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Uniform Spanning Trees

Algorithm of Aldous (1990) and Broder (1989): if you start a simple random walk at
any vertex of a graph G and draw every edge it traverses except when it would complete
a cycle (i.e., except when it arrives at a previously-visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn is a uniformly chosen
spanning tree of G.
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Infinite Graphs

FUSF WUSF

Pemantle (1991) showed that these weak limits of the uniform spanning tree measures
always exist. These limits are now called the free uniform spanning forest on G

and the wired uniform spanning forest. They are different, e.g., when G is itself a
regular tree of degree at least 3.
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(David Wilson)
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Uniform Spanning Forests on Zd

Pemantle (1991) discovered the following interesting properties, among others:

• The free and the wired uniform spanning forest measures are the same on all euclidean
lattices Zd.

• Amazingly, on Zd, the uniform spanning forest is a single tree a.s. if d ≤ 4; but when
d ≥ 5, there are infinitely many trees a.s.

• If 2 ≤ d ≤ 4, then the uniform spanning tree on Zd has a single end a.s.; when d ≥ 5,
each of the infinitely many trees a.s. has at most two ends. Benjamini, Lyons, Peres,
and Schramm (2001) showed that each tree has only one end a.s.
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Matthias Weber

A countable group Γ with a finite generating set S gives a Cayley graph G with edges
[γ, γs] for every γ ∈ Γ and s ∈ S.

8



9



Amenable Groups

Suppose that a countable group Γ has a finite generating set S, giving a Cayley graph
G with edges [γ, γs] for every γ ∈ Γ and s ∈ S. Let ∂F denote the vertices out-
side F that are adjacent to F . We say that Γ is amenable if it has a Følner ex-

haustion, i.e., an increasing sequence of finite subsets Vn whose union is Γ such that
limn→∞ |∂Vn|/|Vn| = 0.

Let G be an amenable infinite Cayley graph with Følner exhaustion 〈Vn〉. Let F be any
deterministic spanning forest all of whose trees are infinite. If kn denotes the number
of trees of F ∩ Gn, then kn = o(|Vn|), where Gn is the subgraph of G induced by Vn.
Thus, the average degree of vertices is 2:

lim
n→∞

1
|Vn|

∑

v∈Vn

degF(v) = 2 .

In particular, if F is random with an invariant law, such as WUSF or FUSF, then
E[degF(v)] = 2 . Because WUSF 4 FUSF, it follows that WUSF = FUSF on an amenable
Cayley graph.
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Proposition. In every Cayley graph of a group Γ, we have

EWUSF[degF o] = 2 (BLPS, 2001)

and
EFUSF[degF o] = 2β1(Γ) + 2 . (Lyons, 2003)

• β1(Γ) = 0 if Γ is finite or amenable

• β1(Γ1 ∗ Γ2) = β1(Γ1) + β1(Γ2) + 1− 1
|Γ1| − 1

|Γ2|

• β1(Γ1 ∗Γ3 Γ2) = β1(Γ1) + β1(Γ2) if Γ3 is amenable and infinite

• β1(Γ2) = [Γ1 : Γ2]β1(Γ1) if Γ2 has finite index in Γ1

• β1(Γ) = 2g − 2 if Γ is the fundamental group of an orientable surface of genus g

• β1(Γ) = s − 2 if Γ is torsion free and can be presented with s ≥ 2 generators and 1
non-trivial relation
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If a Cayley graph of Γ has exponential growth, then so does every Cayley graph of Γ.
In 1981, Gromov asked whether it must have uniformly exponential growth. Several
classes of groups were eventually shown to have uniformly exponential growth, but
finally in 2004, J.S. Wilson gave a counter-example.

We’ll give another class of groups with uniformly exponential growth and even uni-
formly positive expansion.
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Theorem (Lyons, Pichot, and Vassout, 2008). Let G be a Cayley graph of a
finitely generated infinite group Γ with respect to a finite generating set S. For every
finite K ⊂ Γ, we have

|∂K|
|K| > 2β1(Γ) .

