Bratteli Diagrams and the Unitary Duals of Locally Finite Groups

Simon Thomas

Rutgers University "Jersey Roots, Global Reach"

12th March 2012

12th March 2012

Unitary Representations of Discrete Groups

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

• • • • • • • • • • • •

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi : G \to U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H} .

< □ > < □ > < □ > < □ >

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi : G \to U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H} .

Definition

Two representations $\varphi : G \to U(\mathcal{H})$ and $\psi : G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

< < >> < <</p>

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi : G \to U(\mathcal{H})$, where $U(\mathcal{H})$ is the unitary group on the separable complex Hilbert space \mathcal{H} .

Definition

Two representations $\varphi : G \to U(\mathcal{H})$ and $\psi : G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

The unitary representation $\varphi : G \to U(\mathcal{H})$ is irreducible if there are no nontrivial proper G-invariant closed subspaces $0 < W < \mathcal{H}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Unitary Representations of \mathbb{Z}

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

A D > A B > A B > A

The Unitary Representations of \mathbb{Z}

 \bullet The irreducible unitary representations of $\mathbb Z$ are

$$\varphi_{z}: \mathbb{Z} \to U_{1}(\mathbb{C}) = \mathbb{T} = \{ c \in \mathbb{C} : |c| = 1 \}$$

where $z \in \mathbb{T}$ and $\varphi_z(k)$ is multiplication by z^k .

 $\bullet\,$ The irreducible unitary representations of $\mathbb Z$ are

$$\varphi_{z}: \mathbb{Z} \to U_{1}(\mathbb{C}) = \mathbb{T} = \{ c \in \mathbb{C} : |c| = 1 \}$$

where $z \in \mathbb{T}$ and $\varphi_z(k)$ is multiplication by z^k .

- The multiplicity-free unitary representations of Z can be parameterized by the Borel probability measures μ on T so that the following are equivalent:
 - (i) the representations φ_{μ} , φ_{ν} are unitarily equivalent;
 - (ii) the measures μ , ν have the same null sets.

Simon Thomas (Rutgers University) Geometry and analysis of large networks

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let G be a countably infinite group.

4 A N

- Let *G* be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.

- Let *G* be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.

- Let *G* be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.
- The set Rep(G) ⊆ U(H)^G of unitary representations is a closed subspace and hence Rep(G) is a Polish space.

- Let *G* be a countably infinite group.
- Let \mathcal{H} be a separable complex Hilbert space and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.
- The set Rep(G) ⊆ U(H)^G of unitary representations is a closed subspace and hence Rep(G) is a Polish space.
- The set Irr(G) of irreducible representations is a G_δ subset of Rep(G) and hence Irr(G) is also a Polish space.

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

Theorem (Mackey)

The unitary equivalence relation \approx_G on Irr(G) is an F_σ equivalence relation.

Theorem (Hjorth-Törnquist)

The unitary equivalence relation \approx_G^+ on $\operatorname{Rep}(G)$ is an $F_{\sigma\delta}$ equivalence relation.

Definition (Mackey)

The Borel equivalence relation *E* on the Polish space *X* is smooth if there exists a Borel map $f : X \to \mathbb{R}$ such that

 $x E y \iff f(x) = f(y).$

- **→ → →**

Definition (Mackey)

The Borel equivalence relation *E* on the Polish space *X* is smooth if there exists a Borel map $f : X \to \mathbb{R}$ such that

$$x E y \iff f(x) = f(y).$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on a Polish spaces are smooth.

Definition (Mackey)

The Borel equivalence relation *E* on the Polish space *X* is smooth if there exists a Borel map $f : X \to \mathbb{R}$ such that

$$x E y \iff f(x) = f(y).$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on a Polish spaces are smooth.

Corollary

If G is a countable group, then unitary equivalence for finite dimensional irreducible unitary representations of G is smooth.

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) G has an infinite dimensional irreducible representation.
- (iii) The unitary equivalence relation \equiv_G on the space Irr(G) of infinite dimensional irreducible unitary representations of G is not smooth.

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) G has an infinite dimensional irreducible representation.
- (iii) The unitary equivalence relation \equiv_G on the space Irr(G) of infinite dimensional irreducible unitary representations of *G* is not smooth.

Question

Does this mean that we should abandon all hope of finding a "satisfactory classification" for the irreducible unitary representations of the other countable groups?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, f is called a Borel reduction from E to F.

