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Unitary Representations of Discrete Groups

Definition
If G is a countable group, then a unitary representation of G is a
homomorphism ϕ : G→ U(H), where U(H) is the unitary group
on the separable complex Hilbert space H.

Definition
Two representations ϕ : G→ U(H) and ψ : G→ U(H) are
unitarily equivalent if there exists A ∈ U(H) such that

ψ(g) = Aϕ(g) A−1 for all g ∈ G.

Definition
The unitary representation ϕ : G→ U(H) is irreducible if there are no
nontrivial proper G-invariant closed subspaces 0 < W < H.
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The Unitary Representations of Z

The irreducible unitary representations of Z are

ϕz : Z→ U1(C) = T = { c ∈ C : |c| = 1 }

where z ∈ T and ϕz(k) is multiplication by zk .

The multiplicity-free unitary representations of Z can be
parameterized by the Borel probability measures µ on T
so that the following are equivalent:

(i) the representations ϕµ, ϕν are unitarily equivalent;
(ii) the measures µ, ν have the same null sets.
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The Polish Space of Unitary Representations

Let G be a countably infinite group.

Let H be a separable complex Hilbert space and let U(H)
be the corresponding unitary group.

Then U(H) is a Polish group and hence U(H)G with the
product topology is a Polish space.

The set Rep(G) ⊆ U(H)G of unitary representations is a
closed subspace and hence Rep(G) is a Polish space.

The set Irr(G) of irreducible representations is a Gδ subset
of Rep(G) and hence Irr(G) is also a Polish space.
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Borel equivalence relations

Definition
An equivalence relation E on a Polish space X is Borel if E is a Borel
subset of X × X.

Theorem (Mackey)
The unitary equivalence relation ≈G on Irr(G) is an Fσ equivalence
relation.

Theorem (Hjorth-Törnquist)
The unitary equivalence relation ≈+

G on Rep(G) is an Fσδ equivalence
relation.
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Smooth vs Nonsmooth

Definition (Mackey)
The Borel equivalence relation E on the Polish space X is smooth
if there exists a Borel map f : X → R such that

x E y ⇐⇒ f (x) = f (y).

Theorem (Mackey)
Orbit equivalence relations arising from Borel actions of compact
Polish groups on a Polish spaces are smooth.

Corollary
If G is a countable group, then unitary equivalence for finite
dimensional irreducible unitary representations of G is smooth.
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The Glimm-Thoma Theorem

Theorem (Glimm-Thoma)
If G is a countable group, then the following are equivalent:

(i) G is not abelian-by-finite.
(ii) G has an infinite dimensional irreducible representation.
(iii) The unitary equivalence relation ≡G on the space Irr(G)

of infinite dimensional irreducible unitary representations
of G is not smooth.

Question
Does this mean that we should abandon all hope of finding
a “satisfactory classification” for the irreducible unitary
representations of the other countable groups?
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Borel reductions

Definition (Friedman-Kechris)
Let E, F be Borel equivalence relations on the Polish spaces X, Y .

E ≤B F if there exists a Borel map ϕ : X → Y such that

x E y ⇐⇒ ϕ(x) F ϕ(y).

In this case, f is called a Borel reduction from E to F.

E ∼B F if both E ≤B F and F ≤B E.
E <B F if both E ≤B F and E �B F.
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The Glimm-Effros Dichotomy

Theorem (Harrington-Kechris-Louveau)
If E is a Borel equivalence relation on the Polish space X, then
exactly one of the following holds:

(i) E is smooth; or
(ii) E0 ≤B E.

Definition
E0 is the Borel equivalence relation on 2N defined by:

x E0 y ⇐⇒ xn = yn for all but finitely many n.

Example
Baer’s classification of the rank 1 torsion-free abelian groups is
essentially a Borel reduction to E0.
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When it’s bad, it’s worse ...

Theorem (Hjorth 1997)
If the countable group G is not abelian-by-finite , then there exists
a U(H)-invariant Borel subset X ⊆ Irr(G) such that the unitary
equivalence relation ≈G� X is turbulent.
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Theorem (Hjorth 1997)
If the countable group G is not abelian-by-finite , then there exists
a U(H)-invariant Borel subset X ⊆ Irr(G) such that the unitary
equivalence relation ≈G� X is turbulent.

