Expanders and Baum-Connes type conjectures

Rufus Willett (joint with Guoliang Yu)

University of Hawai'i

March 14th 2012

Expanders and coarse Baum-Connes

Some 'types' of expanders

More on expanders and coarse Baum-Connes

Coarse disjoint unions

Want to study the coarse Baum-Connes conjecture for spaces X as follows.

Let (X_n, d_n) be a sequence of finite graphs with edge metric.

Assume $3 \le deg(v) \le M$ for all vertices v.

Their *coarse disjoint union* is $X = \sqcup X_n$ equipped with any metric d such that:

• *d* restricts to d_n on X_n ;

►
$$d(X_n, X_m) \to \infty$$
 as $n, m \to \infty$ $(n \neq m)$.

Examples:

- Box spaces: $X_n = \Gamma / \Gamma_n$, Γ a finitely generated group.
- Expanders (generic among such sequences).

Expanders and coarse Baum-Connes Some 'types' of expanders More on expanders and coarse Baum-Connes

Expanders

 X_n : finite connected graph. $\Delta_n : l^2(X_n) \to l^2(X_n)$ graph Laplacian:

$$\Delta_n : \delta_x \mapsto \sum_{d(x,y)=1} \delta_x - \delta_y.$$

A sequence (X_n) is an expander if there exists $\epsilon > 0$ such that

$$\operatorname{spectrum}(\Delta_n) \subseteq \{0\} \sqcup [\epsilon, 2M]$$

for all *n*. Example: box spaces of property (T) groups. Expanders and coarse Baum-Connes Some 'types' of expanders More on expanders and coarse Baum-Connes

Expanders and Coarse Baum-Connes

Set

$$\Delta = \oplus_n \Delta_n \ : \ l^2(X) \to l^2(X), \quad \Delta \in \mathbb{C}_u[X]$$

and

$$p=\lim_{t\to\infty}e^{-t\Delta}\in C^*_u(X).$$

p is a ghost projection:

$$p_{x,y}
ightarrow 0$$
 as $(x,y)
ightarrow \infty$.

There are two traces $tr, \tau : C_u^*(X) \to \mathbb{R}$ such that $\tau([p]) = 0, tr([p]) = 1...$ but index theory $\Rightarrow tr, \tau$ agree on the range of assembly.

Three expansion conditions

 $\Delta_n: l_0^2(X_n) \to l_0^2(X_n)$ ('0': no constants), $\Delta = \oplus_n \Delta_n$.

- Expanders: $\exists \epsilon$ such that $\langle \Delta_n \xi, \xi \rangle \geq \epsilon$.
- Weak expanders: ∃ε such that for all S and all n ≥ N_S, if diam(supp(ξ)) ≤ S, then ⟨Δ_nξ,ξ⟩ ≥ ε.
- Strong expanders: ∃ε such that if ⟨Δξ, ξ⟩ ≥ ε in any representation of C_u[X] with 'no constants'.

Examples and comments

- (X_n) with girth(X_n) → ∞. Always weak expanders, sometimes expanders, never strong expanders.
- A box space associated to Γ is a strong expander if and only if Γ has property (T).
- Weak expander implies not property A; expander implies not coarsely embeddable.

Open question: 'geometric' characterisation, or even examples, of strong expanders?

Expanders and coarse Baum-Connes Some 'types' of expanders More on expanders and coarse Baum-Connes

Coarse Baum-Connes and girth

Let (X_n) be such that girth $(X_n) \to \infty$. (Uniform) coarse Baum-Connes assembly map:

$$\mu : \lim_{r} K^{u}_{*}(P_{r}(X)) \to K_{*}(C^{*}_{u}(X)).$$

Theorem

- 1. μ is injective;
- 2. if X is an expander, μ is not surjective;
- 3. μ_{max} is an isomorphism.

Corollary: Odd behaviour for Gromov monster groups.

Theorem *Part (3) always fails for strong expanders.*

Questions and comments

- ► Finn-Sell, Wright: simpler / more conceptual proofs.
- Expanders with large girth are fairly well-behaved. Do they coarsely embed into any Banach space with 'half-way reasonable' properties (e.g. uniformly convex, property (H) of Kasparov-Yu)?
- Conjecture: for any p > 2 there exists a sequence of graphs with large girth that coarsely embeds into l^p but not l^q for any q < p.</p>
- Can one embed an expander with geometric (T) into a f.p. group?
- Can one give a good 'geometric' criterion for recognising an expander with geometric (T) (preferably one that extends to connected graphs)?