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, f is called a Borel reduction from E to F. • $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.

Definition (Friedman-Kechris)

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \leq_B F$ and $E \nsim_B F$.

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:

- (i) E is smooth; or
- (ii) $E_0 \leq_B E$.

Definition

 E_0 is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

 $x E_0 y \iff x_n = y_n$ for all but finitely many n.

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:

- (i) E is smooth; or
- (ii) $E_0 \leq_B E$.

Definition

 E_0 is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

 $x E_0 y \iff x_n = y_n$ for all but finitely many n.

Example

Baer's classification of the rank 1 torsion-free abelian groups is essentially a Borel reduction to E_0 .

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

• • • • • • • • • • • •

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq Irr(G)$ such that the unitary equivalence relation $\approx_{G} X$ is turbulent.

If the countable group G is not abelian-by-finite, then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq Irr(G)$ such that the unitary equivalence relation $\approx_{G} X$ is turbulent.

Remark

This is a much more serious obstruction to the existence of a "satisfactory classification" of the irreducible unitary representations of *G*.

・ロト ・ 同ト ・ ヨト ・ ヨ

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq Irr(G)$ such that the unitary equivalence relation $\approx_G \upharpoonright X$ is turbulent.

Question (Dixmier-Effros-Thomas)

Do there exist countable groups G, H such that

- (i) G, H are not abelian-by-finite; and
- (ii) \approx_G, \approx_H are not Borel bireducible?

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq Irr(G)$ such that the unitary equivalence relation $\approx_G \upharpoonright X$ is turbulent.

Conjecture (Thomas)

If G is a nonabelian free group and H is a "suitably chosen" amenable group, then $\approx_H <_B \approx_G$.

Notation

 \mathbb{F}_n denotes the free group on *n* generators for $n \in \mathbb{N}^+ \cup \{\infty\}$.

Observation

If G is any countable group, then \approx_G is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Notation

 \mathbb{F}_n denotes the free group on *n* generators for $n \in \mathbb{N}^+ \cup \{\infty\}$.

Observation

If G is any countable group, then \approx_G is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

Proof.

If $\theta : \mathbb{F}_{\infty} \to G$ is a surjective homomorphism, then the induced map

$$\mathsf{Irr}(\mathcal{G}) o \mathsf{Irr}(\mathbb{F}_\infty) \ arphi \mapsto arphi \circ heta$$

is a Borel reduction from \approx_G to $\approx_{\mathbb{F}_{\infty}}$.

• • • • • • • • • • • •

Nonabelian free groups

Theorem

 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_2}$.

- 4 ∃ →

Nonabelian free groups

Theorem

 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_2}$.

Sketch Proof.

If $f : \mathbb{N} \to \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \,
angle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{N} \,
angle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

< □ > < □ > < □ > < □ >

Nonabelian free groups

Theorem

 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_2}$.

Sketch Proof.

If $f : \mathbb{N} \to \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \,
angle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{N} \,
angle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

Question

• Does $H \leq G$ imply that \approx_H is Borel reducible to \approx_G ?
Nonabelian free groups

Theorem

 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_2}$.

Sketch Proof.

If $f : \mathbb{N} \to \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \,
angle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{N} \,
angle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

Question

- Does $H \leq G$ imply that \approx_H is Borel reducible to \approx_G ?
- In particular, is $\approx_{\mathbb{F}_2}$ Borel reducible to $\approx_{SL(3,\mathbb{Z})}$?

イロト イヨト イヨト イヨト

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \rightarrow [0, 1]$.

Some Candidates?

Image: A matrix and a matrix

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \rightarrow [0, 1]$.

Some Candidates?

The direct sum ⊕_{n∈ℕ} Sym(3) of countably many copies of Sym(3).

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \rightarrow [0, 1]$.

Some Candidates?

- The direct sum ⊕_{n∈ℕ} Sym(3) of countably many copies of Sym(3).
- A countably infinite extra-special p-group P; i.e. P' = Z(P) is cyclic of order p and P/Z(P) is elementary abelian p-group.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

• The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Let *H* be a countable locally finite group. If the countable group *G* is not abelian-by-finite, then \approx_H is Borel reducible to \approx_G .