Remark
This is a much more serious obstruction to the existence
of a “satisfactory classification” of the irreducible unitary
representations of G.
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When it’s bad, it’s worse ...

Theorem (Hjorth 1997)
If the countable group G is not abelian-by-finite , then there exists
a U(H)-invariant Borel subset X ⊆ Irr(G) such that the unitary
equivalence relation ≈G� X is turbulent.

Question (Dixmier-Effros-Thomas)
Do there exist countable groups G, H such that

(i) G, H are not abelian-by-finite; and
(ii) ≈G, ≈H are not Borel bireducible?
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When it’s bad, it’s worse ...

Theorem (Hjorth 1997)
If the countable group G is not abelian-by-finite , then there exists
a U(H)-invariant Borel subset X ⊆ Irr(G) such that the unitary
equivalence relation ≈G� X is turbulent.

Conjecture (Thomas)
If G is a nonabelian free group and H is a “suitably chosen”
amenable group, then ≈H <B ≈G.
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Nonabelian free groups

Notation
Fn denotes the free group on n generators for n ∈ N+ ∪ {∞}.

Observation
If G is any countable group, then ≈G is Borel reducible to ≈F∞ .

Proof.
If θ : F∞ → G is a surjective homomorphism, then the induced map

Irr(G)→ Irr(F∞)

ϕ 7→ ϕ ◦ θ

is a Borel reduction from ≈G to ≈F∞ .
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Nonabelian free groups

Theorem
≈F∞ is Borel reducible to ≈F2 .

Sketch Proof.
If f : N→ N be a suitably fast growing function, then we can
induce representations from

F∞ = 〈af (n) b a−f (n) | n ∈ N 〉 6 N = 〈am b a−m | m ∈ N 〉

to the free group F2 = 〈a,b 〉.

Question
Does H 6 G imply that ≈H is Borel reducible to ≈G?
In particular, is ≈F2 Borel reducible to ≈SL(3,Z)?
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A suitably chosen amenable group?

Definition
A countable group G is amenable if there exists a left-invariant
finitely additive probability measure µ : P(G)→ [ 0,1 ].

Some Candidates?

The direct sum
⊕

n∈N Sym(3) of countably many copies
of Sym(3).
A countably infinite extra-special p-group P; i.e. P ′ = Z (P)
is cyclic of order p and P/Z (P) is elementary abelian p-group.
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Not quite as expected ...

The following result is an immediate consequence of the work of
Glimm (1961) and Elliot (1977).

Theorem
Let H be a countable locally finite group. If the countable group G
is not abelian-by-finite, then ≈H is Borel reducible to ≈G.

Corollary
If G, H are countable locally finite groups, neither of which is
abelian-by-finite, then ≈G and ≈H are Borel bireducible.
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The reduced C∗-algebra

Definition
If G is a countably infinite group, then the left regular representation

λ : G→ U( `2(G) )

extends to an injective ∗-homomorphism of the group algebra

λ : C[ G ]→ L( `2(G) ).

The reduced C∗-algebra C∗λ( G ) is the completion of C[ G ] with
respect to the norm ||x ||r = ||λ(x)||L( `2(G) ).

Remark
If G is amenable, then there is a canonical correspondence between
the irreducible representations of G and C∗λ( G ).
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Approximately finite dimensional C∗-algebras

Definition
A C∗-algebra A is approximately finite dimensional if A =

⋃
n∈N An

is the closure of an increasing chain of finite dimensional
sub-C∗-algebras An.

Example

If G =
⋃

n∈N Gn is a locally finite group, then C∗λ( G ) =
⋃

n∈NC[ Gn ] is
approximately finite dimensional.

Remark
Every finite dimensional C∗-algebra is isomorphic to a direct sum

Matn1(C)⊕ · · · ⊕Matnt (C)

of full matrix algebras.
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Bratteli Diagrams

Theorem
If G =

⋃
n∈N Gn is a locally finite group, then the following are

equivalent:
(i) G is not abelian-by-finite.
(ii) There exists a subsequence ( `n | n ∈ N ) and irreducible

representations πn ∈ Irr(G`n ) such that for all n ∈ N,
(πn, πn+1 � G`n ) ≥ 2.

(iii) limn→∞max{degπ | π ∈ Irr(Gn) } =∞.

Question
Is there an “elementary” proof of this result?
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Elliot’s Theorem

Extending Glimm’s Theorem, Elliot proved:

Theorem (Elliot 1977)
If A is an approximately finite-dimensional C∗-algebra and B is
a separable C∗-algebra such that ≈B is non-smooth, then
≈A is Borel reducible to ≈B.

Corollary (Elliot 1977)
If A, B are approximately finite-dimensional C∗-algebras such that
≈A, ≈B are non-smooth, then ≈A and ≈B are Borel bireducible.
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Even less as expected ...

Theorem (Sutherland 1983)
Let H =

⊕
n∈N Sym(3). If G is any countable amenable group,

then ≈G is Borel reducible to ≈H .

Corollary
If G, H are countable amenable groups, neither of which is
abelian-by-finite, then ≈G and ≈H are Borel bireducible.

Remark
The theorem ultimately depends upon the Ornstein-Weiss Theorem
that if G, H are countable amenable groups, then any free ergodic
measure-preserving actions of G, H are orbit equivalent.
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Some representations of H =
⊕

n∈N Sym(3)

Express H = Ao K , where A =
⊕

n∈N C3 and K =
⊕

n∈N C2.

Then Â = CN
3 is the product of countably many copies of the

cyclic group C3 = {1, ξ, ξ2 }.

Let Z = { ξ, ξ2 }N ⊆ Â and let µ be the usual product
probability measure on Z .

Then K acts freely and ergodically on ( Z , µ )

For each irreducible cocycle σ : K × Z → U(H), there exists
a corresponding irreducible representation

πσ : H → U( L2(Z ,H) ).
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Irreducible cocycles

If α, β : K × Z → U(H) are cocycles, then Hom(α, β) consists
of the Borel maps b : Z → L(H) such that for all g ∈ K ,

α(g, x) b(x) = b(g · x)β(g, x) µ-a.e. x ∈ Z .

The cocycle α is irreducible if Hom(α, α) contains only scalar
multiples of the identity.

The heart of the matter
If K ′ y ( Z ′, µ′ ) is orbit equivalent to K y ( Z , µ ), then the
“cocycle machinery” is isomorphic via a Borel map.
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Coding representations in cocycles

Let G be any countable amenable group and let Γ = G × Z.

Let X = 2Γ and let ν be the product probability measure on Z .

Then the shift action of Γ on ( X , ν ) is (essentially) free and
strongly mixing.

For each irreducible representation ϕ : G→ U(H), we can define
an irreducible cocycle σϕ : (G × Z )× X → U(H) by

σϕ(g, z, x) = ϕ(g)
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Summing up ...

Definition
Let Irr(E0) be the space of irreducible cocycles

σ : K × Z → U(H)

and let ≈E0 be the equivalence relation defined by

σ ≈E0 τ ⇐⇒ Hom(σ, τ) 6= 0.

Theorem
If the countable group G is amenable but not abelian-by-finite, then
the unitary equivalence relation ≈G is Borel bireducible with ≈E0 .
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Summing up ...

Definition
Let Irr(E∞) be the space of irreducible cocycles

σ : F2 × 2F2 → U(H)

and let ≈E∞ be the equivalence relation defined by

σ ≈E∞ τ ⇐⇒ Hom(σ, τ) 6= 0.

Theorem
The unitary equivalence relation ≈F2 is Borel bireducible with ≈E∞ .
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Summing up ...

Theorem
If the countable group G is amenable but not abelian-by-finite, then
the unitary equivalence relation ≈G is Borel bireducible with ≈E0 .

Theorem
The unitary equivalence relation ≈F2 is Borel bireducible with ≈E∞ .

The Main Conjecture/Dream
≈E∞ is not Borel reducible to ≈E0 .
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