are not abelian-by-finite; and
(ii) \approx_{G}, \approx_{H} are not Borel bireducible?

When it's bad, it's worse ...

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite, then there exists a $U(\mathcal{H})$-invariant Borel subset $X \subseteq \operatorname{Irr}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

Conjecture (Thomas)

If G is a nonabelian free group and H is a "suitably chosen" amenable group, then $\approx_{H}<_{B} \approx_{G}$.

Nonabelian free groups

Notation

\mathbb{F}_{n} denotes the free group on n generators for $n \in \mathbb{N}^{+} \cup\{\infty\}$.

Observation

If G is any countable group, then \approx_{G} is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

Nonabelian free groups

Notation

\mathbb{F}_{n} denotes the free group on n generators for $n \in \mathbb{N}^{+} \cup\{\infty\}$.

Observation

If G is any countable group, then \approx_{G} is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

Proof.

If $\theta: \mathbb{F}_{\infty} \rightarrow G$ is a surjective homomorphism, then the induced map

$$
\begin{aligned}
\operatorname{Irr}(G) & \rightarrow \operatorname{Irr}\left(\mathbb{F}_{\infty}\right) \\
\varphi & \mapsto \varphi \circ \theta
\end{aligned}
$$

is a Borel reduction from \approx_{G} to $\approx_{\mathbb{F}_{\infty}}$.

Nonabelian free groups

Theorem

$\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_{2}}$.

Nonabelian free groups

Theorem
 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_{2}}$.

Sketch Proof.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$
\mathbb{F}_{\infty}=\left\langle a^{f(n)} b a^{-f(n)} \mid n \in \mathbb{N}\right\rangle \leqslant N=\left\langle a^{m} b a^{-m} \mid m \in \mathbb{N}\right\rangle
$$

to the free group $\mathbb{F}_{2}=\langle a, b\rangle$.

Nonabelian free groups

Theorem

$\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_{2}}$.

Sketch Proof.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$
\mathbb{F}_{\infty}=\left\langle a^{f(n)} b a^{-f(n)} \mid n \in \mathbb{N}\right\rangle \leqslant N=\left\langle a^{m} b a^{-m} \mid m \in \mathbb{N}\right\rangle
$$

to the free group $\mathbb{F}_{2}=\langle a, b\rangle$.

Question

- Does $H \leqslant G$ imply that \approx_{H} is Borel reducible to \approx_{G} ?

Nonabelian free groups

Theorem

$\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_{2}}$.

Sketch Proof.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$
\mathbb{F}_{\infty}=\left\langle a^{f(n)} b a^{-f(n)} \mid n \in \mathbb{N}\right\rangle \leqslant N=\left\langle a^{m} b a^{-m} \mid m \in \mathbb{N}\right\rangle
$$

to the free group $\mathbb{F}_{2}=\langle a, b\rangle$.

Question

- Does $H \leqslant G$ imply that \approx_{H} is Borel reducible to \approx_{G} ?
- In particular, is $\approx_{\mathbb{F}_{2}}$ Borel reducible to $\approx s L(3, Z)$?

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu: \mathcal{P}(G) \rightarrow[0,1]$.

Some Candidates?

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu: \mathcal{P}(G) \rightarrow[0,1]$.

Some Candidates?

- The direct sum $\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$ of countably many copies of Sym(3).

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu: \mathcal{P}(G) \rightarrow[0,1]$.

Some Candidates?

- The direct sum $\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$ of countably many copies of Sym(3).
- A countably infinite extra-special p-group P; i.e. $P^{\prime}=Z(P)$ is cyclic of order p and $P / Z(P)$ is elementary abelian p-group.

Not quite as expected

Not quite as expected ...

- The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Let H be a countable locally finite group. If the countable group G is not abelian-by-finite, then \approx_{H} is Borel reducible to \approx_{G}.

Not quite as expected ...

- The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Let H be a countable locally finite group. If the countable group G is not abelian-by-finite, then \approx_{H} is Borel reducible to \approx_{G}.

Corollary

If G, H are countable locally finite groups, neither of which is abelian-by-finite, then \approx_{G} and \approx_{H} are Borel bireducible.

The reduced C^{*}-algebra

Definition

If G is a countably infinite group, then the left regular representation

$$
\lambda: G \rightarrow U\left(\ell^{2}(G)\right)
$$

extends to an injective *-homomorphism of the group algebra

$$
\lambda: \mathbb{C}[G] \rightarrow \mathcal{L}\left(\ell^{2}(G)\right) .
$$

The reduced C^{*}-algebra $C_{\lambda}^{*}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $\|x\|_{r}=\|\lambda(x)\|_{\mathcal{L}\left(\ell^{2}(G)\right)}$.