• The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Let *H* be a countable locally finite group. If the countable group *G* is not abelian-by-finite, then \approx_H is Borel reducible to \approx_G .

Corollary

If G, H are countable locally finite groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If G is a countably infinite group, then the left regular representation

 $\lambda: G \to U(\ell^2(G))$

extends to an injective *-homomorphism of the group algebra

$$\lambda: \mathbb{C}[G] \to \mathcal{L}(\ell^2(G)).$$

The reduced C*-algebra $C^*_{\lambda}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $||x||_r = ||\lambda(x)||_{\mathcal{L}(\ell^2(G))}$.

If G is a countably infinite group, then the left regular representation

 $\lambda: \mathbf{G} \to U(\ell^2(\mathbf{G}))$

extends to an injective *-homomorphism of the group algebra

$$\lambda: \mathbb{C}[G] \to \mathcal{L}(\ell^2(G)).$$

The reduced C*-algebra $C^*_{\lambda}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $||x||_r = ||\lambda(x)||_{\mathcal{L}(\ell^2(G))}$.

Remark

If *G* is amenable, then there is a canonical correspondence between the irreducible representations of *G* and $C_{\lambda}^{*}(G)$.

< ロ > < 同 > < 回 > < 回 >

Approximately finite dimensional C*-algebras

Definition

A C*-algebra A is approximately finite dimensional if $A = \bigcup_{n \in \mathbb{N}} A_n$ is the closure of an increasing chain of finite dimensional sub-C*-algebras A_n .

Example

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then $C^*_{\lambda}(G) = \overline{\bigcup_{n \in \mathbb{N}} \mathbb{C}[G_n]}$ is approximately finite dimensional.

Approximately finite dimensional C*-algebras

Definition

A C*-algebra A is approximately finite dimensional if $A = \bigcup_{n \in \mathbb{N}} A_n$ is the closure of an increasing chain of finite dimensional sub-C*-algebras A_n .

Example

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then $C^*_{\lambda}(G) = \overline{\bigcup_{n \in \mathbb{N}} \mathbb{C}[G_n]}$ is approximately finite dimensional.

Remark

Every finite dimensional C^* -algebra is isomorphic to a direct sum

```
\operatorname{Mat}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_t}(\mathbb{C})
```

of full matrix algebras.

Bratteli Diagrams

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

イロト イヨト イヨト イヨ

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) There exists a subsequence $(\ell_n | n \in \mathbb{N})$ and irreducible representations $\pi_n \in Irr(G_{\ell_n})$ such that for all $n \in \mathbb{N}$, $(\pi_n, \pi_{n+1} \upharpoonright G_{\ell_n}) \ge 2$.

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) There exists a subsequence ($\ell_n \mid n \in \mathbb{N}$) and irreducible representations $\pi_n \in Irr(G_{\ell_n})$ such that for all $n \in \mathbb{N}$, $(\pi_n, \pi_{n+1} \upharpoonright G_{\ell_n}) \ge 2$.

(iii) $\lim_{n\to\infty} \max\{\deg \pi \mid \pi \in \operatorname{Irr}(G_n)\} = \infty.$

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) There exists a subsequence $(\ell_n | n \in \mathbb{N})$ and irreducible representations $\pi_n \in Irr(G_{\ell_n})$ such that for all $n \in \mathbb{N}$, $(\pi_n, \pi_{n+1} \upharpoonright G_{\ell_n}) \ge 2$.

(iii)
$$\lim_{n\to\infty} \max\{\deg \pi \mid \pi \in \operatorname{Irr}(G_n)\} = \infty.$$

Question

Is there an "elementary" proof of this result?

12th March 2012

< □ > < □ > < □ > < □ >

• Extending Glimm's Theorem, Elliot proved:

Theorem (Elliot 1977)

If \mathcal{A} is an approximately finite-dimensional C^* -algebra and \mathcal{B} is a separable C^* -algebra such that $\approx_{\mathcal{B}}$ is non-smooth, then $\approx_{\mathcal{A}}$ is Borel reducible to $\approx_{\mathcal{B}}$.

Corollary (Elliot 1977)

If \mathcal{A} , \mathcal{B} are approximately finite-dimensional C^* -algebras such that $\approx_{\mathcal{A}}, \approx_{\mathcal{B}}$ are non-smooth, then $\approx_{\mathcal{A}}$ and $\approx_{\mathcal{B}}$ are Borel bireducible.