In particular, this proves that finitely generated groups Γ with β1(Γ) > 0 have uniform
exponential growth. In fact, it shows uniform successive growth of balls, i.e., if

S̄ := {identity} ∪ S ∪ S−1 ,

then
|S̄n+1|/|S̄n| > 1 + 2β1(Γ) ,

so
|S̄n| > [1 + 2β1(Γ)]n .
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We prove |∂K|
|K| > 2β1(Γ) from EFUSF[degF o] = 2β1(Γ) + 2 .

Proof. Let F ∼ FUSF. Let F′ be the part of F

that touches K. Let L := V(F′) \K. Since F′

is a forest,

∑

x∈K

degF x ≤
∑

x∈K∪L

degF′ x− |L|

= 2|E(F′)| − |L|
< 2|V(F′)| − |L|
= 2|K|+ |L|
≤ 2|K|+ |∂K| .

Take the expectation, use the formula, and di-
vide by |K| to get the result.
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Determinantal Measures

If E is finite and H ⊆ `2(E) is a subspace, it defines the determinantal measure

∀T ⊆ E with |T | = dim H PH(T ) := det[PH ]T ,T ,

where the subscript T , T indicates the submatrix whose rows and columns belong to
T . This representation has a useful extension, namely,

∀D ⊆ E PH [D ⊆ T ] = det[PH ]D,D .

In case E is infinite and H is a closed subspace of `2(E), the determinantal probability
measure PH is defined via the requirement that this equation hold for all finite D ⊂ E.

Theorem (Lyons, 2003). Let E be finite or infinite and let H ⊆ H ′ be closed
subspaces of `2(E). Then PH 4 PH′

, with equality iff H = H ′.

This means that there is a probability measure on the set
{
(T , T ′) ; T ⊆ T ′

}
that

projects in the first coordinate to PH and in the second to PH′
.
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Trees, Forests, and Determinants

Let G = (V, E) be a finite graph. Choose one orientation for each edge e ∈ E. Let
F = B1(G) denote the subspace in `2(E) spanned by the stars (coboundaries) and let
♦ = Z1(G) denote the subspace spanned by the cycles. Then `2(E) = F⊕♦.

For a finite graph, Burton and Pemantle (1993) showed that the uniform spanning
tree is the determinantal measure corresponding to orthogonal projection on F = ♦⊥.
(Precursors due to Kirchhoff (1847) and Brooks, Smith, Stone, and Tutte (1940).)
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Trees, Forests, and Determinants

Let G = (V, E) be a finite graph. Choose one orientation for each edge e ∈ E. Let
F = B1(G) denote the subspace in `2(E) spanned by the stars (coboundaries) and let
♦ = Z1(G) denote the subspace spanned by the cycles. Then `2(E) = F⊕♦.

For a finite graph, Burton and Pemantle (1993) showed that the uniform spanning
tree is the determinantal measure corresponding to orthogonal projection on F = ♦⊥.
(Precursors due to Kirchhoff (1847) and Brooks, Smith, Stone, and Tutte (1940).)

For an infinite graph, let F := B̄1
c (G) be the closure in `2(E) of the span of the stars.

For an infinite graph, Benjamini, Lyons, Peres, and Schramm (2001) showed that WUSF

is the determinantal measure corresponding to orthogonal projection on F, while FUSF

is the determinantal measure corresponding to ♦⊥.

Thus, WUSF 4 FUSF, with equality iff F = ♦⊥.
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von Neumann dimension

If H ⊆ `2(Γ) is invariant under Γ, then dimΓ H is a notion of dimension of H per
element of Γ: If Γ is finite, then it is just (dim H)/|Γ| = (trPH)/|Γ|. In general, it is
the common diagonal element of the matrix of PH . More generally, if H ⊆ `2(Γ)n is
Γ-invariant, then dimΓ H is the trace of the common diagonal n × n block element of
the matrix of PH .

Example: Let Γ := Z, so that `2(Z) ∼= L2[0, 1] and H becomes L2(A) for A ⊆ [0, 1].
Then dimZH = |A| since PL2(A)f = f1A, so dimZH =

∫ 1

0
(11A)1 = |A|.

When H ⊆ `2(Γ)n is Γ-invariant, the probability measure PH on subsets of Γn is
Γ-invariant.
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Proposition. Let G be the Cayley graph of a group Γ with respect to a finite gener-
ating set, S. Let o be a vertex of G. Let H be a Γ-invariant closed subspace of `2(G)
and F ∼ PH . Then

EH [degF o] = 2 dimΓ H .

Thus,
EFUSF[degF o] = 2 dimΓ♦⊥

and
EWUSF[degF o] = 2 dimΓ F = 2 .

We have
β1(Γ) := dimΓ♦⊥ − dimΓ F

(`2-cocycles modulo the closure of the `2-coboundaries), so

EFUSF[degF o] = 2β1(Γ) + 2 .
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Proof. Let the standard basis elements of `2(Γ)|S| = `2(Γ×S) be {1(γ,s) ; γ ∈ Γ, s ∈ S}.
For simplicity, assume that S contains none of its inverses. Identify E with Γ × S via
the map 〈γ, γs〉 7→ (γ, s). Then H becomes identified with a subspace HS that is Γ-
invariant. Write Q for the orthogonal projection of `2(Γ×S) onto HS . We may choose
o to be the identity of Γ. By Γ-invariance of H,

PH
[
[s−1, o] ∈ F

]
= PH

[
[o, s] ∈ F

]
.

Therefore,

EH [degF o] =
∑

s∈S

PH
[
[o, s] ∈ F

]
+

∑

s∈S

PH
[
[s−1, o] ∈ F

]

= 2
∑

s∈S

(PH1[o,s], 1[o,s]) = 2
∑

s∈S

(Q1(o,s), 1(o,s))

= 2 dimΓ HS = 2 dimΓ H .
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Analogy to Percolation

There is a suggestive analogy to phase transitions in Bernoulli percolation theory. In
that theory, given a connected graph G, one considers for 0 < p < 1 the random
subgraph left after deletion of each edge independently with probability 1 − p. A
cluster is a connected component of the remaining graph. In the case of Cayley
graphs, there are two numbers pc, pu ∈ [0, 1] such that if 0 < p < pc, then there are no
infinite clusters a.s.; if pc < p < pu, then there are infinitely many infinite clusters a.s.;
and if pu < p < 1, then there is exactly 1 infinite cluster a.s. (Häggström and Peres,
1999).

Proposition. Let G be a Cayley graph of an infinite group Γ and H be a Γ-invariant
closed subspace of `2(E).

(i) If H (F, then PH-a.s. infinitely many components of F are finite.

(ii) If F ⊆ H ( ♦⊥, then PH-a.s. there are infinitely many infinite components of
F and no finite components.
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Cost

I believe that more is true, namely, that if H ( F, then PH -a.s. all components are
finite. However, there is no part (iii) in general, i.e., it is not true that for every Γ-
invariant H ) ♦⊥, we have PH -a.s. there is a unique infinite component, i.e., PH -a.s.
F is connected.

Nevertheless, if for every ε > 0 there were some Γ-invariant H ⊃ ♦⊥ with the two
properties that dimΓ H < dimΓ♦⊥+ ε and that PH -almost every sample is connected,
then it would follow that β1(Γ) + 1 equals the cost of Γ, which would answer an
important question of Gaboriau (2002).

An analogous result is known for the free minimal spanning forest (Lyons, Peres, and
Schramm, 2006). The first property is not hard to ensure, i.e., that for every ε > 0
there is some Γ-invariant H ⊃ ♦⊥ with dimΓ H < dimΓ♦⊥ + ε.

If FUSF 4 P with P invariant and finitely dependent, must P be carried by connected
subgraphs? This would suffice for finitely presented groups (Gaboriau-L.).
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