The reduced C^{*}-algebra

Definition

If G is a countably infinite group, then the left regular representation

$$
\lambda: G \rightarrow U\left(\ell^{2}(G)\right)
$$

extends to an injective *-homomorphism of the group algebra

$$
\lambda: \mathbb{C}[G] \rightarrow \mathcal{L}\left(\ell^{2}(G)\right) .
$$

The reduced C^{*}-algebra $C_{\lambda}^{*}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $\|x\|_{r}=\|\lambda(x)\|_{\mathcal{L}\left(\ell^{2}(G)\right)}$.

Remark

If G is amenable, then there is a canonical correspondence between the irreducible representations of G and $C_{\lambda}^{*}(G)$.

Approximately finite dimensional C^{*}-algebras

Definition

A C C^{*}-algebra A is approximately finite dimensional if $A=\overline{\bigcup_{n \in \mathbb{N}} A_{n}}$ is the closure of an increasing chain of finite dimensional sub-C*-algebras A_{n}.

Example

If $G=\bigcup_{n \in \mathbb{N}} G_{n}$ is a locally finite group, then $C_{\lambda}^{*}(G)=\overline{\bigcup_{n \in \mathbb{N}} \mathbb{C}\left[G_{n}\right]}$ is approximately finite dimensional.

Approximately finite dimensional C^{*}-algebras

Definition

A C*-algebra A is approximately finite dimensional if $A=\overline{\bigcup_{n \in \mathbb{N}} A_{n}}$ is the closure of an increasing chain of finite dimensional sub-C*-algebras A_{n}.

Example

If $G=\bigcup_{n \in \mathbb{N}} G_{n}$ is a locally finite group, then $C_{\lambda}^{*}(G)=\overline{\bigcup_{n \in \mathbb{N}} \mathbb{C}\left[G_{n}\right]}$ is approximately finite dimensional.

Remark

Every finite dimensional C^{*}-algebra is isomorphic to a direct sum

$$
\operatorname{Mat}_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_{t}}(\mathbb{C})
$$

of full matrix algebras.

Bratteli Diagrams

Bratteli Diagrams

Theorem

If $G=\bigcup_{n \in \mathbb{N}} G_{n}$ is a locally finite group, then the following are equivalent:
(i) G is not abelian-by-finite.
(ii) There exists a subsequence ($\ell_{n} \mid n \in \mathbb{N}$) and irreducible representations $\pi_{n} \in \operatorname{Irr}\left(G_{\ell_{n}}\right)$ such that for all $n \in \mathbb{N}$, $\left(\pi_{n}, \pi_{n+1} \upharpoonright G_{\ell_{n}}\right) \geq 2$.

Bratteli Diagrams

Theorem

If $G=\bigcup_{n \in \mathbb{N}} G_{n}$ is a locally finite group, then the following are equivalent:
(i) G is not abelian-by-finite.
(ii) There exists a subsequence ($\ell_{n} \mid n \in \mathbb{N}$) and irreducible representations $\pi_{n} \in \operatorname{Irr}\left(G_{\ell_{n}}\right)$ such that for all $n \in \mathbb{N}$, $\left(\pi_{n}, \pi_{n+1} \upharpoonright G_{\ell_{n}}\right) \geq 2$.
(iii) $\lim _{n \rightarrow \infty} \max \left\{\operatorname{deg} \pi \mid \pi \in \operatorname{Irr}\left(G_{n}\right)\right\}=\infty$.

Bratteli Diagrams

Theorem

If $G=\bigcup_{n \in \mathbb{N}} G_{n}$ is a locally finite group, then the following are equivalent:
(i) G is not abelian-by-finite.
(ii) There exists a subsequence $\left(\ell_{n} \mid n \in \mathbb{N}\right)$ and irreducible representations $\pi_{n} \in \operatorname{lrr}\left(G_{\ell_{n}}\right)$ such that for all $n \in \mathbb{N}$, $\left(\pi_{n}, \pi_{n+1}\left\lceil G_{\ell_{n}}\right) \geq 2\right.$.
(iii) $\lim _{n \rightarrow \infty} \max \left\{\operatorname{deg} \pi \mid \pi \in \operatorname{lrr}\left(G_{n}\right)\right\}=\infty$.

Question

Is there an "elementary" proof of this result?

Elliot's Theorem

- Extending Glimm's Theorem, Elliot proved:

Theorem (Elliot 1977)

If \mathcal{A} is an approximately finite-dimensional C^{*}-algebra and \mathcal{B} is a separable C^{*}-algebra such that $\approx_{\mathcal{B}}$ is non-smooth, then $\approx_{\mathcal{A}}$ is Borel reducible to $\approx_{\mathcal{B}}$.

Corollary (Elliot 1977)

If \mathcal{A}, \mathcal{B} are approximately finite-dimensional C^{*}-algebras such that $\approx_{\mathcal{A}}, \approx_{\mathcal{B}}$ are non-smooth, then $\approx_{\mathcal{A}}$ and $\approx_{\mathcal{B}}$ are Borel bireducible.

Even less as expected ...

Theorem (Sutherland 1983)
Let $H=\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_{G} is Borel reducible to \approx_{H}.

Even less as expected ...

Theorem (Sutherland 1983)

Let $H=\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_{G} is Borel reducible to \approx_{H}.

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_{G} and \approx_{H} are Borel bireducible.

Even less as expected ...

Theorem (Sutherland 1983)

Let $H=\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_{G} is Borel reducible to \approx_{H}.

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_{G} and $\approx_{\boldsymbol{H}}$ are Borel bireducible.

Remark

The theorem ultimately depends upon the Ornstein-Weiss Theorem that if G, H are countable amenable groups, then any free ergodic measure-preserving actions of G, H are orbit equivalent.

Some representations of $H=\bigoplus_{n \in \mathbb{N}}$ Sym(3)

Some representations of $H=\bigoplus_{n \in \mathbb{N}}$ Sym(3)

- Express $H=A \rtimes K$, where $A=\bigoplus_{n \in \mathbb{N}} C_{3}$ and $K=\bigoplus_{n \in \mathbb{N}} C_{2}$.

Some representations of $H=\bigoplus_{n \in \mathbb{N}}$ Sym(3)

- Express $H=A \rtimes K$, where $A=\bigoplus_{n \in \mathbb{N}} C_{3}$ and $K=\bigoplus_{n \in \mathbb{N}} C_{2}$.
- Then $\widehat{A}=C_{3}^{\mathbb{N}}$ is the product of countably many copies of the cyclic group $C_{3}=\left\{1, \xi, \xi^{2}\right\}$.

Some representations of $H=\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$

- Express $H=A \rtimes K$, where $A=\bigoplus_{n \in \mathbb{N}} C_{3}$ and $K=\bigoplus_{n \in \mathbb{N}} C_{2}$.
- Then $\widehat{A}=C_{3}^{\mathbb{N}}$ is the product of countably many copies of the cyclic group $C_{3}=\left\{1, \xi, \xi^{2}\right\}$.
- Let $Z=\left\{\xi, \xi^{2}\right\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.

Some representations of $H=\bigoplus_{n \in \mathbb{N}}$ Sym(3)

- Express $H=A \rtimes K$, where $A=\bigoplus_{n \in \mathbb{N}} C_{3}$ and $K=\bigoplus_{n \in \mathbb{N}} C_{2}$.
- Then $\widehat{A}=C_{3}^{\mathbb{N}}$ is the product of countably many copies of the cyclic group $C_{3}=\left\{1, \xi, \xi^{2}\right\}$.
- Let $Z=\left\{\xi, \xi^{2}\right\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.
- Then K acts freely and ergodically on (Z, μ)

Some representations of $H=\bigoplus_{n \in \mathbb{N}}$ Sym(3)

- Express $H=A \rtimes K$, where $A=\bigoplus_{n \in \mathbb{N}} C_{3}$ and $K=\bigoplus_{n \in \mathbb{N}} C_{2}$.
- Then $\widehat{A}=C_{3}^{\mathbb{N}}$ is the product of countably many copies of the cyclic group $C_{3}=\left\{1, \xi, \xi^{2}\right\}$.
- Let $Z=\left\{\xi, \xi^{2}\right\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.
- Then K acts freely and ergodically on (Z, μ)
- For each irreducible cocycle $\sigma: K \times Z \rightarrow U(\mathcal{H})$, there exists a corresponding irreducible representation

$$
\pi_{\sigma}: H \rightarrow U\left(L^{2}(Z, \mathcal{H})\right) .
$$

Irreducible cocycles

Irreducible cocycles

- If $\alpha, \beta: K \times Z \rightarrow \boldsymbol{U}(\mathcal{H})$ are cocycles, then $\operatorname{Hom}(\alpha, \beta)$ consists of the Borel maps $b: Z \rightarrow \mathcal{L}(\mathcal{H})$ such that for all $g \in K$,

$$
\alpha(g, x) b(x)=b(g \cdot x) \beta(g, x) \quad \mu \text {-a.e. } x \in Z
$$

Irreducible cocycles

- If $\alpha, \beta: K \times Z \rightarrow U(\mathcal{H})$ are cocycles, then $\operatorname{Hom}(\alpha, \beta)$ consists of the Borel maps $b: Z \rightarrow \mathcal{L}(\mathcal{H})$ such that for all $g \in K$,

$$
\alpha(g, x) b(x)=b(g \cdot x) \beta(g, x) \quad \mu \text {-a.e. } x \in Z
$$

- The cocycle α is irreducible if $\operatorname{Hom}(\alpha, \alpha)$ contains only scalar multiples of the identity.

Irreducible cocycles

- If $\alpha, \beta: K \times Z \rightarrow \boldsymbol{U}(\mathcal{H})$ are cocycles, then $\operatorname{Hom}(\alpha, \beta)$ consists of the Borel maps $b: Z \rightarrow \mathcal{L}(\mathcal{H})$ such that for all $g \in K$,

$$
\alpha(g, x) b(x)=b(g \cdot x) \beta(g, x) \quad \mu \text {-a.e. } x \in Z
$$

- The cocycle α is irreducible if $\operatorname{Hom}(\alpha, \alpha)$ contains only scalar multiples of the identity.

The heart of the matter

If $K^{\prime} \curvearrowright\left(Z^{\prime}, \mu^{\prime}\right)$ is orbit equivalent to $K \curvearrowright(Z, \mu)$, then the "cocycle machinery" is isomorphic via a Borel map.

Coding representations in cocycles

- Let G be any countable amenable group and let $\Gamma=G \times \mathbb{Z}$.

Coding representations in cocycles

- Let G be any countable amenable group and let $\Gamma=G \times \mathbb{Z}$.
- Let $X=2^{\ulcorner }$and let ν be the product probability measure on Z.

Coding representations in cocycles

- Let G be any countable amenable group and let $\Gamma=G \times \mathbb{Z}$.
- Let $X=2^{\ulcorner }$and let ν be the product probability measure on Z.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.

Coding representations in cocycles

- Let G be any countable amenable group and let $\Gamma=G \times \mathbb{Z}$.
- Let $X=2\ulcorner$ and let ν be the product probability measure on Z.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.
- For each irreducible representation $\varphi: G \rightarrow U(\mathcal{H})$, we can define an irreducible cocycle $\sigma_{\varphi}:(G \times Z) \times X \rightarrow U(\mathcal{H})$ by

$$
\sigma_{\varphi}(g, z, x)=\varphi(g)
$$

Summing up ...

Definition

Let $\operatorname{lrr}\left(E_{0}\right)$ be the space of irreducible cocycles

$$
\sigma: K \times Z \rightarrow U(\mathcal{H})
$$

and let $\approx_{E_{0}}$ be the equivalence relation defined by

$$
\sigma \approx_{E_{0}} \tau \quad \Longleftrightarrow \quad \operatorname{Hom}(\sigma, \tau) \neq 0
$$

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_{G} is Borel bireducible with $\approx_{E_{0}}$.

Summing up ...

Definition

Let $\operatorname{Irr}\left(E_{\infty}\right)$ be the space of irreducible cocycles

$$
\sigma: \mathbb{F}_{2} \times 2^{\mathbb{F}_{2}} \rightarrow U(\mathcal{H})
$$

and let $\approx_{E_{\infty}}$ be the equivalence relation defined by

$$
\sigma \approx_{E_{\infty}} \tau \quad \Longleftrightarrow \quad \operatorname{Hom}(\sigma, \tau) \neq 0
$$

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_{2}}$ is Borel bireducible with $\approx_{E_{\infty}}$.

Summing up ...

Theorem
If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_{G} is Borel bireducible with $\approx_{E_{0}}$.

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_{2}}$ is Borel bireducible with $\approx_{E_{\infty}}$.

Summing up ...

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_{G} is Borel bireducible with $\approx_{E_{0}}$.

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_{2}}$ is Borel bireducible with $\approx_{E_{\infty}}$.

The Main Conjecture/Dream

$\approx_{E_{\infty}}$ is not Borel reducible to $\approx_{E_{0}}$.