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \text{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \text{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \text{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

Remark

The theorem ultimately depends upon the Ornstein-Weiss Theorem that if G, H are countable amenable groups, then any free ergodic measure-preserving actions of G, H are orbit equivalent.

(日)

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

イロト イポト イヨト イヨ

• Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.

E ► E ∽ Q
12th March 2012

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then = C₃^N is the product of countably many copies of the cyclic group C₃ = { 1, ξ, ξ² }.

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then = C₃^N is the product of countably many copies of the cyclic group C₃ = { 1, ξ, ξ² }.
- Let $Z = \{\xi, \xi^2\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then = C₃^N is the product of countably many copies of the cyclic group C₃ = { 1, ξ, ξ² }.
- Let $Z = \{\xi, \xi^2\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.
- Then K acts freely and ergodically on (Z, μ)

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then = C₃^N is the product of countably many copies of the cyclic group C₃ = { 1, ξ, ξ² }.
- Let $Z = \{\xi, \xi^2\}^{\mathbb{N}} \subseteq \widehat{A}$ and let μ be the usual product probability measure on Z.
- Then K acts freely and ergodically on (Z, μ)
- For each irreducible cocycle *σ* : *K* × *Z* → *U*(*H*), there exists a corresponding irreducible representation

$$\pi_{\sigma}: H \rightarrow U(L^{2}(Z, \mathcal{H})).$$

Irreducible cocycles

Simon Thomas (Rutgers University) Geometry and analysis of large networks

12th March 2012

• • • • • • • • • • • •

If α, β : K × Z → U(H) are cocycles, then Hom(α, β) consists of the Borel maps b : Z → L(H) such that for all g ∈ K,

 $\alpha(g, x) b(x) = b(g \cdot x) \beta(g, x)$ μ -a.e. $x \in Z$.

If α, β : K × Z → U(H) are cocycles, then Hom(α, β) consists of the Borel maps b : Z → L(H) such that for all g ∈ K,

$$\alpha(g, x) b(x) = b(g \cdot x) \beta(g, x) \qquad \mu$$
-a.e. $x \in Z$.

 The cocycle α is irreducible if Hom(α, α) contains only scalar multiples of the identity. If α, β : K × Z → U(H) are cocycles, then Hom(α, β) consists of the Borel maps b : Z → L(H) such that for all g ∈ K,

$$\alpha(g, x) b(x) = b(g \cdot x) \beta(g, x) \qquad \mu$$
-a.e. $x \in Z$.

 The cocycle α is irreducible if Hom(α, α) contains only scalar multiples of the identity.

The heart of the matter

If $K' \curvearrowright (Z', \mu')$ is orbit equivalent to $K \curvearrowright (Z, \mu)$, then the "cocycle machinery" is isomorphic via a Borel map.

Coding representations in cocycles

• Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.

- Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on Z.

Coding representations in cocycles

- Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on *Z*.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.

- Let G be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on *Z*.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.
- For each irreducible representation φ : G → U(H), we can define an irreducible cocycle σ_φ : (G × Z) × X → U(H) by

$$\sigma_{\varphi}(\boldsymbol{g},\boldsymbol{z},\boldsymbol{x}) = \varphi(\boldsymbol{g})$$

Let $Irr(E_0)$ be the space of irreducible cocycles

 $\sigma: \mathbf{K} \times \mathbf{Z} \to \mathbf{U}(\mathcal{H})$

and let \approx_{E_0} be the equivalence relation defined by

$$\sigma \approx_{E_0} \tau \iff \operatorname{Hom}(\sigma, \tau) \neq 0.$$

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

イロト イ理ト イヨト イヨト

Let $Irr(E_{\infty})$ be the space of irreducible cocycles

$$\sigma: \mathbb{F}_2 imes \mathbf{2}^{\mathbb{F}_2} o U(\mathcal{H})$$

and let $\approx_{E_{\infty}}$ be the equivalence relation defined by

$$\sigma \approx_{E_{\infty}} \tau \iff \operatorname{Hom}(\sigma, \tau) \neq 0.$$

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty}}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty}}$.
Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty}}$.

The Main Conjecture/Dream

 $\approx_{E_{\infty}}$ is not Borel reducible to \approx_{E_0} .

≣ ► ≣ ৩৭ 12th March 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >