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Chapter 4. Rings 155
4.1. The basic notions 155
4.2. Free associative algebras 157
4.3. Commuting elements in free associative algebras over a field 157
4.4. Burnside-type problems for associative algebras 160
4.4.1. Preliminaries 160
4.4.2. Shirshov’s height theorem 163
4.4.3. Growth function of a ring satisfying a nontrivial identity 166
4.4.4. Inherently non-finitely based varieties of rings 167
4.4.5. The Dubnov–Ivanov–Nagata–Higman theorem 167
4.4.6. Golod counterexamples to the Kurosh problem 169
4.4.7. Zimin words and the Baer radical 172
4.5. The finite basis problem 174
4.5.1. Basic facts about finite associative rings 174
4.5.2. Positive result. Identities of finite rings 177
4.5.3. Negative result 182
4.6. Further reading 185
4.6.1. The Kurosh problem 185

5



4.6.2. Identities of rings 185

Chapter 5. Groups 187
5.1. Van Kampen diagrams 188
5.1.1. Group presentations 188
5.1.2. Van Kampen diagrams: the definition 188
5.1.3. Van Kampen diagrams and tilings. An elementary school problem

and its non-elementary solution 191
5.1.4. The three main methods of dealing with van Kampen diagrams:

bands, Swiss cheese, and small cancelation 193
5.2. The Burnside problems for groups 207
5.2.1. Golod’s counterexample to the unbounded Burnside problem for

groups 207
5.2.2. The Bounded Burnside problem. Positive results 209
5.2.3. The Novikov–Adian theorem 210
5.3. The finite basis problem for groups and rings 228
5.3.1. An example of R. Bryant and Yu. Kleiman 228
5.3.2. Construction of the algebra R used in Section 4.5.3 233
5.4. Groups and identities, Abért’s criterium 238
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Introduction

What is this book about

Analyzing proofs of results about various algebraic objects (groups, semi-
groups, rings), it is easy to notice two types of results: syntactic results in-
volving words, automata, languages, and semantic results involving algebraic
properties of subalgebras and homomorphic images, geometric properties of cer-
tain associated objects (graphs, manifolds, and more complicated metric spaces),
dynamical properties of associated actions, etc. One of the goals of this book is
to demonstrate deep connections between syntax and semantics and show how
syntax and semantics interact when we study fundamental questions concerning
algebras. These include the Burnside-type questions (what makes an algebra fi-
nite?), the questions about growth (how large is an infinite algebra?), the finite
basis question (can this class of algebras be nicely described?).

The interaction between syntax and semantics is mutually beneficial. Some-
times syntax “helps” semantics. For example combinatorics of words and their
2-dimensional images - diagrams - helps solve Burnside-type problems and show
that certain semigroups, groups and rings are infinite or finite. On the other
hand semantic information about algebraic structures helps proving that they
have or do not have finite bases of identities. Sometimes in order to prove syn-
tactic results one needs to study semantic properties of associated objects. For
example, in order to describe “avoidable identities” of semigroups, one needs
semantic properties of subshifts associated with certain infinite sets of words.

What is in the book

The book has five chapters. The first chapter contains basic general defi-
nitions from algebra, language theory and symbolic dynamics that are used in
the book. The main recurrent topics of this book: Burnside problems, growth
of algebras, the finite basis property are also introduced there.

The second and third chapters contain results about avoidable words and
identities, including the description of semigroup varieties where the Burnside
problem has positive solution. Although the results are about words, the meth-
ods are semantic: with every infinite semigroup, one can associate a certain sub-
shift, and recurrence properties of that subshift are used to establish algebraic
properties of the semigroup. The third chapter contains Trahtman’s recent (but
already famous) proof of the old road coloring conjecture by Adler, Goodwyn
and Weiss. The conjecture has its origin in dynamical systems but the proof
is basically syntactic and belongs essentially to semigroup theory. The third
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chapter also contains applications of road coloring to classification of subshifts
of finite type.

The fourth chapter is about the Burnside and growth properties for associa-
tive rings, and a big part of the fifth chapter is devoted to the same properties
for groups.

In particular, Chapter 4 includes short proofs of the celebrated Shirshov
height theorem, the classical result by Dubnov, Ivanov, Nagata and Higman
about local finiteness of rings satisfying nil identities, the Kruse–L’vov theorem
about finite bases of identities of finite rings, and Belov-Kanel’s counterexample
for the Specht problem (that problem was one of the main problems that inspired
the whole theory of varieties of rings). Gelfand–Kirillov dimension of associative
algebras with polynomial growth is also considered there.

Chapter 5 starts with showing how to convert words that are equal to
1 in a group into 2-dimensional pictures — van Kampen diagram and back.
Greendlinger’s theorem about Dehn–Greendlinger’s algorithm for small cancel-
lation groups is proved next, which is followed by a discussion of various syntactic
properties of hyperbolic groups. Grigorchuk’s example of a group of intermediate
growth (a solution of Milnor’s problem) and the Bass–Guivarc’h computation
of the growth functions of finitely generated nilpotent groups are also in that
chapter. The chapter also includes, for the first time in the literature, a “road
map” of a proof (due to Olshanskii) of one of the most important results in
group theory: the Novikov–Adian theorem that there are infinite finitely gener-
ated groups of finite exponent. The main goal of the road map is to give the
reader a relatively short and gentle introduction (the main ideas, methods, and
“points of interest”) to the very difficult original proof. Chapter 5 ends with a
section about amenable groups. In particular, a solution (due to Adian) of the
von Neuman–Day problem is explained there.

One of our goals in the book is to show that different algebraic objects have
quite similar syntactic features and are strongly related. In order to do that we
use several tools and objects as “recurring characters” throughout the book. For
example, full binary trees are used in describing terms of free non-associative
algebras, in one of the definitions of the R. Thompson group F , and in the proof
that Grigorchuk’s group has intermediate growth. Zimin words play a crucial
role in studying Burnside properties of semigroups, in the definition of Baer
radical in rings, etc. Zimin words even appeared, at least in spirit, in Olshan-
skii’s proof of the Novikov–Adian theorem (Section 5.2.3) and as Zel’manov’s
words in one of the important applications of Zel’manov’s solution of the re-
stricted Burnside problem. Uniformly recurrent words (which have origin in
symbolic dynamics) are used to study Burnside-type and finite basis properties
of semigroups and inverse semigroups. Finite automata of several kinds as well
as Church–Rosser rewriting systems also appear throughout the book.

This book is not only about results but also about methods. There are
several “universal” methods used in many proofs in the book. For example,
rewriting systems are often used to find canonical forms of words and other
objects. The diversity of interconnected subjects discussed in the book is man-
ifested in the fact that this is one of a very few books where both the ergodic
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theorem of George Birkhoff and the HSP theorem of Garrett Birkhoff are used
(Theorems 3.9.14 and 1.4.27).

What is not in the book

The main purpose of the book is to cover the foundations of combinatorial
algebra and several important applications. The largest area that is barely
touched in the book is “Algorithmic problems in algebra”, in particular the
word problem. The reason is that the area is so large that it requires a separate
book (the survey by Kharlampovich and Sapir [177] is 250 pages long and does
not even mention the most important results in the area obtained during the
last 15 years).

For whom is the book written

I have tried to make the book self-contained. Basically any undergraduate
student who took standard Linear Algebra and Abstract Algebra classes can
read this book. I taught courses based on this book for undergraduate as well as
graduate students, and even a 6–week course on avoidable words (Chapters 1, 2,
3) for high school students in one of the Canada/USA Mathcamps. In short, no
significant knowledge of mathematics is required. Nevertheless problem solving
experience and certain mathematical maturity would definitely help reading the
book.

Exercises

The book contains more than 350 exercises. Some of them are easy, others
are relatively hard. Although I do not provide solutions, harder exercises contain
hints, which should help find solutions. In some cases I decided that it would
be instructive to let the reader prove a theorem on his/her own, so the proof is
divided into a series of exercises, each of which is not too difficult. Also quite
often I formulate a statement that is almost, but not quite, obvious. After such
a statement I write “why?” or “prove it!”. These are little exercises, which help,
I hope, understand the proofs better. These usually replace the phrases like
“It is easy to see that...” and ”By a straightforward computation we obtain ...”,
which are often used in mathematical texts and which I find intimidating. The
exercises “embedded” in the proofs in the book contain technical statements
whose proofs can be skipped if the reader wants to learn the main ideas of the
proofs as opposed to all the details of it. If I gave detailed proofs of all the
exercises, the book would become twice or three times as long while containing
essentially the same information.

Further reading and open problems

Chapters 2-5 end with sections “Further reading and open problems”. These
are surveys of main recent results and open problems in the relevant areas. Each
of the open problem formulated there can be a topic of a PhD thesis.
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CHAPTER 1

Main definitions and basic facts

This chapter introduces the main characters that will appear in this book:
sets, words, graphs, automata, rewriting systems, various kinds of (universal)
algebras, varieties, free algebras (including free semigroups and groups) and sub-
shifts. We also introduce the main properties of algebras that we are interested
in: the Burnside property, the finite basis property, properties of the growth
function and the growth series, etc.

Theorems proved in this chapter include the following:

● Theorem 1.2.16 of Fine and Wilf showing that a periodic word knows
its period,
● Theorem 1.4.30 of Jónsson and Tarski showing that most relatively

free algebras know their ranks,
● Theorem 1.4.40 of Baker, McNulty and Werner giving many examples

of inherently non-finitely based finite algebras,
● George Birkhoff’s recurrence Theorem 1.6.2,
● Hedlund’s Theorem 1.6.12 characterizing homomorphisms of subshifts,
● Newman’s diamond Theorem 1.7.10 about confluent rewriting systems,
● Levi’s Theorem 1.8.6 characterizing free semigroups,
● Klein’s ping-pong Theorem 1.8.31 about free groups,
● Magnus’ Theorem 1.8.36 about the orderability of free groups,
● Theorem 1.8.38 of Chomsky and Schützenberger about the growth se-

ries of a rational language.

1.1. Sets

We will use standard notions related to sets such as subsets, their intersec-
tion, union and complements, permutations of sets, and maps between subsets:
injective (one-to-one), surjective (onto) and bijective. We will also use standard
notions from basic arithmetic such as prime numbers, factorials, modular arith-
metic. These notions are studied in any undergraduate Abstract Algebra course
and should be known to the reader. To refresh the memory of the reader, we
included some exercises below. We will refer to these exercises later.

Exercise 1.1.1. Prove that

● the number of subsets of an n-element set is 2n,
● the number of permutations of an n-element set is n!,
● the number of maps from an n-element set to an m-element set mn,
● the number of k-element subsets of an n-element set (i.e., the binomial

coefficient (n
k
)) is n!

k!(n−k)! .
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Exercise 1.1.2. Find a formula for the number of partial maps from an
n-element set A to itself (i.e., the number of maps from subsets of A into A).

Exercise 1.1.3. Prove that if p,n are integers, p is a prime and 0 < n < p,
then (p

n
) is divisible by p.

Exercise 1.1.4. Prove the Pascal triangle formula (n−1
k
) + (n−1

k−1
) = (n

k
).

Let Ai, i ∈ I, be sets. The Cartesian product (named after René Descartes)

∏i∈I Ai of Ai (I is an arbitrary set of indices) is the set functions f ∶ I → ⋃Ai

such that f(i) ∈ Ai for every i ∈ I. For every i ∈ I, the value f(i) is called the
ith coordinate of f . If I is almost countable then one can view ∏i∈I Ai as the
set of sequences (ai), where ai ∈ Ai, i ∈ I. If all Ai are equal to A, then ∏i∈I Ai

is called a Cartesian power of A and is denoted by AI . If I = {1,2, . . . , n, . . . },
then we shall sometimes write A1 ×A2 × ⋅ ⋅ ⋅ ×An . . . instead of ∏i∈I Ai.

A binary relation on A is a subset of A2 = {(a1, a2) ∣ a1, a2 ∈ A}. Sometimes
instead of the notation (a, b) ∈ σ we use aσb. A binary relation σ is called

● transitive if (a, b) ∈ σ, (b, c) ∈ σ → (a, c) ∈ σ for every a, b, c ∈ A;
● reflexive if (a, a) ∈ σ for every a ∈ A;
● symmetric if (a, b) ∈ σ → (b, a) ∈ σ for every a, b ∈ A;
● anti-symmetric if (a, b) ∈ σ, (b, a) ∈ σ → a = b for every a, b ∈ A;
● equivalence if it is transitive, reflexive and symmetric;
● partial order if it is transitive, reflexive and anti-symmetric;
● total order if it is a partial order and (a, b) ∈ σ or (b, a) ∈ σ for every
a, b ∈ A.

Every equivalence relation on A divides A into disjoint equivalence classes;
two elements a, b are in the same class if (a, b) ∈ σ.

Exercise 1.1.5. Prove that equivalence classes are disjoint and cover the
whole A, i.e., they form a partition of A, and, conversely, every partition of A
into disjoint subsets defines an equivalence relation on A.

The equivalence relation = where every equivalence class is a singleton is
called the trivial equivalence relation.

For every map f ∶X → Y , the binary relation σ on X defined by (a, b) ∈ σ
if f(a) = f(b) is an equivalence relation called the kernel of f. The map f is
injective if the kernel is the trivial equivalence relation. The map f is surjective
if f(X) = Y. In this case we can identify Y with the set of equivalence classes of
the kernel of f , denoted by X/σ ∶ we identify an equivalence class containing a
with f(a).

If σ is some set of pairs from A2, then the smallest equivalence relation σ̄

containing σ is called the equivalence generated by σ.

Exercise 1.1.6. Show that σ̄ consists of all pairs (a, b) such that either a = b
or there exists a sequence of elements x0 = a,x1, . . . , xn = b such that for every
i = 0, . . . , n − 1 either (xi, xi+1) ∈ σ or (xi+1, xi) ∈ σ.

Recall also Zorn’s lemma about partial orders.
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Lemma 1.1.7. Suppose ≤ is a partial order on a set A such that every totally
ordered subset B ⊆ A has an upper bound, i.e., an element a ∈ A such that b ≤ a
for every b ∈ B. Then A has a maximal element i.e., an element m such that
m ≤ a→m = a for every a ∈ A.

Note that we are not using the full capacity of Zorn’s lemma in this book:
only sets of relatively small cardinalities appear here.

If f is a bijective map from X to X (i.e., a permutation of X), then we
can consider positive and negative powers fn of f , n an arbitrary integer, i.e.,
compositions of f or f−1 with itself several times. There is a useful equivalence
relation on X associated with f : x ∼ y if some power fn of f takes x to y. The
equivalence classes of this relation are called the orbits of f.

We will also use, in a very limited manner, some basic notions from topology:
distance functions (metrics), compact topological spaces, continuous functions.
Sometimes we shall mention manifolds. But if the reader does not know what
manifolds are, it is always enough to think of a torus (the surface of a donut) or
a sphere (the surface of a ball). A couple of times, we will use polynomials in
one variable and power series.

1.2. Words

1.2.1. The origin of words. In this book we consider words (i.e., finite
strings of symbols), infinite words (i.e., infinite to the right strings of symbols),
and bi-infinite words (i.e., infinite to both directions strings of symbols).

There are at least three different sources of words in mathematics: alge-
bra, combinatorics and topology. Each of the following three examples showing
various sources of words will be used later in the book.

Example 1.2.1. Take any semigroup S, and let X be a generating set of S
(for definitions see Sections 1.4.1, 1.4.1.3). Then every element a of S is a product
of elements of X: a = x1x2⋯xn. Therefore every element of S is represented by
a word in the alphabet X. Important questions: What is the minimal length of
a word representing a (i.e., the length of a)? Given two words, do they represent
the same element of the semigroup (the word problem)? There are many more
questions like these.

Example 1.2.2. Take any partition of the first m positive integers:

{1, . . . ,m} = P1 ∪ P2 ∪⋯ ∪Pn.

Take an n-element alphabet {p1, p2, . . . , pn}. Label each number from 1 to m that
belongs to Pi by the letter pi. Now read these labels as you scan the numbers
from 1 to m, and you get a word. For example, the word p1p2p1p2p1 corresponds
to the partition {1,2,3,4,5} = {1,3,5} ∪ {2,4}.

Example 1.2.3. Take any manifold M and divide it into n pieces M1, M2,
. . . , Mn. Again, associate a letter mi with every piece Mi. Suppose that you are
traveling on this manifold. Every hour write down a letter that corresponds to
the region that you are visiting. After m hours you will get a word of length
m. For example, you can drive along the US Interstate 80 from Chicago (IL)
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to Lincoln (NE) with a speed of 65 miles per hour and every hour write down
the two letter abbreviation of the name of the state you are in. Then you will
probably get the following word:

ILILIAIAIAIAIANENE

(the author has performed this experiment himself).

Example 1.2.2 is a particular case of Example 1.2.3: Take the interval [1,m]
of real numbers, divide it according to the partition P , and travel from 1 to m
with a constant speed of 1 unit interval in 1 hour.

In fact all three ways of getting words are closely related. This will become
clear later in the book.

1.2.2. The free semigroup. Any set X can be viewed as an alphabet. In
this case the elements of X are called symbols or letters, and words with letters
from X are called words over the alphabet X. Two words u and v are equal,
denoted u ≡ v, if they are identical.

Given two words u and v, we can create a new word by first writing u and
then v. The new word is called the result of concatenating u and v and is denoted
by uv. For example, if u ≡ abba and v ≡ xyz, then uv ≡ abbaxyz.

This operation is clearly associative (i.e., (uv)w = u(vw) for every three
words u, v,w), so the set of all words in X, usually denoted byX∗, is a semigroup.
The most distinguished member of X∗ is of course the empty word, i.e., the
word containing no symbols. We denote the empty word by 1. It is clear that
1u ≡ u1 ≡ u for any u ∈X∗. Thus X∗ is actually a monoid (a semigroup with an
identity element). Sometimes we need to avoid the empty word. The set of all
nonempty words over X is denoted by X+. This is also a semigroup of course.

The monoid X∗ is called the free monoid over X, and the semigroup X+ is
called the free semigroup over X. If n is a positive integer and u is a word, then
the n-th power of u, un, is uu . . . u´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n

.

Exercise 1.2.4. Prove that if X consists of one element, then X+ is isomor-
phic (see the definition of isomorphism in Section 1.4.1 below) to the additive
semigroup of positive integers and X∗ is isomorphic to the monoid of nonnega-
tive integers.

A word can be viewed geometrically as a linear diagram (a labeled path). Let
u be a word of length n. Take a horizontal straight line R. Take an interval on
R and divide it into a union of n subintervals. Orient each of these subintervals
from left to right, and label them by letters from u. The result is denoted by
ε(u). Later on we shall introduce 2-dimensional diagrams, which can be viewed
as 2-dimensional words.

Let u be a word over an alphabet X. Then the content of u, cont(u), of u
is the set of all letters occurring in u. The length of u, denoted by ∣u∣, is the
number of letters in u (counting the repetitions). For example, if u ≡ abbaa,
then the content of u is {a, b} and ∣u∣ = 5.
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If u ≡ v1v2v3 for some words v1, v2, v3, then v1, v2, v3 are called subwords of
u, v1 is called a prefix of u, and v3 is called a suffix of u. If v is a subword of u,
then we shall write v ⪯ u. A word v can occur several times in u. Sometimes we
need to specify a specific occurrence of v. An occurrence of a subword v in u is
completely determined by the word v itself, a prefix of u, and a suffix of u. So if
u ≡ v1vv2, then the corresponding occurrence of v will be denoted by the triple(v1, v, v2). For example, the word abbaabaa has two occurrences of the word aa:(abb, aa, baa) and (abbaab, aa,1).

We say that a nonempty word u overlaps with a nonempty word v if either
one of these words is a subword of another one or a nonempty suffix of u (resp.
v) is a prefix of v (resp. u). For example, the word ab overlaps with bc, aa and
abab.

Any subset of X∗ is called a language.

1.2.3. Orders on words. If we order the letters in X, then we can compare
arbitrary words over X. In fact there are several order relations on words that
extend the order on X. For example, we can compare words lexicographically
(as in any dictionary). The corresponding order is denoted by <lxg . One can

also compare words first by their lengths and then, if the lengths are equal,
lexicographically. This order is called ShortLex, and is denoted by <sl . For
example, if X = {a, b} and a < b, then abba >lxg aabbb and abba <sl aabbb. The

main difference between these orders is that the ShortLex order satisfies the
descending chain condition, i.e., there are no infinite strictly descending sequence
of elements, while the lexicographic order does not satisfy this condition: bb >lxg
bab >lxg baab >lxg baaab >lxg . . . .

Exercise 1.2.5. Prove that ShortLex satisfies the descending chain condi-
tion.

There are several other useful orders on words from X∗. In Section 4.4.2
we will use the following partial order on words called Lex and denoted by ≤ℓ .

Again, fix any total order ≤ on X and modify the lexicographic order on X+ by
saying that we no longer compare different words when one of the words is a
prefix of another. Formally u ≤ℓ v if and only if either u ≡ v or u ≡ pxq, v ≡ pyr
where p, q, r are (possibly empty) words, x, y ∈ X and x < y.

For example, if a < b < c ∈ X, then aaabccc <ℓ aaca. Indeed, in this case
p = aa, x = a, q = bccc, y = c, r = a.

Notice that every two words of the same length are Lex comparable.

Exercise 1.2.6. Show that if u >ℓ v, then puq1 >ℓ pvq2 for any words p, q1, q2.

In Section 5.1.4.3 we will use yet another order that was introduced by
Dershowitz in [85]. Let, once again, ≤ be any total order on a finite alphabet X.
The recursive path ordering ≥rpo on X∗ is defined recursively as follows. Given
two words u ≡ su′ and v from X∗ where s ∈ X, we write u ≥rpo v if and only if
either u ≡ v or v is the empty word 1 or one of the following holds:

● u′ ≥rpo v,
● v ≡ tv′, t ∈X, and either
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– s > t and u >rpo v
′, or

– s = t and u′ >rpo v
′.

For example, if the alphabet consists of two letters a, b, and a < b, then
aba ≥rpo ba because ba ≡ ba, and baba >rpo aaba because b > a and baba >ρ aba

(the latter inequality holds because b > a and baba >rpo ba, which, in turn, is
true because aba >rpo a, which is true because ba >rpo 1).

Exercise 1.2.7. Show that ≥rpo is a total order satisfying the descending
chain condition.

Exercise 1.2.8. Show that each of the four orders on words introduced in
this section is compatible with the concatenation of words, that is, if ≤ is one of
these orders and u ≤ v, then for every two words p, q (in the same alphabet), we
have puq ≤ pvq.

1.2.4. Periodic words. This entire book is about properties of words.
Here we present just two basic and well-known facts about words.

Theorem 1.2.9. Two words u and v commute (that is uv ≡ vu) if and only
if they are both powers of a third word w.

Proof. The “if” part of this statement is obvious. We give two proofs of
the “only if” part. The first proof is well known, the second is due to Victor
Guba. It is not as easy as the first one but it can be generalized to “nonlinear”
words, diagrams (see Theorem 5.6.22).

(1) Induction on the length of uv. If ∣uv∣ = 0 (that is if both words are empty),
the statement is obvious. In fact the statement is obvious if one of the words
u, v is empty. Assume that the statement is true for any pair of words u, v with∣uv∣ < n. Take two nonempty words u, v with ∣uv∣ = n and assume that uv ≡ vu.
Then either u is a prefix of v or v is a prefix of u. Without loss of generality
assume the former is true, so v ≡ uv′ for some word v′. Then uuv′ ≡ uv′u. Hence
uv′ ≡ v′u (why?). Since ∣uv′∣ < ∣uv∣, we can use the induction assumption. So we
can find a word w such that u ≡ wk, v′ ≡ wℓ for some nonnegative integers k, ℓ.
Then v ≡ uv′ ≡ wk+ℓ, so both u and v are powers of w as desired.

(2) Let n be the length of uv. Consider the linear diagram ∆ = ε(uv) = ε(vu).
Let us denote the left end of ∆ by ı(∆) and the right end of ∆ by τ(∆).

Let us identify vertices ı(∆) and τ(∆). We get a circle subdivided into n

labeled arcs. We can assume that all the arcs have the same length. The equality
uv ≡ vu gives us a rotation π of this circle preserving the partition (π maps the
first arc of the first occurrence of u in ∆ to the first arc of the second occurrence
of u in ∆, etc.). It is easy to see that the group of all rotations of the circle
preserving our partition is cyclic, i.e., generated by one element. Let φ be the
generator of this group such that π = φk for some nonnegative k < ∣uv∣, and let
this k be the smallest possible. In other words, φ is the rotation that moves
ı(∆) as little as possible in the clockwise direction. Let w be the word written
on ∆ between ı(∆) and φ(ı(∆)). Then it is easy to see that u ≡ wk and v ≡ wℓ

for some nonnegative number ℓ. �
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Exercise 1.2.10. Unlike proof (1), proof (2) needs some polish (say, the fact
that the group is cyclic needs a proof). Polish it!

Exercise 1.2.11. Prove using the idea from the second proof of Theorem
1.2.9 that some powers um and vn of words u and v coincide if and only if u and
v commute.

A word w′ is called a cyclic shift of w if w ≡ uv, w′ ≡ vu for some words u, v.
The cyclic shift is called nontrivial if u and v are not empty.

Exercise 1.2.12. Prove that a word w is a power of some shorter word if
and only if w is equal to one of its nontrivial cyclic shifts.

Exercise 1.2.13. Suppose that u, v are words, ∣v∣ > ∣u∣, u is not a power of a
shorter word, and um ≡ p1vq1 ≡ p2vq2 for some p1, p2, q1, q2. Show that ∣p2∣ − ∣p1∣
is a multiple of ∣u∣. Hint: We can assume that v starts with u, so p1 is empty.
Then, looking at the prefix of v of length ∣u∣ in the second occurrence of v in um,
conclude that u is equal to its nontrivial cyclic shift and apply Exercise 1.2.12.

A word v is called periodic with period u if it is a subword of a power un for
some n ≥ 1 and ∣v∣ ≥ ∣u∣. For example, the word aba is periodic with periods ab
and ba.

Clearly if a word w is periodic with period u, and v is a cyclic shift of u,
then w is periodic with period v.

Exercise 1.2.14. Prove that if w is a periodic word with period u and ∣u∣
divides ∣w∣, then w is a cyclic shift of a power of u.

Exercise 1.2.15. (See [191, Section 3 in Chapter 11]] Prove that if u, v,w
are three words and uv ≡ vw, then u,w are cyclic shifts of each other, and v is
a subword of a power of u. Moreover, for some words u1,w1 and some m ≥ 0,
we have u ≡ w1u1,w ≡ u1w1, v ≡ (w1u1)mw1. Hint: We have that for some
m ≥ 0, v ≡ umw1 where w1 does not start with u. Then uumw1 ≡ umw1w. Hence
uw1 ≡ w1w. Since w1 does not start with u, the word u must start with w1. Thus
u ≡ w1u1 and w1u1w1 ≡ w1w, hence w ≡ u1w1.

The following theorem, due to Fine and Wilf [104], shows that periodic
words containing many periods “know” their periods.

Theorem 1.2.16. Let w be a periodic word with periods u and v. Suppose
that ∣w∣ ≥ ∣u∣+ ∣v∣−gcd(∣u∣, ∣v∣). Then w is periodic with period t of length dividing
gcd(∣u∣, ∣v∣).

Proof. By taking cyclic shifts of u and v if necessary, we can ensure that
both u and v are prefixes of w. We shall prove that u and v commute, hence by
Theorem 1.2.9 the words u and v are powers of some word t; clearly the length
of t divides gcd(∣u∣, ∣v∣).

Enumerate all letters in the alphabet and with every word u ≡ xi0
xi1

. . . xin−1

(where xi is the ith letter in the alphabet) associate the formal series

fu(x) = ∞∑
j=0

ij mod nx
j .
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For example, if u ≡ aba and a is the first letter, b is the second letter in the
alphabet, then

fu(x) = 1 + 2x + x2 + x3 + 2x4 + x5 + . . . .
It is clear that this series satisfies the equality

(1 − xn)fu(x) = Pu(x),
where Pu(x) is a polynomial obtained by taking the first n = ∣u∣ terms of fu(x).
This polynomial has degree ∣u∣ − 1.

We have
fu(x) = (1 − x∣u∣)−1Pu(x)

and
fv(x) = (1 − x∣v∣)−1Pv(x)

where the degree of Pu(x) does not exceed ∣u∣ − 1 and the degree of Pv(x) does
not exceed ∣v∣−1. Notice that the first ∣w∣ coefficients of the series fw(x) coincide
with the first ∣w∣ coefficients of fu(x) and with the first ∣w∣ coefficients of fv(x)
(because both u and v are prefixes of w). Therefore the first ∣w∣ coefficients of

fu(x) − fv(x) are zeroes. The polynomial 1 − xgcd(∣u∣,∣v∣) is a common factor of

the polynomials 1 − x∣u∣ and 1 − x∣v∣ (prove it!). Therefore

fu(x) − fv(x) = (1 − xgcd(∣u∣,∣v∣))(1 − x∣u∣)−1(1 − x∣v∣)−1R(x),
where R(x) is a polynomial of degree at most ∣u∣ + ∣v∣ − gcd(∣u∣, ∣v∣) − 1. Thus

R(x) = (1 − xgcd(∣u∣,∣v∣))−1(1 − x∣u∣)(1 − x∣v∣)(fu(x) − fv(x)).
But the series on the right-hand side is divisible by x∣u∣+∣v∣−gcd(∣u∣,∣v∣) and the
polynomial on the left-hand side has degree at most ∣u∣ + ∣v∣ − gcd(∣u∣, ∣v∣) − 1.
Therefore R(x) = 0, so fu(x) = fv(x). Let u∞ be the infinite power of u, uuu . . .
and let v∞ be the infinite power of v, vvv . . . . We have proved that these two
infinite words coincide letter by letter. Since u∣v∣ and v∣u∣ are finite prefixes
of these words having the same length, u∣v∣ ≡ v∣u∣. It remains to use Exercise
1.2.11. �

Example 1.2.17. Let w ≡ aaabaaa. Then w is periodic with period u ≡ aaab
of length 4 and with period v ≡ aaabaa of length 6. But w is not periodic
with period of length 2 = gcd(6,4). This example shows that the inequality in
Theorem 1.2.16 is optimal. Indeed, ∣w∣ = 7 while ∣u∣+∣v∣−gcd(∣u∣, ∣v∣) = 4+6−2 = 8.

Exercise 1.2.18. Prove that if w is a periodic word with periods u and
v, and ∣w∣ ≥ ∣u∣ + ∣v∣ − gcd(∣u∣, ∣v∣), then some cyclic shifts of u, v are powers of
the same word t. Hint: Apply Theorem 1.2.16 to w and find a word t of length
dividing gcd(∣u∣, ∣v∣) such that w is periodic with period t. Use the fact that both
u and v (being subwords of w) are periodic with period t, and apply Exercise
1.2.14.

Exercise 1.2.19. Prove that if u, v,w are three words and wn ≡ upvq for
some n ≥ 4, p ≥ 2 and q ≥ 2, then u, v,w commute pairwise. Hint: Suppose
without loss of generality that up has length ≥ n

2
∣w∣. Then up is a periodic word

with periods u and w. The length of up is p∣u∣. Consider two cases ∣u∣ ≥ ∣w∣ and

20






∣u∣ < ∣w∣, in each case apply Theorem 1.2.16 and deduce that there exists a word
t of length dividing gcd(∣u∣, ∣w∣) such that u ≡ tk for some k. Since up starts with
w, and ∣t∣ divides ∣w∣, deduce that w ≡ tl for some l. Then vp is also a power of
t and we can apply Exercise 1.2.11.

Remark 1.2.20. It was proved by Lyndon and Schützenberger [211] that
the conclusion of Exercise 1.2.19 holds even if n ≥ 2 (p, q ≥ 2). Guba [131] and
Harju and Nowotka [92] gave easier proofs. Many similar problems have been
considered later. For example, it is proved in [93] that if w,u1, . . . , un are words

in a free semigroups, w /≡ ui for all i, and wk ≡ uk1

1 . . . ukn
n where 2 ≤ n ≤ k

and k, k1, . . . , kn ≥ 3, then all words w,u1, . . . , un are powers of the same word t

(hence these words pairwise commute). The proof also uses Theorem 1.2.16.

There are many other applications of Theorem 1.2.16. For example:

Theorem 1.2.21 (Guba [131]). If the cube of a word u is a product of two
periodic words whose periods are shorter than u, then u is a power of a shorter
word.

1.3. Graphs

1.3.1. Basic definitions. A (directed) graph is a quadruple of sets and
maps: the set of vertices V , the set of edges E, and two maps from E to V :
the map −∶ e ↦ e− and the map +∶ e↦ e+. We shall also use ι(e) for e− and τ(e)
for e+. The vertex e− is called the tail of e, the vertex e+ is called the head of
e. We shall sometimes denote an edge e by e− → e+ or ι(e) → τ(e) (although
there might be several edges with the same tail and head; we call such edges
parallel). The out-degree of a vertex v is the number of edges with tail v. The
in-degree of a vertex v is the number of edges with head v. An undirected graph
is a graph where for every edge e → f there is the opposite edge f → e. In
that case we identify the edges e → f and f → e, and denote the new edge by
the 2-element set {e, f} (there can be several parallel edges connecting the same
pair of vertices).

As usual, we represent graphs as pictures where each vertex is presented as
a small circle and each edge e is shown as an arrow starting at e− and pointing
at e+.

An induced subgraph of a graph (V,E) is a graph (V ′,E′) where V ′ ⊆ V and
E′ consists of all edges from E connecting vertices from V ′

Two edges e and e′ are said to be consecutive if e+ = e′−. A path p in a graph
Γ is either a vertex or a nonempty sequence of consecutive edges. Its tail p− is
the tail of its first edge, and its head p+ is the head of its last edge. A path
consisting of one vertex is called an empty path, the vertex being its tail and its
head. The length of a path is 0 if the path is empty and n if the path is the
word e1e2 . . . en of consecutive edges. We shall also use infinite and bi-infinite
paths being respectively infinite or bi-infinite words of consecutive edges.

We say that a path e1e2 . . . en connects two vertices v and v′ if v = ι(e1) and
τ(en) = v′. In an undirected graph, the relation ∼ between vertices defined by
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x ∼ y if x and y are connected by a path is an equivalence relation, and classes
of ∼ are called connected components of the graph.

A (directed) graph Γ is called strongly connected if every two vertices of
Γ are connected by a path. A path e1e2 . . . en is called a cycle or a closed
path if ι(e1) = τ(en). A simple cycle is a cycle e1e2 . . . en such that vertices
ι(e1), ι(e2), ι(en) are all different. A simple path is defined in a similar way.

Example 1.3.1. A planar graph is a graph whose vertices are (some) points
on the plane, edges are oriented arcs connecting vertices; the arcs do not have
common points except for the vertices.

1.3.2. Automata.

1.3.2.1. Definitions and basic properties. In this book we shall often use
labeled graphs, i.e., graphs (Q,E) where edges have labels, letters from some
alphabet A (different edges may have the same label). Labeled graphs are also
called automata. We normally denote such an automaton by (Q,A) suppressing
the edge set in the notation. If (Q,E) is a finite graph, we call (Q,A) a finite
automaton.

If A is an automaton, then the graph obtained from A by forgetting edge
labels is called the underlying graph of A. If Γ is a graph, then any automaton for
which Γ serves as the underlying graph is said to be a coloring of Γ. Figure 1.1
shows a graph and two automata having that graph as the underlying graph.
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a b

b

b

a

a

a b

1 2

34

a a
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b

a b

1 2

34

Figure 1.1. Two automata with the same underlying graph

An automaton is said to be deterministic if, for every vertex q, the edges
with tail q have different labels. A deterministic automaton with the vertex set
Q and the label alphabet A is called complete if each vertex q ∈ Q has out-degree∣A∣.

An automaton is called rooted if we fix two sets of distinguished vertices
Q−,Q+ called input and output vertices respectively. A word w is said to be
recognized by a rooted automaton if it labels a path p with p− ∈ Q− and p+ ∈ Q+
(that is the labels of the edges of that path spell w). A set of words (language) in
an alphabet A is called a rational language (also called regular) if this is exactly
the set of words recognized by some finite automaton. Thus if we denote the
label of a path p by Lab(p), then the language recognized by the automaton(Q,A) is the set of words {Lab(p) ∣ p− ∈ Q−, p+ ∈ Q+}. Rational languages are
some of the simplest possible languages.

Exercise 1.3.2. Show that every finite language is rational.

Remark 1.3.3. The set of rational languages is closed under many natural
operations (see Eilenberg [95], Sakarovitch [275] or Lawson [193]). For
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example, if L1,L2 ⊆ A∗ are rational languages, then L1 ∪ L2,A
∗ ∖ L1,L1 ∖ L2,

etc. are rational.

We shall use the following

Lemma 1.3.4. The intersection of two rational languages L1,L2 ⊆ A∗ is
rational.

Proof. Let Ai = (Qi,A) be an automaton recognizing Li, i = 1,2. Consider
the equalizer automaton A = (Q1 ×Q2,A) where an edge (q, r) → (q′, r′) exists
and is labeled by a if there exists an edge q → q′ labeled by a in A1, and an
edge r → r′ labeled by a in A2. The set of input (output) vertices of A consists
of pairs (q1, q2) where qi is an input (output) vertex of Ai. Then the language
recognized by A is L1 ∩L2, hence L1 ∩L2 is a rational language. �

Exercise 1.3.5. Show that for every rational language L ⊆ A∗ each of the
following languages is rational as well.

● the language C(L) of words from A∗ that contain subwords from L,
● the language E(L) of words from A∗ that do not contain subwords from
L

Hint: Let A = (Q,A) be an automaton recognizing L with input vertices Q−
and output vertices Q+. Then do the following

● Add two more vertices u, v to Q,
● for each x ∈ A add an edge u → u and an edge v → v, and label these

edges by x,
● for each vertex q ∈ Q− and each x ∈ A, add an edge u → q and label it

by x,
● for each vertex q ∈ Q+ and each x ∈ A, add an edge q → v and label it

by x,
● add u to the set of input vertices Q− and v to the set of output vertices
Q+.1

Show that the resulting automaton recognizes C(L).
One of the very basic facts about automata and rational languages is the

following.

Theorem 1.3.6 (See [95, 275]). Every rational language is recognized by a
finite complete automaton with only one input vertex.

1.3.3. Mealy automata. If Γ = (V,E, ι, τ) is a graph, and A is an alpha-
bet, we can label edges of Γ by pairs from A × A. We always assume that the
resulting automaton is strongly deterministic, that is for every vertex q and ev-
ery a ∈ A, there exists exactly one edge e whose tail is q and the label has the
form (a, b) for some b ∈ A. Such an automaton is called a Mealy automaton.

Figure 1.2 shows a Mealy automaton with two vertices q0, q1 and two-letter
alphabet {0,1}.

1This long instruction is reminiscent of some recipes from a cook book. These usually end
with something like “cook for 16 minutes at 350 degrees, flipping after every 4 minutes”. That
is not what you want to do with an automaton.
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q0 q1

(0,1) (1,1)
(0,1)(1,0)

Figure 1.2. A Mealy automaton with two vertices and a 2-letter alphabet

If M = (Γ,A) is a Mealy automaton, then for every word w in the alphabet
A and every vertex q of Γ we can construct a new word Mq(w) of the same
length as w: start with vertex q, and read the first letter, say, a1 of w. Find the
edge of M with tail q1 = q labeled by a pair (a1, b1) (there exists exactly one
such edge since M is strongly deterministic). Let q2 be the head of that edge.
Then the first letter of Mq(w) is b1, and the next vertex we need to consider is
q2. Let a2 be the second letter of w. Find the edge with tail q2 and label of the
form (a2, b2). Let q3 be the head of that edge. Then the second letter of Mq(w)
is b2 and the next vertex is q3. Continuing in that manner, we obtain Mq(w) by
scanning w from left to right and traveling along Γ at the same time. Thus Mq

is a map A∗ → A∗.

Remark 1.3.7. One can easily extend Mq to a transformation of the set of
all (bi-)infinite words in the alphabet A in the same way.

Thus with every Mealy automaton M = (Γ,A) where Γ = (V,E), we associate∣V ∣ maps of A∗ → A∗. The semigroup (under composition of maps) generated
by these maps is called the semigroup of automatic maps defined by M . An
example of such a semigroup can be found in Section 3.7.2.4.

Exercise 1.3.8. Find the images of words 1010011 and 01001 under the
maps Mq0

and Mq1
where M is a Mealy automaton of Figure 1.2.

If each Mq is invertible, then one can consider the group of permutations of
A∗ generated by all Mq, q ∈ V. It is called the group of automatic permutations
defined by M . For an example of such a group see Section 5.7.4.

Exercise 1.3.9. Find a Mealy automaton such that the corresponding group
of automatic transformations is a given cyclic (finite or infinite) group. Hint:

For a finite cyclic group you can use a Mealy automaton with only one vertex,
but for the infinite cyclic group you will need an automaton with two vertices
and a 2-letter alphabet.

1.3.4. Graphs in the sense of Serre. A graph in the sense of Serre is a
graph (V,E, ι, τ) with additional map −1∶E → E (taking the inverse edge) such
that

● the map e↦ e−1 is an involution, i.e., (e−1)−1 = e,
● no edge e can be the inverse of itself (i.e., e−1 ≠ e for every e ∈ E),
● ι(e) = τ(e−1) for every e ∈ E.
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In that case we always represent E as a disjoint union of two subsets of equal
sizes E+ and E− such that (E+)−1 = E−. Edges from E+ (resp. E−) are called
positive (resp. negative). A path consisting of positive edges is called positive.

Remark 1.3.10. Note that one of the maps ι or τ in the definition of graph
in the sense of Serre is redundant because given the map ι∶E → V , we can define
τ(e) as ι(e−1).

A graph in the sense of Serre is called a tree if it is connected and every cycle
in it has two consecutive mutually inverse edges.

Exercise 1.3.11. (1) Show that every finite tree has vertices of degree 1
(these are called leaves). Hint: Show that all paths in the tree without mutually
inverse consecutive edges have bounded lengths, consider such a path of maximal
length. Its terminal vertex is a leaf.

(2) Show that the number of vertices m and the number of positive edges n
of any tree satisfy m = n+1. Hint: Use induction on m and the first part of the
exercise.

1.3.5. Inverse automata and foldings. Let Γ = (V,E, ι, τ,−1 ) be a graph
in the sense of Serre, and let A be an alphabet divided into two parts A+,A−

(positive and negative letters) of equal sizes. Suppose we are also given an
involution −1∶A+ ↔ A−. Then we say that labeling of Γ by A is correct if positive
edges get positive labels and for every edge e with label a, the label of e−1 is
a−1. The correctness allows us to mention only positive edges and only positive
labels when the labeling of a graph Γ is defined. If the labeling is correct and
deterministic, that is no two edges with the same tail have the same label, the
resulting automaton is called an inverse automaton. Suppose that a graph Γ in
the sense of Serre with correct labeling is not deterministic, that is, there are
two edges e, f with ι(e) = ι(f) having the same label a. Then we can identify
the edges e and f (and also edges e−1 and f−1). The set of vertices V becomes
smaller because the heads of the edges e and f are identified, and the functions
ι, τ are redefined accordingly. This operation is called (edge) folding. After a
number of foldings, the automaton Γ becomes an inverse automaton. We shall
show (Exercise 1.7.13) that the inverse automaton does not depend on the order
in which we fold edges in the original automaton.

1.4. Universal Algebra

1.4.1. Basic definitions. A (universal) algebra is a set A with several
(possibly infinite number of) functions fi ∶ Ani

→ A, i = 1, . . . , r called (basic
operations) The number ni is called the arity of the operation fi. An operation
of arity 0 (a nullary operation) simply distinguishes an element in the algebra.
The vector (n1, . . . , nr) is called the type or signature of the algebra. Usually
when we consider algebras of a certain type, we fix the names of the operations.
Usually operations are denoted by special symbols like +,∗, ⋅, ○, etc.

A subalgebra B of an algebra A is any subset of A closed under all basic
operations of A, that is, if we apply a basic operation to elements of B, the
result is also in B. If A is a semigroup (group, ring, etc.), then a subalgebra
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B of A is called subsemigroup (subgroup, subring, etc.). If X ⊆ A, then the
subalgebra generated by X is the smallest subalgebra of A containing X. We
denote this subalgebra by ⟨X⟩.

A map φ from an algebra A of type τ to an algebra B of the same type is
called a homomorphism if it preserves all basic operations of A, that is, for every
operation f(x1, . . . , xn) we have

φ(f(x1, . . . , xn)) = f(φ(x1), . . . , φ(xn)).
A bijective homomorphism is called an isomorphism. In that case A and B

are called isomorphic. Usually we do not distinguish isomorphic algebras. The
kernel of a homomorphism φ∶A → B, i.e., the equivalence relation Ker(φ) ={(a1, a2) ∈ A × A ∣ φ(a1) = φ(a2)} respects the operations of A. That is, if
f(x1, . . . , xk) is an operation from τ , and (a1, a

′
1), . . . , (ak, a

′
k) ∈ Ker(φ), then(f(a1, . . . , ak), f(a′1, . . . , a′k)) ∈ Ker(φ). Every equivalence relation σ on A that

respects the operations from τ is called a congruence on A. Every congruence
partitions A into a union of disjoint congruence classes. The set A/σ of all these
congruence classes can be equipped with the structure of an algebra of type τ
in the following natural way: f(C1, . . . ,Cm) = C if C1, . . . ,Cm are σ-classes and
C is the σ-class containing the set {f(c1, . . . , cm) ∣ ci ∈ Ci}. The algebra A/σ
is called the quotient (or factor-algebra) of A over the congruence σ and is a
homomorphic image of A under the natural homomorphism A→ A/σ that sends
each element a ∈ A to the unique σ-class to which a belongs. By construction, σ
is the kernel of this homomorphism. Thus, every congruence of A is the kernel
of a homomorphism.

If {Ai ∣ i ∈ I} is a sequence of algebras of the same type, then the Cartesian
product of this sequence, denoted by ∏i∈I Ai, is the algebra of the same type
defined on the Cartesian product of sets Ai, i ∈ I, where all basic operations act
coordinate-wise.

Taking subalgebras, homomorphic images and Cartesian products is what
algebraists do with algebras most often.

If the type is given and the names of the basic operations are fixed, one can
define terms by composing the operations. For example, if the type is (2,1),
and the basic operations are ○, −1, then the operation ((x○y)−1 ○z)−1 is a term.
The letters x, y, z are the variables of this term.

Every term t(x1, x2, . . . , xn) of type τ defines a function tA∶An
→ A on any

algebra A of type τ (the composition of functions corresponding to the basic
operations). That function is again an operation on the algebra, which is called
a derived operation. This allows one to consider the value of t(x1, . . . , xn) in
A corresponding to any substitution x1 → a1, . . . , xn → an of elements of A for
variables of t.

1.4.1.1. Terms and trees. Similar to words that are represented by linear
diagrams, terms of arbitrary type can be represented by finite directed graphs,
namely planar trees where leaf vertices have labels. For example, suppose that
the type consists of one binary operation ⋅ . If the term is just a variable, then
the corresponding tree is a vertex labeled by that variable. Let p be a term
that is not a variable. Then p = p1 ⋅ p2 for some shorter terms p1 and p2. We
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can assume that the trees T1 and T2 corresponding to p1 and p2 are already
constructed. To draw the tree T for p, start with a root o, label it by the symbol
of the operation, ⋅. Draw two edges pointing down and left and down and right
respectively. The heads of these edges are called children of the root (which is
called the parent of these children). Then attach trees T1 and T2 identifying their
roots with the children. For example, Figure 1.3 shows the tree representing the
term (x ⋅ y) ⋅ x. Note that in the trees corresponding to terms in this type every
vertex has out-degree 2 or 0. Such trees are called full binary trees.

⋅

⋅ x

x y

Figure 1.3. The tree representing (x ⋅ y) ⋅ x
Note also that since our type has only one operation, we do not need to label

non-leaf vertices at all, and since all edges in the tree are pointing down we do
not need to use directed edges to draw these trees.

Full binary trees are called equal if they correspond to equal terms. Another,
more fancy way to say that is: binary trees are called equal if there exists a
continuous deformation of the plane that takes one tree to another.

1.4.1.2. Identities and varieties. An identity (also called a law) of algebras
of type τ is a formal equality t = t′ between terms of type τ. We say that the
identity t = t′ holds in an algebra A of type τ if the values of t and t′ are the
same for every substitution of elements of A for variables involved in t and t′.
A variety given by a set of identities Σ is the class of all algebras of type τ

satisfying identities of Σ.
1.4.1.3. Examples of universal algebras. A semigroup is an algebra of type(2) satisfying the associativity identity (xy)z = x(yz).
A monoid is an algebra of the type (2,0) (the nullary operation 1 is the

identity element) satisfying the identities (xy)z = x(yz),1 ⋅ x = x ⋅ 1 = x.
A group can be considered as an algebra of the type (2,1,0) (the three

operations are: the product, the operation of taking the inverse, and the identity
element). In addition to being a monoid, it satisfies the identities xx−1 = x−1x =
1. There are several important derived operations on groups. Here are two of
these operations that will be used later. If a, b are elements of a group, then
we can conjugate a by b to produce the element b−1ab usually denoted by ab.

Elements a and ab are called conjugate. Also one can form a commutator [a, b] =
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a−1b−1ab. The intuition behind these operations is that two conjugate elements
are in some sense similar (recall the notion of similar matrices from Linear
Algebra) and the commutator [a, b] measures the degree of non-commutativity
of a and b because [a, b] is just a quotient of ab and ba.

Exercise 1.4.1. (1) Show that [a, b] = 1 if and only if ab = ba and if and
only if ab = a.

(2) Show that for every element t from a group G, the map a ↦ at, where
a ∈ G, is an automorphism of G (i.e., a bijective homomorphism from G to G).
In particular, for every integer n, (an)t = (at)n.2

(3) Show that if a and b are conjugate in a group G and a has exponent n
(that is xn = 1 and xm ≠ 1 for every 0 <m < n), then b has exponent n.

(4) Show that for every three elements a, b, c in a group G we have the
following Hall identities (the last one is also called the Hall–Witt identity)

● [a, b] = [b, a]−1 (the anti-commutativity law for commutators),
● ab = a[a, b],
● [ab, c] = [a, c]b[b, c] = [a, c][[a, c], b][b, c] (the distributive law for group

commutators),
● [[a, b−1], c]b[[b, c−1], a]c[[c, a−1], b]a = 1 (the group analog of the Jacobi

identity).

The following exercise gives some examples of groups.

Exercise 1.4.2 (Requires some knowledge of Linear Algebra). Let n be a
natural number.

(1) (The general linear group) Show that the set of all n×n-matrices with real
entries and non-zero determinant is a group with operation - the usual product
of matrices. This group is denoted by GL(n,R). Show that the map A↦ det(A)
is a homomorphism from GL(n,R) to the multiplicative group of non-zero real
numbers.

(2) (The special linear group) Show that the set SL(n,R) of all n×n-matrices
with real entries and determinant 1 is a subgroup of GL(n,R).

(3) (The special orthogonal group) Consider the set SO(n,R) of all matrices
B ∈ SL(n,R) such that BBT = 1 (where BT is the transpose of B). Show that
it is a subgroup of SL(n,R).

An inverse semigroup is a semigroup with an additional unary operation −1

satisfying the identities (x−1)−1 = x, xx−1x = x, xx−1yy−1 = yy−1xx−1. Clearly
every group is an inverse semigroup.

Exercise 1.4.3. Prove that every inverse semigroup satisfies the identity(xy)−1 = y−1x−1. Hint for a syntactic proof: (1) Prove that in every in-
verse semigroup, for every element a, the elements aa−1, a−1a are idempotents,
i.e., (aa−1)2 = aa−1, (a−1a)2 = a−1a. (2) Prove that in an inverse semigroup,
every idempotent coincides with its inverse, i.e., e = e2

→ e = e−1. (3) Prove
that in every inverse semigroup, any two idempotents commute: e2 = e&f2 =

2Note that one needs to distinguish here an = a ⋅ . . . ⋅ a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n

from at = t−1at.
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f → ef = fe. (4) Show that in every inverse semigroup, for every element a
there exists a unique element b (= a−1) such that aba = a, bab = b. (5) Show
that in every inverse semigroup, for every x, y, we have (xy)(y−1x−1)(xy) = xy
and (y−1x−1)(xy)(y−1x−1) = y−1x−1. Finally, deduce from (5) and (4) that(xy)−1 = y−1x−1. Hint for a semantic proof: Use the Wagner–Preston Theo-
rem (Exercise 1.4.23).

Exercise 1.4.4. Give an example of a 2-element semigroup with an unary
operation satisfying the first and third identities of inverse semigroups, but not
the second.

Exercise 1.4.5. Let X be a totally ordered set with order relation ≤ . Define
the operations

x ⋅ y = { x if x ≤ y
y if y ≤ x,

and x−1 = x. Show that X with these two operations is an inverse semigroup.

Exercise 1.4.6. Let X be a set. Consider the set B(X) consisting of all
partial maps x ↦ y of X whose domains (and ranges) are singletons (subsets
with one element) and the symbol 0. Define the multiplication by (x ↦ y)(y ↦
z) = x ↦ z, all other products are equal to 0. Define also (x ↦ y)−1 = y ↦ x.

Show that B(X) with these two operations is an inverse semigroup. The inverse
semigroup B(X) is called the Brandt semigroup, and it will appear later in this
book several times.

Exercise 1.4.7. Find all inverse semigroups with at most 3 elements.

A ring R is an algebra with two binary operations, addition + and multipli-
cation ⋅ (which we shall omit in the terms), satisfying two axioms: (a) R is a
commutative group with respect to + and (b) x(y+z) = xy+xz, (y+z)x = yx+zx
(the distributivity of the product with respect to the sum). A ring is called as-
sociative (resp. commutative) if the product is associative (commutative). If
a ring is associative, then it is a semigroup with respect to multiplication, this
is called the multiplicative semigroup of the ring. Some examples of associative
rings include the ring of integers Z, the ring Z/nZ of integers modulo n (where
n is a positive integer), the ring of square matrices of size n with real entries.

Exercise 1.4.8. Let X be a commutative group with operation + and iden-
tity element 0. Define a multiplication operation on X by x ⋅ y. Show that X
becomes an associative ring.

Exercise 1.4.9. Let R be an associative ring, n ≥ 1. Let Mn(R) be the set
of all square n×n-matrices with entries from R with operations of addition and
multiplication of matrices. Show that Mn(R) is an associative ring. Hint: Use
the standard definitions of matrix addition and multiplication. For example,

⎛⎜⎜⎝
1 2 3

4 5 6

7 8 9

⎞⎟⎟⎠ +
⎛⎜⎜⎝

1 2 3

1 2 3

1 2 3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

2 4 6

5 7 9

8 10 12

⎞⎟⎟⎠ ,
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⎛⎜⎜⎝
1 2 3

4 5 6

7 8 9

⎞⎟⎟⎠
⎛⎜⎜⎝

1 2 3

1 2 3

1 2 3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

6 12 18

15 30 45

24 48 72

⎞⎟⎟⎠ ,
A ring with the identity element 1 is a field if it is associative, commutative,

and every non-zero element a has an inverse a−1 (i.e., aa−1 = 1). The ring of
rational (respectively real, complex) numbers Q (respectively R, C) is a field.

Exercise 1.4.10. Let p be a prime number. Show that the ring Fp of integers
modulo p is a field.

The characteristic of a field F is the smallest non-zero number p such that

1 + . . . + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

= 0

(note that in that case

px = x + . . . + x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

= 0

for every element x of the field). If such p does not exist, we say that the
characteristic is 0.

Exercise 1.4.11. Show that the characteristic of a field is either 0 or a prime
number. The characteristic of Q is 0, and the characteristic of the field Fp is p.

Exercise 1.4.12 (Newton binomial). Show that if a, b are commuting ele-
ments of a ring R, then for every n > 0,

(a + b)n = n

∑
i=0
(n
i
)aibn−i.

Hint: Use induction and the identity from Exercise (1.1.4).

A vector space V over a field K is an algebra with one binary operation +
and one unary operation α⋅ for every α ∈ K, so that V is a commutative group
with respect to +, and for each α,β ∈ K, x, y ∈ V , we have (α + β)x = αx + βx,
α(x + y) = αx + αy, α(β(x)) = (αβ)x, 1x = x.

We shall need the standard notions from Linear Algebra. Let us recall these
here. Let V be a vector space over a field K and U be a subspace of V (i.e.,
a subalgebra of V ). A set of elements S of V is called linearly independent if
whenever the sum k1s1 + ⋅ ⋅ ⋅ + knsn is 0, where ki ∈ K, si are pairwise different
elements of S, all coefficients ki must be equal to 0. If U is a subspace generated
by S, we say that U is spanned by S. Any smallest (under inclusion) subset of
V that spans V is called a basis of V. The number of elements in a basis (which
does not depend on the basis) is called the dimension of V.

The following two exercises are straight from a Linear Algebra book.

Exercise 1.4.13. (1) Show that every non-zero element of a finite dimen-
sional vector space belongs to a basis.
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(2) Show that a set S of vectors of a finite-dimensional vector space V is a
basis if these vectors are linearly independent and ∣S∣ is equal to the dimension
of V.

3. Let L,R be two vector spaces over a field K, B be a basis of L. Show
that every map φ∶B → R extends to a homomorphism φ̄∶L → R by φ̄(∑αili) =
∑αiφ(li).

Recall that for every two subspaces V1, V2 of a vector space V , their sum{v1 + v2 ∣ v1 ∈ V1, v2 ∈ V2} and their intersection are again subspaces of V.

Exercise 1.4.14 (Modular law for subspaces). Let V be a vector space over
a field K. Let V1, V2,U be subspaces of V such that V1 ⊆ U. Then

(V1 + V2) ∩U = (V1 ∩U) + (V2 ∩U).
Exercise 1.4.15. Show that all vector spaces over the same field of the same

dimension are isomorphic.

Exercise 1.4.16. Show that if a field K has q elements, then a vector space
over K of dimension n has qn elements.

A linear algebra R over an associative and commutative ring K is a ring
with one unary operation α⋅ for each α ∈K, satisfying the following axioms:

(a) α(x + y) = αx +αy,
(b) (α + β)x = αx + βx,
(c) (αβ)x = α(βx), and
(d) x(αy) = (αx)y = α(xy)
for every α,β ∈K and x, y ∈ R.

If K has an identity element, then we assume, in addition, that 1x = x.
An associative algebra R over an associative and commutative ring K is a

linear algebra over K where the product is associative.
As in the case of groups, there are several important derived operations in

rings and algebras. For example, for every two elements of a ring, one can define
their commutator (a, b) = ab− ba. If we consider an associative ring as universal
algebra with operations of addition and commutator, we obtain a Lie ring. In
fact by the famous Poincaré–Birkhoff–Witt theorem [162] one can define Lie
rings as subalgebras of associative rings with operations of addition, subtraction,
and commutator.

Exercise 1.4.17. Show that in every associative ring the commutator sat-
isfies the following properties (compare with Exercise 1.4.1):

● (a + b, c) = (a, c) + (b, c);
● (a, b) = −(b, a);
● ((a, b), c) + ((b, c), a) + ((c, a), b) = 0 (the Jacobi identity).

Exercise 1.4.18. Let K be a field of characteristic p > 0, A be an associative
algebra over K, a, b be commuting elements of A. Use Exercise 1.1.3 to show
that (a + b)p = ap + bp.
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1.4.1.4. Congruences in groups, rings and vector spaces. For several classical
types of algebras each congruence is completely determined by one congruence
class. Such are groups, rings and vector spaces.

Let σ be a congruence on a group (resp. ring) A. Let N be the class con-
taining 1 (resp. 0). Show that N is a subgroup (resp. subring) such that for
every x ∈ N , a ∈ A, a−1xa ∈ N (resp. ax,xa ∈ N). Such a subgroup is called a
normal subgroup (resp. ideal) of A.

Exercise 1.4.19. Show that, conversely, for every normal subgroup (resp.
ideal) N of A there exists a unique congruence σ on A such that the class of σ
containing 1 (resp. 0) is N.

In this case we write A/N instead of A/σ, and say that A is an extension
of N by A/N. If σ is the kernel of some homomorphism φ, then we also call N
the kernel of φ. If two elements a, b of a group (resp. ring) A are in the same
congruence class of σ (i.e., their images in A/σ are equal), then we say that a = b
modulo N and write a ≡ b (mod N).

Exercise 1.4.20. Prove that this is the case if and only if aN = bN (resp.
a+N = b+N). Moreover, the congruence classes in this case are all of the form
aN (resp. a +N), a ∈ A

The sets aN (resp. a +N) are called cosets of N. The number of cosets is
called the index of N . If the index is finite, we say that N is of finite index in
A.

Exercise 1.4.21. Show that for every vector space V , every congruence is
uniquely determined by the congruence class N containing 0.

The quotient space is denoted by V /N. We say that a set of elements S is
linearly independent modulo N if their images in V /N are linearly independent.

Exercise 1.4.22. Give examples of congruences on semigroups that are not
uniquely determined by any of its congruence classes. Is every congruence on
every inverse semigroup determined by any of its congruence classes?

1.4.1.5. Algebras of transformations. The important classes of algebras con-
sidered above were defined syntactically. But in fact most of these classes can
be also defined semantically as algebras of certain transformations. The next
exercise gives some examples.

Exercise 1.4.23. (1) Prove Cayley’s theorem (see [144]): every group is
isomorphic to a group of some permutations of a set (i.e., a subgroup of
the group of all permutations of the set). Hint: Every element g of a
group G gives rise to a permutation of G: x↦ gx.

(2) Prove that every semigroup (monoid) is isomorphic to a semigroup (mo-
noid) of some not necessarily injective transformations of a set (see [69,
Volume 1]) Hint: Embed S into a monoid (denoted S1) by adding a
formal identity element. Then every g ∈ S induces a transformation x ↦

gx of S1.
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(3) Prove the Wagner-Preston’s theorem (see [69, Volume 1]) that every in-
verse semigroup is isomorphic to a semigroup of bijections between some
subsets of a set: the multiplication is composition of (partial) maps, the
operation −1 sends each bijection to its inverse. Hint: Every element g of
an inverse semigroup S induces a map from g−1gS to gg−1S: φg ∶x ↦ gx

(use the fact that by definition of inverse semigroups gS = gg−1S). The
map φg is a bijection and φgh is a composition of φg and φh. Show that
for different elements g,h the maps φg, φh are different.

(4) Prove that every associative ring is isomorphic to a ring of some endomor-
phisms, i.e., homomorphisms into itself, of some commutative group with
natural operation of addition (f +g)(x) = f(x)+g(x) and composition of
maps as multiplication, see [27]. Hint: Embed the ring R into a ring R1

with an identity element. Every element g ∈ R induces an endomorphism
of the additive group of R1: x↦ gx.

(5) Prove that every associative algebra over a field is isomorphic to the
algebra of some endomorphisms (called linear operators) of a vector space
over the same field, see [27]. Hint: The same proof as in Part (4).

1.4.2. Free algebras in varieties. If we fix a type τ , the names of op-
erations, f1, . . . , fr, and a set of variables X, then the set FX of all terms of
this type containing these variables can be turned into an algebra of type τ : the
operation fi of arity ni applied to a vector of terms (g1, . . . , gni

) gives the term
fi(g1, . . . , gni

). This is the absolutely free algebra of type τ over the set X of free
generators. Being free over X in a given class K of algebras means that:

● FX = FX(K) belongs to K,
● FX is generated by X and
● every map φ from X into any algebra A ∈ K is uniquely extendable to

a homomorphism φ̄ from FX into A.

The following theorem is a fundamental (but not difficult) result about va-
rieties of algebras.

Theorem 1.4.24 (See Mal’cev [218]). Every variety contains a free alge-
bra over any set X. The free algebra is determined up to isomorphism by the
cardinality of X.

Free algebras in a variety are called relatively free. If F is a relatively free
algebra over X, then X is called a set of free generators of F and the cardinality
of X is called the rank of F.

Relatively free algebras can be described without reference to varieties (see
[218]).

Theorem 1.4.25. An algebra F generated by a set X is relatively free with
a set of free generators X if and only if every map X → F extends to a homo-
morphism F → F .

If F is a relatively free algebra in a variety V with the set of free generators
X and A is an algebra in the same variety, then any map φ ∶ X → A is called a
substitution. If φ(X) generates A, then every element a of A has a pre-image
f ∈ F under φ̄, and we say that f represents a in A.
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Exercise 1.4.26. Suppose that F is a relatively free algebra in a variety V
with free generating set {x1, . . . , xm}, and the equality

R1(x1, . . . , xm) = R2(x1, . . . xm)
is true in F where R1,R2 are terms of the signature of V. Prove that R1 = R2 is
an identity of V.

1.4.3. The Garrett Birkhoff theorem. Any variety is clearly closed un-
der taking subalgebras, homomorphic images and Cartesian products. The con-
verse also holds:

Theorem 1.4.27 (Garrett Birkhoff [218]). Any class of algebras closed under
taking subalgebras, homomorphic images and Cartesian products is a variety.

Thus varieties may be defined in a “syntactic” way (by identities) and in
a “semantic” way (as classes closed under these three most popular algebraic
constructions).

A similar situation may be found in other parts of mathematics. For ex-
ample, a manifold can be defined (“syntactically”) by equations and (“semanti-
cally”) as a locally Euclidean topological space.

The fact that a manifold is locally Euclidean means that if we are on this
manifold, and cannot go very far (or if we can not memorize big volumes of data),
then we won’t be able to distinguish the manifold from the ordinary Euclidean
space.

The fact that a variety of universal algebras is closed under the three con-
structions means that we can “live” inside a variety, use these constructions and
never need any algebras outside the variety.

If T is a class of universal algebras of the same type, then the variety gen-
erated by T , varT is the intersection of all varieties containing T. Equivalently,
varT is the variety given by all identities that hold in all algebras of T.

Let T be a class of universal algebras. Then H(T ) (resp. S(T ), P (T ))
denotes the class of homomorphic images (resp. subalgebras, Cartesian prod-
ucts) of algebras from T. It is not difficult to deduce from Theorem 1.4.27 the
following formula (due to Garrett Birkhoff) (see [218]):

(1.4.1) varT =HSP (T ).
Exercise 1.4.28. Prove (1.4.1). Hint: Prove that for every class U , we

have
SH(U) ⊆HS(U), PH(U) ⊆HP (U), PS(U) ⊆ SP (U),
HH(U) ⊆H(U), SS(U) ⊆ S(U), PP (U) ⊆ P (U).

Note that all classes of algebras from Section 1.4.1.3 are varieties except for
the class of all fields: it is not closed under Cartesian products.

1.4.4. Relatively free algebras may not know their ranks. The

Jónsson–algebras. Consider the signature consisting of one binary operation
⋅ and two unary operations α,β. The variety J is given by three identities
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α(a ⋅ b) = a,β(a ⋅ b) = b,α(a) ⋅ β(a) = a.
An example of algebra from this variety can be constructed as follows. Con-

sider any countable setX. ThenX×X is also countable, so there exists a bijection
f ∶X ×X → X. Now let us define x ⋅ y = f(x, y), and define α(x) and β(x) as
the first and the second coordinates of the pair f−1(x) respectively. Clearly the
algebra we obtain this way belongs to J . Conversely, for every algebra A in J
we can define a bijection between A × A and A by f(a, b) = a ⋅ b. Hence every
algebra in J is either trivial or infinite.

The variety J is called the Jónsson–Tarski variety, it also satisfies the fol-
lowing remarkable property [163].

Theorem 1.4.29. All finitely generated relatively free algebras in J with
more than one element are isomorphic.

Nevertheless this “pathology” does not happen in any “natural” variety be-
cause of another theorem from [163].

Theorem 1.4.30. Let V be a variety of universal algebras that contains a
finite nontrivial algebra. Then every relatively free algebra with k ≥ 0 free gen-
erators cannot be generated by fewer than k elements.

Proof. Indeed, let B be a nontrivial finite algebra in V, and let A be a rela-
tively free algebra in V with a finite set X of free generators. Then, by definition
of relatively free algebras, every map X → B extends to a homomorphism from
A to B. Since all these homomorphisms are different (their restrictions to X are

different), there are exactly ∣B∣∣X ∣ homomorphisms from A onto B by Exercise
1.1.1. If A can be generated by a set Y with fewer than ∣X ∣ elements, then the

number of homomorphisms from A to B is at most ∣B∣∣Y ∣ (every homomorphism
from A to B is uniquely determined by its restriction to Y ), a contradiction. �

Theorem 1.4.30 applies to all varieties considered later in this book: semi-
groups, inverse semigroups, rings and groups.

1.4.5. Locally finite varieties.

Theorem 1.4.31. Let C be a class of algebras with finitely many operations.
Then the following conditions are equivalent.

(1) Every finitely generated algebra in varC is finite, in other words, every
algebra in varC is locally finite.

(2) For every natural number m there exists a number n = n(m) such that
the order (i.e., the number of elements) of every m-generated subalgebra
of any algebra from C does not exceed n.

The second condition means that the orders of all m-generated subalgebras
of algebras from C are bounded from above.

Exercise 1.4.32. (a) Prove that the class of all finite semigroups does not
satisfy condition (2) of Theorem 1.4.31, but any class consisting of finite number
of finite algebras satisfies this condition.
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(b) Give an example of a class C consisting of one infinite algebra that
satisfies condition (2).

Proof of Theorem 1.4.31. (1)→ (2). Suppose that every finitely gener-
ated algebra in varC is finite. Let us take any number m and any m-generated
subalgebra S = ⟨X⟩ of an algebra from C. Since every variety is closed under
taking subalgebras, S ∈ varC. By Theorem 1.4.24, varC contains relatively free
algebras with any number of generators. Let us take the relatively free algebra
Fm with m generators. We may suppose that Fm is generated by the same set
X. Since every finitely generated algebra in varC is finite, Fm is finite. Let n be
the number of elements in Fm. We know that every relatively free algebra is free
“outside”, that is every map from the set of generators X to any other algebra A
in the variety varC is extendable to a homomorphism Fm → A. Therefore there
exists a homomorphism φ ∶ Fm → S that is identical on X. The image of this
homomorphism is a subalgebra of S. It contains the set of generators X, hence
it contains all elements of S. Therefore S is an image of Fm, so the number of
elements in S does not exceed n (the number of elements in Fm).(2) → (1). Suppose that for every m we have found a number n such that
the order of any m-generated subalgebra of any algebra in C does not exceed
n. We have to prove that every finitely generated algebra in varC is finite. Let
S be an m-generated algebra in varC. By formula (1.4.1) S is a homomorphic
image of a subalgebra T of a Cartesian product ∏iAi of algebras from C.

Suppose S is infinite. Then T is also infinite. Notice that we may assume
that T is also m-generated. Indeed, we can take a pre-image of each generator or
S in T , and generate a subalgebra by these preimages; S will be a homomorphic
image of this subalgebra.

Recall that the Cartesian product ∏iAi consists of vectors whose i-th co-
ordinate is from Ai. The projection πi of the Cartesian product onto Ai is a
homomorphism. πi(T ) is generated by m elements (images of generators of
T ). Therefore the order of πi(T ) does not exceed some number n = n(m) (all
algebras Ai are from C).

There exists only finitely many algebras of order ≤ n (we have only finitely
many operations, each of them is defined by the “multiplication table” and there
are only finitely many “multiplication tables”).

Thus there exist only finitely many images πi(T ).
For every finite algebra A there exist only finitely many homomorphisms

from T to A. Indeed, each homomorphism is determined by the images of gen-
erators of T , we have finitely many generators and A is also finite.

Therefore the number of different kernels of homomorphisms πi in T is finite.
Recall that the kernel of a homomorphism is the partition of T , which glues
together elements that go to the same place under this homomorphism. Each
of these partitions has only finitely many classes. Since T is infinite, there exist
two different elements t1 and t2 in T , which belong to the same class of each of
these kernels. Thus πi(t1) = πi(t2) for every i. Therefore these two vectors have
the same coordinates. This means that they are equal, a contradiction. �
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An important case, when Theorem 1.4.31 trivially applies, is when C con-
sists of one finite algebra. In this case we say that the variety varC is finitely
generated. The case when C consists of finitely many finite algebras A1, . . . ,An

is not more general because then varC = var(A1 × . . . ×An).
1.4.6. The Burnside problem for varieties of algebras. For every

class of algebras one can ask the question first asked in 1902 by Burnside [61] for
groups where the orders of all subgroups generated by one element are bounded:
Is every algebra in that class locally finite? That question is sometimes formu-
lated in a more philosophical (and less precise) way: What makes an algebra in
this class finite? For some classes of algebras, this question is easy, for others
it is very complicated, but this question is always in the center of attention for
any class of algebras, basically because generally finite algebras are much easier
than infinite. Among various classes of algebras where the Burnside question
was studied, varieties are of particular interest. The original (bounded) Burn-
side problem solved by Novikov and Adian [3] is about the variety of groups Bn

given by one identity xn = 1.

1.4.7. Finitely based finite algebras. One of the most important prop-
erties of a variety is being finitely based, that is, being given by a finite number
of identities. We say that an algebra is finitely based if the variety it generates
is finitely based.

For each of the types of algebras above, it is known that “most” varieties
are not finitely based. Still there are important classes of varieties consisting of
finitely based varieties. Here are some of the results. We will talk more about
some of them later.

Theorem 1.4.33 (Oates and Powell [252, 248], Kruse [188], L’vov [208]).
Every finite group (finite associative ring) is finitely based.

Note that the proofs of Theorem 1.4.33 in cases of groups and associative
rings (and also in the case of finite Lie rings [20] not discussed in this book) are
very similar. Thus we shall present (in Section 4.5.2) only the proof for rings,
which is easier. All proofs are based on the following universal algebra idea used
first by Oates and Powell.

We call an algebra D a divisor of an algebra A if D is a homomorphic image
of a subalgebra B of A. The divisor D is said to be proper if either B is a proper
subalgebra of A (that is, B ≠ A) or the homomorphism of B onto D is not an
isomorphism. A finite algebra A is called critical if A does not belong to the
variety generated by all of its proper divisors.

Lemma 1.4.34. Every locally finite variety of algebras is generated by its
critical algebras.

Proof. Let V be a locally finite variety and let V ′ be the variety generated
by all critical algebras in V. Assume that V ′ ⫋ V. Then there exists an identity
t1 = t2 that holds in V ′ but fails in some algebra A ∈ V. If n is the number of
variables in the terms t1 and t2, then the identity t1 = t2 fails already in some
n-generated subalgebra B of the algebra A. Since V is locally finite, B is finite,
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and we conclude that there exists a finite algebra in V but not in V ′, i.e., inV ∖ V ′.
Now let C be an algebra with the smallest number of elements from V ∖V ′.

Then every proper divisor of C must lie in V ′ hence C does not belong to the
variety generated by all of its proper divisors. We see that C is critical. But
then C must belong to V ′ by the definition of V ′, a contradiction. �

A variety V is said to be a Cross variety if it has the following three proper-
ties:

(a) V is locally finite;
(b) V is finitely based;
(c) V has only finitely many critical algebras.

Proposition 1.4.35. Every Cross variety has only finitely many subvarieties
and each of them is a Cross variety.

Proof. Let V be a Cross variety. The fact that V has only finitely many
subvarieties immediately follows from the property (c) in the definition of a
Cross variety and from Lemma 1.4.34. In order to show that every subvarietyW ⊆ V is itself a Cross variety, it suffices to verify that W is finitely based
as the properties (a) and (c) are clearly inherited by subvarieties. If W = V,
there is nothing to prove; otherwise by Lemma 1.4.34 and property (c) there is
a maximal finite decreasing chain of subvarieties

(1.4.2) V = V0 ⫌ V1 ⫌ ⋅ ⋅ ⋅ ⫌ Vn =W
between V and W. We show that Vi is finitely based by induction. By Property
(b), the claim holds for i = 0. Now suppose that i > 0 and Vi−1 has a finite basis
of identities Σ. Take any identity σi that holds in Vi but fails in Vi−1. Then the
system of identities Σ ∪ {σi} defines a variety that contains Vi and is strictly
contained in Vi−1 (why?). From the maximality of the chain (1.4.2) there is no
variety strictly between Vi−1 and Vi hence Σ ∪ {σi} must define Vi. Thus Vi is
also finitely based. �

Now we can state the results by Oates–Powell, Kruse and L’vov more pre-
cisely:

Theorem 1.4.36. Every finite group (finite ring) generates a Cross variety.

Note that semigroups, monoids and inverse semigroups are missing from
Theorems 1.4.33, 1.4.36. That is because for this types of algebras the theorem
fails dramatically (see Sections 3.6).

Note also that by the celebrated theorem of McKenzie [225] (solving a well-
known Tarski problem) the class of finite universal algebras with one binary
operation that generate finitely based varieties is not recursive, i.e., there is
no algorithm,3 which recognizes if a finite universal algebra generates a finitely
based variety.

3We do not give a definition of algorithm because everybody knows what it is, but nobody
can define it precisely.
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1.4.8. Inherently non-finitely based finite algebras: the link be-

tween finite and infinite. A locally finite variety of algebras V is called inher-
ently non-finitely based if every locally finite variety containing V is not finitely
based. In other words, V is inherently non-finitely based if for every finite set Σ
of identities of V the Burnside question for var Σ has negative answer: var Σ con-
tains finitely generated infinite algebras. If A is a finite algebra, then A is called
inherently non-finitely based if varA is inherently non-finitely based. If a finite
algebra B is such that A ∈ varB (say if A is a subalgebra or a homomorphic im-
age of B) and A is inherently non-finitely based, then so is B. Thus finding one
inherently non-finitely based finite algebra gives many finite algebras without
finite bases of identities (and generating different varieties) and also gives many
finitely based varieties where the Burnside question has a negative answer.

A connection between inherently non-finitely based algebras and the Burn-
side question is more apparent in this theorem.

Theorem 1.4.37. A locally finite variety V with finite number of operations
is inherently non-finitely based if and only if there exists a sequence of finitely
generated infinite algebras An, n ≥ 1 such that every n-generated subalgebra in
An belongs to V (and hence is finite).

Proof. Indeed, suppose that V is inherently non-finitely based. Consider
the relatively free algebra Fn in V. It is finite by our assumption. Let f1, . . . , fm

be all elements in Fn represented by some terms in the generators x1, . . . , xn

of Fn. The algebra Fn is completely determined by its “multiplication tables”.
Each entry of the table corresponding to an operation γ looks like

γ(fi1
, . . .) = fj.

We can rewrite each of these equalities in terms of x1, . . . , xn, obtaining a rela-
tion w = w′. Let us denote by Σ the finite set of these relations. By Exercise
1.4.26 each relation from Σ is an identity in V. Let W be the variety given
by identities Σ. Since V is inherently non-finitely based and Σ is finite, W con-
tains a finitely generated infinite algebra An. Since every n-generated subalgebra
A′ = ⟨a1, . . . , an ⟩ of An satisfies all the identities from Σ, it satisfies all the re-
lations from the “multiplication tables” of Fn (with xi replaced by ai). Hence
A′ is a homomorphic image of Fn (the map xi ↦ ai, i = 1, . . . , n, extends to a
homomorphism), and hence is finite and belongs to V.

Conversely, suppose that a sequence of algebras An, n ≥ 1, as in the formu-
lation of the theorem has been found. Consider any varietyW containing V and
given by identities in at most n variables Σ. Since every n-generated subalgebra
A′ of An belongs to V, A′ satisfies Σ. That means that An satisfies Σ as well
(every substitution of elements of An for variables of Σ maps the variables inside
one of these A′). Hence An ∈W, and W is not locally finite. �

Thus having a finite inherently non-finitely based algebra of certain type
implies that we can construct a sequence of infinite finitely generated algebras
of that type, which give stronger and stronger negative answers to the Burnside
question: these algebras, while all infinite, become more and more finite.
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It turned out [243, 267, 228] that many finite algebras are inherently non-
finitely based, and in fact the set of all finite inherently non-finitely based finite
algebras (even with one binary operation) is not recursive [225]. Here is a
relatively easy example.

Definition 1.4.38 (Shallon [290]). Let G = (V,E) be a (directed) graph.
The graph algebra A(G) is the algebra with the set of elements V ∪{∞} and one
binary operation

x ⋅ y = { x if (x, y) ∈ E,
∞ otherwise.

0 1M :

0

1

2

T : 0 1 2L3:

0 1 2 3P4:

Figure 1.4. Four graphs

A complete description of inherently non-finitely based finite graph algebras
is given by the following theorem.

Theorem 1.4.39 (Baker, McNulty, Werner [18]). For every finite graph G

the following conditions are equivalent.

(1) A(G) is not finitely based.
(2) A(G) is inherently non-finitely based.
(3) G contains one of the graphs shown on Figure 1.4 as an induced subgraph.

We are not going to give a full proof of Theorem 1.4.39, but we shall prove
the implication (3) → (2) by showing that the graph algebras corresponding to
graphs in Figure 1.4 are inherently non-finitely based. Note that algebra M first
appeared in the paper [242], where the fact that it is not finitely based was
proved. This algebra has 3 elements, which is the smallest number of elements
in any non-finitely based finite algebra by a result of Lyndon [209].

Implication (3) → (2) is a corollary of the following general theorem. The
theorem connects the finite basis question with some properties of subshifts.

Let B be a finite algebra. The infinite Cartesian power BZ consists of bi-
infinite words over B with coordinate-wise product. Let T be the map that
shifts each bi-infinite word one letter to the right (in Section 1.6.2 we shall call
the pair (BZ, T ) a full shift). By the HSP theorem, BZ belongs to varB.

Theorem 1.4.40 (Baker, McNulty, Werner [19]). Let B be a finite algebra
with one binary operation and zero denoted by ∞. Suppose that there exists a
bi-infinite word α of non-zero elements of B such that
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(a) in BZ, the product of any two shifts of α, T n(α) ⋅Tm(α), is either a shift
T i(α) of α or a bi-infinite word containing ∞.

(b) there are only finitely many m,n ∈ Z such that α ⋅ Tm(α) = T n(α) or
Tm(α) ⋅ α = T n(α).

(c) there exists t such that α ⋅ T t(α) = T (α) or T t(α) ⋅ α = T (α).
Then B is inherently non-finitely based.

Proof. Consider the subalgebra U of BZ generated by all shifts T i(α),
i ∈ Z. There is a congruence ∼ on U with one class consisting of all bi-infinite
words containing ∞ and all other classes singletons (in the case of semigroups
we shall call such congruences the Rees congruences corresponding to an ideal).
The quotient V = U/∼ clearly belongs to varB. Its elements, by (a), are all shifts
T i(α), i ∈ Z, and symbol ∞̂ that denotes the ∼-class consisting of bi-infinite
words containing the letter ∞. The map T induces an automorphism of V (the
shift), which we shall also denote T. Note that T has exactly two orbits, {∞̂}
and the rest of V. For every k ≥ 1, the map T k has exactly k + 1 orbits.

Note that (b), (c) imply that α is not periodic, i.e., T k(α) ≠ α for any k > 0.
Indeed, suppose that T k(α) = α for some k > 0. By (c), we have that for some t
one of the two equalities from (c) hold. Suppose that the first equality holds (the
other case is very similar): α ⋅ T t(α) = T (α). Then Tm(α) ⋅ Tm+t(α) = Tm+1(α)
for every m. Taking m = kℓ for any ℓ, we get (since T is an automorphism)
T kℓ(α) ⋅T kℓ+t(α) = T kℓ+1(α) or α ⋅T kℓ+t(α) = T (α) for every ℓ, which contradicts
(b).

We will use the following easy observation several times. Let q be the max-
imal number that appears in (b).

Remark 1.4.41. Note that if k is bigger than q, then T s(α)T t(α) = ∞̂ in V
whenever ∣t − s∣ ≥ k.

Let Z be the semigroup of all integers with operation m∗n =max(m,n). It
has the automorphism τ ∶ i↦ i − 1. We construct two algebras W1 and W2.

The algebra W1 consists of all pairs (a, b) where a ∈ V ∖ {∞̂}, b ∈ Z and
the symbol ∞1 (which will play the role of zero). The product is (a, b)(a′, b′) is(aa′, b∗b′) if aa′ ≠ ∞̂ and∞1 otherwise. (This construction is called the 0-direct
product of V and Z.)

Exercise 1.4.42. Prove that the algebra W1 belongs to varB.Hint: Indeed,
let u = v be any identity of B. Prove that if the identity u = v is normal (i.e., u
and v contain the same letters) then u = v holds on Z, and so it holds on W1,
which is a homomorphic image of BZ ×Z. If u = v is not normal, and, say, letter
x appears in u but not in v, set x = ∞1 and deduce that identities v =∞1 and
u = ∞1 both hold in B. Then both u = ∞1 and v = ∞1 hold identically in W1,
hence, again, W1 satisfies u = v.

Now take a “very large” integer k. It will be clear how large k should be,
but we certainly assume that k is bigger than 2q.

The algebra W2 consists of orbits of the automorphism (T k, τ) on the set(V ∖{∞̂})×Z, and symbol∞2 (which plays the role of zero), with multiplication
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of orbits defined by

O1 ⋅O2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
O3, if O1 contains a pair (a, b),O2 contains a pair (c, d)

such that (ac, b ∗ d) ∈ O3,

∞2, otherwise.

Note that the partition into orbits of (T k, τ) is not a congruence on V so the
following exercise is not quite trivial.

Exercise 1.4.43. Check that the operation on W2 is well defined that is the
product O1O2 is uniquely determined by O1,O2. Hint: This is one of the places
in the proof where Remark 1.4.41 is used.

We claim that
(1) The algebra W2 is not locally finite.
(2) If ℓ is much less than k, then every ℓ-generated subalgebra in W2 is a

quotient of a subalgebra of W1 and so it belongs to varB by Exercise 1.4.42.
By Theorem 1.4.37, this would imply that B is inherently non-finitely based.
To show (1), let β = T k(α), γ = T t(α). Since αγ = T (α) (the case γα = T (α)

is similar) in V by (c), we have

(. . . (βT k(γ))T k+1(γ) . . .)T 2k−1(γ) = (. . . (T k(α)T k(γ))T k+1(γ) . . .)T 2k−1(γ)
= (. . . (T k+1(α)T k+1(γ)) . . .)T 2k−1(γ)
= . . .(1.4.3)

= T 2k(α)
= T k(β).

Remark 1.4.44. If in (1.4.3) we replace β by the pair (β, i) (for some i ≥
0),and we replace each T j(γ) by (T j(γ),0), then the result will be the pair(T k(β), i), since 0 ∗ i = i = i ∗ 0 in Z.

Consider the subalgebra Q of W2 generated by the elements (orbits)

(β,0), (T k(γ),0), (T k+1(γ),0) . . . , (T 2k−1(γ),0).
By Remark 1.4.44, Q contains (T k(β),0) = (β,1). Applying Remark 1.4.44 for

i = 1, we conclude that Q also contains (T k(β),1) = (β,2). Continuing in that

manner, we obtain that Q contains all the elements (β, s) = (T ks(β),0), s ≥ 0.
All these elements are different (prove it using the fact that α is not a periodic
word!), hence Q is infinite and finitely generated, and W2 is not locally finite.
This proves Claim (1).

To prove Claim (2), pick any natural number ℓ that is much less than k, and

take ℓ elements (T ij(α),0), j = 1, . . . , ℓ (note that every element of W2 is of that
form or is equal to ∞2).

Let D be the union of orbits of elements T ij(α), j = 1, . . . , ℓ, in V under the
automorphism T k, i.e., the set of all elements of the form T ij+ks(α), j = 1, . . . , ℓ,
s ∈ Z. Let S be the subalgebra of V generated by D. Let L be the maximal size
of an ℓ-generated subalgebra in V.
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Let φ be the map S ∖ {∞̂} → Z that takes T t(α) to t. Then φ is injective
since α is not periodic. Also φ(D) is a union of ℓ arithmetic progressions with
step k (and k is much bigger than ℓ).

By (b), if δ1, δ2 ∈ S and δ3 = δ1δ2 ≠ ∞̂, then ∣φ(δi) − φ(δj)∣ ≤ q, i, j = 1,2,3.
Therefore for every product ρ ≠ ∞̂ of at most L elements of D, involving δ ∈ D,
φ(ρ) is at distance at most qL from φ(δ). Thus the set of all these numbers φ(ω)
is contained in the interval Iδ = [φ(δ) − qL,φ(δ) + qL]. Moreover all elements
δ′ ∈D that can be involved in the products representing elements from φ−1(Iδ)∩S
are themselves in φ−1(Iδ). Since we can assume that k > 2qL+ 1 (the number of
integers in the interval Iδ), each orbit of T k from D intersects φ−1(Iδ) at most
once. Thus φ−1(Iδ)∩S is contained in a subalgebra of V generated by at most ℓ
elements. By the definition of L, then Sδ = (φ−1(Iδ) ∩ S) ∪ {∞̂} is a subalgebra
of V generated by at most ℓ elements.

If δ and δ′ belong to the same orbit of T k, then Sδ′ ∖ {∞̂} is obtained from
Sδ∖{∞̂} by applying T ks for some s (why?). If ǫ ∈ Sδ, ǫ′ ∈ Sδ′ then either ǫǫ′ = ∞̂
or ǫǫ′ ∈ Sδ∩Sδ′ (because both δ and δ′ are involved in products representing ǫǫ′).
Therefore S is the union of all Sδ.

Consider the map ψ from Z to the cyclic group Ck of integers modulo k,
which takes any number z to z mod k. Then ψ(φ(S)) is contained in the union
of at most ℓ intervals of natural numbers from [0, k−1] of length at most 2wq+1.
Since we can assume that k > (2wq + 1)ℓ, there exists a natural number i ≤ k − 1
that does not belong to any of these intervals. Consider then the interval of
natural numbers I = [i, i + k − 1]. We have that

● S0 = (φ−1(I) ∩ S) ∪ {∞̂} is a union of several subalgebras Sδ,
● S0 is a subalgebra of S,
● S is a union of T ks(S0), s ∈ Z (setting T (∞̂) = ∞̂) and

● the product of an element from T ks(S0) and an element from T ks′(S0),
s ≠ s′, is ∞̂.

Exercise 1.4.45. Prove these properties.

Consider (S0∖{∞̂})×Z ⊆W1. The image in W2 of (S0∖{∞̂})×Z under the

map χ∶ (γ, i) ↦ (γ, i) coincides with the image of (S ∖{∞̂})×Z under χ (why?).

Exercise 1.4.46. Prove that the set S′0 = ((S0 ∖ {∞̂}) × Z) ∪ {∞1} is a
subalgebra of W1. Show that if we set χ(∞1) =∞2, the map χ∶S′0 →W2 becomes
a homomorphism and the image of χ is finite. Hint: The only thing to be
checked is that if the product of two sequences µ = T i(α), ν = T j(α) in S0∖{∞̂}
is ∞̂, then the same is true for any shifts of µ, ν by powers of T k (so the product
of the corresponding orbits from W2 is ∞2). But that follows from the fact that∣i − j∣ is much smaller than k.

The set ((S0 ∖ {∞̂}) × {0}) ∪ {∞1} is a subalgebra of S′0 ⊆ W1 that is iso-
morphic to S0 (why?). The image of this subalgebra contains the elements

(T ij(α),0), j = 1, . . . , ℓ, so the subalgebra generated by these elements is a quo-
tient of a subalgebra of W1 and belongs to varB, as desired. �
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Now in order to prove that graph algebras corresponding to graphs on Figure
1.4 are inherently non-finitely based, it is enough to find a bi-infinite word α

for each of these algebras satisfying the three conditions of Theorem 1.4.40 (see
[19]).

Exercise 1.4.47. For each of the algebras corresponding to the graphs on
Figure 1.4 check that the following bi-infinite word satisfies the conditions of
Theorem 1.4.40.

● For graph T , α = . . . 020210202 . . . .
● For graph M , α = . . . 111101011011101111 . . . .
● For graph P4, α = . . . 01012323 . . . .
● For graph L3, α = . . . 0001222 . . . .

1.5. Growth of algebras

Let W be an infinite algebra generated by a finite set X. The growth function
of W provides a way of measuring the infiniteness of W. It can be defined as
follows. Every element of W can be represented as the value of some term in X.
Say, in the case of groups or semigroups, the term is a word in the alphabet X,
and in the case of associative algebras over a field K terms are non-commutative
polynomials in X (i.e., formal linear combinations ∑kiui of words ui in the
alphabet X with coefficients ki from K). With each term we assign its degree,
which in the case of semigroups or groups is simply the length of the word, in
the case of associative algebras is the length of the longest word of the linear
combination. For other types of algebras the degree can be more complicated.
For every natural n consider the set Bn of elements of W of degree at most
n. In the case of semigroups or groups it is a finite set, in the case of algebras
over a field, Bn is a finite dimensional subspace. In these and many other cases,
we can talk about the size of Bn: in the case of groups and semigroups the
size is the number of elements, in the case of associative algebras over fields
it is the dimension of the subspace. Thus we have a function fX from the set
of natural numbers to itself sending each n to the size of Bn. It is the growth
function of W with respect to the generating set X, one of the main numerical
invariants of an algebra. For “finite” algebras (we put “finite” in quotation marks
because it includes here the case of finite dimensional associative algebras, for
example), the growth function with respect to any generating set is bounded
by a constant. For infinite algebras it is unbounded. Thus growth functions
distinguish finite from infinite, and allow one to talk about different grades of
infiniteness. Originally the first growth functions were investigated by Schwartz
in the case of groups [310]. He noticed that if M is a compact Riemannian
manifold and M̄ is its universal cover, then the volume growth function of M̄ is
equivalent to the growth function of the fundamental group of M (see Section
5.5.1.1) with respect to some (hence any) finite generating set. Here the volume
growth for M̄ is defined as the function that sends every natural number to the
volume of the ball of radius n around some fixed point of M̄. Two functions
f, g∶N → N are called equivalent if for some constant C > 1 and every sufficiently
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large n ∈ N we have
1

C
f ( n

C
) ≤ g(n) ≤ Cf(Cn).

(For example, every two exponential functions an, a > 1, are equivalent, any
polynomial function akn

k + ⋅ ⋅ ⋅ + a0 with real coefficients, ak > 0, is equivalent to
nk, etc.)

Exercise 1.5.1. Show that for any finitely generated group (semigroup,
linear algebra) the growth functions with respect to any two finite generating
sets are equivalent.

It follows that for a compact manifold M the growth functions of its funda-
mental group with respect to any two finite generating sets are equivalent.

Together with the growth function fX it is natural to consider the spherical
growth function sX and the growth series. The function sX is defined by sX(n) =
fX(n) − fX(n− 1) for every n > 0 and sX(0) = 1 (thus in the case of semigroups
or groups, it is the number of elements of length n). The growth series is defined
by

PX(z) = ∞∑
n=0

sX(n)zn.

Similarly, one can define the growth function, the spherical growth function,
and growth series of any language. We shall see that analytic and algebraic prop-
erties of the function represented by that series reflect syntactic and semantic
properties of the algebra or the language (see Sections 1.8.9,5.9.2.3).

1.6. Symbolic Dynamics

1.6.1. Basic definitions 4. A topological dynamical system in general is a
compact topological space X with a semigroup S of continuous transformations
X → X.

Since we will study only concrete dynamical systems in this book, we do not
define “compact topological space” (and assume that the notion of “continuous
map” is known). The most popular semigroups are the infinite cyclic semigroup
N or the group of integers Z (the so-called discrete dynamical systems), the group
of reals R and the semigroup of positive reals (continuous dynamical systems).
The dynamical system is denoted by (X,S). If S = Z or S = N is generated by
one element T , then we write (X,T ) instead of (X, ⟨T ⟩).

For example, let M be a compact manifold without boundary (like a sphere
or a torus) and let F be a continuous tangent vector field on it. This vector
field determines a flow on M. For every point x in M and for every real number
r we can find the point αr(x) where x will be in r seconds if we start at the
point x. The transformations αr form a group isomorphic to the additive group
of real numbers (if some natural analytic conditions on M and F hold). This is
a typical continuous dynamical system. The transformations αn corresponding
to the integers form a discrete dynamical system.

4Warning: Some knowledge of elementary topology is required to read this subsection.
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If we take this discrete dynamical system, divide M into finite number of
parts as we did in Section 1.2.1, then with a discrete trajectory of a point x in
M we can associate a bi-infinite word of labels of regions, which are visited by
the point x in . . . ,−3,−2,−1,0,1,2, . . . seconds. The set of all these bi-infinite
words approximates the original dynamical system. This approximation is in
general better if the areas of the regions are smaller (this is similar to approxi-
mating solutions of differential equations). An important observation made first
probably by Hadamard, says that under some (not very restrictive) conditions
this set of words may be considered as a dynamical system itself.

One of the basic general results about (discrete) dynamical systems is the
following recurrence theorem (here we assume that the semigroup S is the group
Z).

Definition 1.6.1. Let (D,T ) be a dynamical system. Assume that T is
a bijection. A point x ∈ D is called uniformly recurrent (also called almost
periodic) if for every neighborhood U of x in D there exists a number N = N(U)
such that for every integer k one of the points

T k(x), T k+1(x), . . . , T k+N−1(x)
belongs to U.

Theorem 1.6.2 (George Birkhoff recurrence theorem [238, 117]). Every
discrete dynamical system (D,T ) contains a uniformly recurrent point.

Proof. Let (D,T ) be a dynamical system; that is, D is compact, and
T ∶D → D is a continuous bijection. Consider all subsystems (D′, T ) where
D′ is a closed subset of D stable under T,T −1. Since the intersection of any
decreasing sequence D1 ⊃D2 ⊃ . . . of subsystems is again a dynamical subsystem
of (D,T ), and D is compact, there exists a minimal (under inclusion) subsystem(D′, T ).5 We claim that every point x in D′ is uniformly recurrent. Let U be
a neighborhood of x in D′. Then V = ⋃i∈Z T

i(U) is an open subset of D′, and
T (V ) = T . Therefore D′ ∖ V is a closed subset and a subsystem of D′. By the
minimality of D′, D′∖V is empty. Hence D′ = V = ⋃i∈Z T

i(U). By compactness,
there exists L such that D′ ⊆ ⋃L

i=−L T
i(U). Let N = 2L+ 1. Then for every k ∈ Z

there exists j ∈ {−L, . . . ,L} such that T k+L(x) ∈ T j(U), hence T k+L−j(x) ∈ U as
required since k ≤ k +L − j ≤ k +N. �

1.6.2. Subshifts.

1.6.2.1. The definitions. Let A be a finite alphabet. Consider the set AZ of
all bi-infinite words in the alphabet A. If α ∈ AZ , and m ≤ n are integers, then
α(m,n) is the subword of α starting at the position number m and ending at the
position number n. One can define a distance function on AZ by the following
rule. Let α,β ∈ AZ . Let n be the largest number such that the word α(−n,n)
coincides with the word β(−n,n) (if the letters α(0,0) and β(0,0) are different,
set n = −1). Then the distance dist(α,β) between α and β is equal to 1

2n (in

5Note that we are using Zorn’s lemma here. The partially ordered set to which Zorn’s
lemma applied is the set of all subsystems of (D, T ), so that (D′, T ) ≤ (D′′, T ) if and only if
D′ ⊇D′′.
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particular, if α = β, then dist(α,β) = 1
2∞
= 0 as required by the definition of

metric).

Exercise 1.6.3. Prove that for every α ∈ AZ the open ball of radius ǫ > 0
around α, that is, the set B(α, ǫ) = {ω ∣ dist(ω,α) < ǫ} is equal to the closed
ball B̄(α, ǫ′) = {ω ∣ dist(ω,α) ≤ ǫ′} for some ǫ′ < ǫ. Hence every open ball of
AZ is closed. Show that if ǫ ≤ 1, then B̄(α, ǫ) consists of all bi-infinite words ω
such that ω(−n,n) = α(−n,n) where n = − ⌊log2⌋ where ⌊x⌋ denotes the biggest
integer not exceeding x.

This metric makes AZ a compact topological space (this is a standard ele-
mentary topology fact). Let T be a shift on AZ to the right, that is T (α)(i, i) =
α(i−1, i−1) for all i ∈ Z. It is easy to prove that T and T −1 are continuous maps
of AZ onto itself (prove it!).

Therefore (AZ , T ) is a dynamical system.

Definition 1.6.4. The system (AZ , T ) and all its subsystems (that is, closed
subsets of AZ which are stable under T,T −1) are called subshifts.

One can define subshifts without using any topology as follows:

Definition 1.6.5. A subset X of AZ is a subshift if

● T (X) =X and
● if ω ∈ AZ and all finite subwords of ω are subwords of some of the

bi-infinite words from X, then ω ∈ X.

Exercise 1.6.6 (Requires knowledge of some topology). Prove that Defini-
tions 1.6.4 and 1.6.5 are equivalent.

Thus a subshift (X,T ) is completely determined by the language L(X) of
(finite) words in the alphabet A of the subshiftX that do not appear as subwords
in the bi-infinite words from X, i.e., by the set of forbidden subwords. It is clear
that L(X) is an ideal of the free monoid A∗, that is a subsemigroup of A∗ such
that ab ∈ L(X) provided either a or b is in L(X) (prove that!).

If L(X) is finitely generated as an ideal, i.e., consists of a finite set of words
L0 and all words from A∗ containing words from L0, then (X,T ) is called a
subshift of finite type. Thus subshifts of finite type are determined by a finite
set of forbidden subwords L0. Note that in this case we can assume that all
words from L0 are of the same length. Indeed, if m is the maximal length of
words in L0, consider the set L′0 of all words of length m each of which contains
a subword from L0. Then the subshifts determined by L′0 and L0 coincide (prove
it!). If all words of the forbidden set L0 are of length m + 1, then the subshift
is called an m-step subshift. Note that every m-step subshift is also n-step for
every n ≥m (prove it!).

The subshift (AZ , T ) is called the full shift. Another concrete example is
the golden mean subshift F , the set of all bi-infinite words over A = {a, b} such
that every occurrence of b is followed by an occurrence of a (i.e., {bb} is the set
of forbidden subwords). Both the full shift and the golden mean subshift are
subshifts of finite type. The full shift is 0-step (one can even argue that it is
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−1-step), in fact every 0-step subshift is equal to the full shift over some alphabet
(prove it!). The golden mean subshift is a 1-step subshift (by definition).

1.6.2.2. The complexity function of a subshift. Let (X,T ) ⊆ (AZ , T ) be a
subshift. Let L be the language of all subwords of the bi-infinite words in X

and f(n) be the spherical growth function of that language (see Section 1.5).
Thus for every n, f(n) is the number of words of length n that are subwords
of the bi-infinite words from X. The function f ∶N → N is called the complexity
function of (X,T ).

Exercise 1.6.7. Show that the complexity function of the full shift (AZ , T )
is f(n) = ∣A∣n.

Exercise 1.6.8. Show that the complexity function f(n) of the golden mean
subshift F satisfies f(1) = 2, f(2) = 3, f(n + 1) = f(n) + f(n − 1), that is f(n)
is the n + 2nd Fibonacci number. Hint: Induction on n. Use the fact that that
every word of length n + 1 that appears as ω(i, n + i) for some ω ∈ F either
ends with a (and then ω(i, i + n − 1) can be arbitrary subword of length n in
a bi-infinite word from F) or ends with ab (and ω(i, i + n − 2) can be arbitrary
subword of length n − 1 in a bi-infinite word from F).

Exercise 1.6.9. Let u be a (finite) word in the alphabet {a, b}. Let Xu ⊂ AZ

be the u-periodic subshift, that is the set of all bi-infinite words ω in AZ such
that all finite subwords of ω are periodic with period u.

(1) The subshift Xu is finite (i.e., consists of finite number of bi-infinite
words).

(2) Show that the complexity function of any finite subshift is bounded from
above by a constant.

(3) Prove that every finite subshift is a subshift of finite type.

Exercise 1.6.10. Show that for every infinite subshift (X,TX), the com-
plexity function satisfies f(n) ≥ n + 1. Hint: If the alphabet contains only one
letter, the subshift is finite (consists of one element), so we can assume that the
alphabet contains more than one letter. Then f(1) ≥ 2. Clearly, f(n+ 1) ≥ f(n)
for all n. If f(n + 1) = f(n) for some n, then every subword of length n of a bi-
infinite word from the subshift uniquely determines the letter next to the right
of the subword. Show that then any bi-infinite word in the subshift is periodic
with period of length at most n + 1, and the subshift is finite (since there are
only finitely many words of length ≤ n + 1 over a finite alphabet).

1.6.2.3. Sturmian subshifts. The following example is a simple 1-dimensional
version of the real life example from Section 1.2.1. Consider the unit circle, that
is the interval [0,1] with 0 and 1 identified. Let α be an irrational number from
the interval (0,1). Subdivide the circle into two parts [0,1−α), [1−α,1). Label
the first part by N (Nebraska) and the second part by I (Iowa). Start with
any number t between 0 and 1. For every n ∈ Z record the label of the part
of the circle containing t + nα, we get a bi-infinite word ωt. The set of all such
bi-infinite words is a subshift (prove it!), which is called the Sturmian subshift
corresponding to the number α. The Sturmian subshifts (introduced by Morse
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and Hedlund [239]) have many remarkable properties and are very well studied
(see, for example, [207]).

Here is perhaps the main property of Sturmian subshifts: these subshifts
have the smallest complexity functions among infinite subshifts.

Theorem 1.6.11 (See [207], compare with Exercise 1.6.10). The complexity
function of every Sturmian subshift is f(n) = n + 1. Conversely, every subshift
with complexity function f(n) = n + 1 is a Sturmian subshift.

1.6.2.4. The entropy and the conjugacy problem for subshifts. A homomor-
phism between subshifts (X,TX) and (Y,TY ) is a continuous map φ∶X → Y ,
which commutes with T :

φ(TX(x)) = TY (φ(x)).
As with the definition of subshifts themselves, homomorphisms of subshifts

can be defined purely syntactically.
Let (X,TX) be a subshift with alphabet A and let B be an alphabet.
Fix a nonnegative integer n. Let A be the (finite) set of all words over A of

length 2n + 1. Fix a map ψ∶A → B. Then consider the map ψ̄ from X to the
full shift BZ taking every bi-infinite word ω to the bi-infinite word ω′ where for
every i ∈ Z,

ω′(i, i) = ψ(ω(i − n, i + n)).
Thus in order to produce ω′, we scan ω and for every i record the letter from B

corresponding to the window of length 2n + 1 around the i-th letter of ω.
It is not difficult to check that the map ψ̄ is a homomorphism. It turns out

(see Hedlund [149] and Lind–Marcus [203]) that the converse statement is true
too.

Theorem 1.6.12. Every homomorphism χ from a subshift (X,TX) to a sub-
shift (Y,TY ) is of the form ψ̄ for some ψ (and n).

Proof. For every b ∈ B let Xb be the set of bi-infinite words ω in X such
that χ(ω) has b at the 0-th coordinate. Then all Xb are disjoint and their union
is the whole X. Moreover each Xb is a closed subset of X. Indeed, if ω ∈Xb, then

Xb = {α ∣ dist(χ(α), χ(ω)) ≤ 1}}.
Thus Xb is the preimage of a closed ball of radius 1/2 in Y (the preimage of a
closed set under a continuous map is closed). In a compact metric space, any two
closed subsets U,V are distance-separated, that is for some ǫ > 0, dist(u, v) > ǫ
for every u ∈ U,v ∈ V. Thus there exists k such that dist(α,β) > 1

2k for every

α ∈Xb, β ∈ Xb′ where b ≠ b′. Let B be the set of all words in A of length 2k+1. If
a word u ∈ B appears as ω(−k, k) in some ω ∈ X, then all bi-infinite words ω′ ∈ X
with ω′(−k, k) = u belong to the same Xb with ω. Thus we define ψ(u) = b. If u
does not appear as ω(−k, k) in any ω ∈ X, we can define ψ(u) ∈ B arbitrarily. It
remains to solve the following exercise.

Exercise 1.6.13. Show that the map ψ̄ coincides with χ.

�
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Exercise 1.6.14. Let F be the golden mean subshift over A = {a, b}. Let n =
1, and let B be the set of all words of length 3: aaa, aab, aba, abb, baa, bab, bba, bbb.
Let ψ assign letters a, b, a, b, a, b, a, b to these words (that is ψ sends each of the
8 words to its last letter). Show that ψ̄ is a homomorphism from F to F , which
coincides with T −1.

Exercise 1.6.15 (Requires some set theory). Show that every subshift has
only countably many homomorphisms.

Two subshifts (X,TX), (Y,TY ) are called conjugate if there exists a bijective
homomorphism φ∶X → Y (called conjugacy). For example, TX is a conjugacy
from (X,TX) to itself, i.e., an automorphism of (X,TX). By Exercise 1.6.15
every subshift has only countably many conjugate subshifts. Note that a con-
jugacy is always a homeomorphism, that is its inverse is also continuous (hence
a homomorphism). The easiest way to prove that it is a homeomorhism is by
using the following general topology fact: if a continuous map from a compact
space is bijective, then the inverse map is continuous too.

A major open problem of symbolic dynamics is the conjugacy problem for
subshifts of finite type:

Problem 1.6.16. Is there an algorithm that given two finite collections of
words U,V decides whether the subshifts of finite type corresponding to U and
V (that is, the subshifts consisting of all bi-infinite words that contain subwords
from U and V , respectively) are conjugate?

One of the main characteristics of a subshift (X,T ) is its (topological) en-
tropy h(X) defined as

(1.6.1) h(X) = lim
n→∞

1

n
ln f(n)

where f(n) is the complexity function of the subshift.

Exercise 1.6.17. Prove that the limit in (1.6.1) exists for every subshift S.
Hint: First prove that the complexity function f(n) is submultiplicative, i.e.,
it satisfies the inequality f(m + n) ≤ f(m)f(n) for every m,n ≥ 0 and hence
g(n) = ln f(n) is a subadditive function, i.e., g(m + n) ≤ g(m) + g(n) for every

m,n. Then show that for every subaddtitive function g(n) the limit limn→∞
g(n)

n

exists and is equal to the infimum of all the numbers
g(n)

n
. For this, fix an

integer m > 0 and for every n > m set n = mq + r where 0 < r ≤ m. Then
g(n)

n
≤ g(qm)

qm
+ g(r)

n
≤ g(m)

m
+ g(r)

n
. Deduce that lim supn→∞

g(n)
n
≤ g(m)

m
, which is

true for every m.

Exercise 1.6.18. Prove that

● the entropy of the full shift on a k-letter alphabet, is ln k,
● the entropy of the golden mean subshift is lnφ where φ is the golden

mean 1+
√

5
2

,
● the entropy of any Sturmian subshift and every finite subshift is 0.
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Exercise 1.6.19. Prove that the entropy of a subshift is a conjugacy invari-
ant that is conjugate subshifts have the same entropy.

Exercise 1.6.20. Show that there are uncountably many pairwise non-con-
jugate subshifts of entropy 0. Hint: Consider the Sturmian subshifts and use
Exercise 1.6.15.

Exercise 1.6.21. Show that there are infinitely many pair-wise non-conju-
gate subshifts of finite type that have entropy 0. Hint: Consider finite subshifts.

1.6.3. Edge subshifts. Let Γ = (V,E) be a finite graph. Then the set of
all bi-infinite paths on Γ is a subshift with the alphabet E. This subshift is called
the edge subshift of Γ.

Exercise 1.6.22. Prove that every edge subshift of a finite graph is a 1-step
subshift.

Thus every edge subshift of a finite graph is a subshift of finite type. It turns
out that up to conjugacy there are no other subshifts of finite type.

Theorem 1.6.23. Every subshift of finite type is conjugate to an edge subshift
of a finite graph.

Proof. Let (X,T ) be a subshift of finite type of M -step for some M. Con-
sider the set V = BM all words of length M and the set E = BM+1 of words of
length M + 1 that are subwords in bi-infinite words from X. Let Γ be the graph
with vertex set V and edge set E where for every e ∈ E, e− is the prefix of e
of length M , and e+ is the suffix of e of length M (this is called the de Bruijn
graph). The identity map from BM+1 to E defines a homomorphism ψ from X

to the edge subshift Ω of the graph Γ.

Exercise 1.6.24. Show that ψ is a bijection.

�

1.7. Rewriting systems

1.7.1. Basic definitions. A rewriting system is any graph in the sense of
Serre. If we consider a graph as a rewriting system, then vertices are called
objects, edges are called moves and positive (negative) edges are called positive
(negative) moves.

If there exists a positive move of a rewriting system Γ with tail a and head
b, then we say that a can be positively rewritten into b in one step and denote
this situation by a →

Γ
b. A path in Γ is called a derivation. A path consisting of

positive (negative) moves is called a positive (negative)derivation. If there exists
a positive derivation from a to b, we say that a can be rewritten to b, and denote

this by a
∗
→

Γ
b.

A rewriting system Γ is called terminating if every sequence a1 →Γ a2 →Γ

⋅ ⋅ ⋅ →Γ an →Γ . . . stabilizes after a finite number of moves.
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Example 1.7.1. The rewriting system whose objects are natural numbers
and a positive move takes any perfect square to its positive square root is ter-
minating while the rewriting system with the same objects and positive moves
n→ n + 1 is not terminating.

Notice that if Γ is terminating, then
∗
→

Γ
is always a partial order on the

set of objects of Γ: if a
∗
→

Γ
b, then b is “better” than a. This order satisfies

the descending chain condition, hence every set Y ⊆ X of objects of Γ contains
a “best” object i.e., an object that cannot be rewritten into some other object
from Y by a positive move.

An object of a rewriting system Γ that cannot be changed by any positive
move will be called terminal.

Example 1.7.2. In the terminating rewriting system from Example 1.7.1,
the terminal elements are numbers that are not perfect squares.

1.7.2. Confluence. One of the main purposes of the theory of rewriting
systems is to study the equivalence relations they generate. If Γ is a rewrit-
ing system, then the equivalence relation generated by Γ, that is the smallest

equivalence relation containing →
Γ

(see Section 1.1), will be denoted by
∗
←→

Γ
.

A rewriting system Γ is called confluent if for every three objects a, b, c such

that a
∗
→

Γ
b and a

∗
→

Γ
c there exists an object d such that b

∗
→

Γ
d, c

∗
→

Γ
d. This

notion is illustrated by the following picture (Figure 1.5) where arrows pointing
down symbolize positive moves.

a

b c

d

Figure 1.5. Confluence

Finding the object d and the derivations to d from b and c is called completion
of a diamond.

A confluent and terminating rewriting system is called Church–Rosser (this
concept was first introduced in [67]).

We call a rewriting system Γ deterministic if for every object d there is at
most one positive rule applicable to d.

Exercise 1.7.3. Every deterministic rewriting system is confluent.
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Exercise 1.7.4. Let Γ be a rewriting system where objects are natural
numbers and moves are of two types. The moves of the first type take any
natural number n ≥ 2 to n − 1, the moves of the second type take every even
natural number n to n/2. Check that this rewriting system is Church–Rosser.
What are the terminal objects of this rewriting system?

Exercise 1.7.5. Let Γ be the rewriting system where objects are natural
numbers and moves are of two types. The moves of the first type take every
number to its sum of decimal digits (for example, 4567 → 22 → 4). The moves
of the second type take every odd number n ≥ 3 to n−1

2
. Prove that this system

is not Church–Rosser.

Exercise 1.7.6 (The 3n + 1-game). Let Γ be the rewriting system where
objects are natural numbers and moves are of two types. The move of the first
type is applicable only to even numbers, it divides the number by 2. The move of
the second type is applicable only to odd numbers > 1, it multiplies the number
by 3 and adds 1. For example, 10 → 5 → 16 → 8 → 4 → 2 → 1. Prove that Γ
is confluent. (The question whether Γ is Church–Rosser, i.e., terminating, is a
major open problem.)

Exercise 1.7.7 (Requires some knowledge of Linear Algebra). Let Γ be the
rewriting system where objects are square matrices over a field K, and moves
are row operations:

● if row number i starts with s zeroes followed by a ≠ 0 and row number j
(j > i) starts with s zeroes followed by b ≠ 0, then subtract row number
i multiplied by b/a from row number j,
● switch rows number i and number j where i > j and row number i has

more leading zeroes than row number j,
● if the first non-zero entry of row number i is a, then multiply this row

by 1/a,
● if i < j, row number j starts with s zeroes followed by 1, and entry

number s + 1 of row number i is a ≠ 0, then subtract row number j
multiplied by a from row number i.

Show that Γ is Church–Rosser. Show that the terminal objects in this rewriting
system are matrices in the reduced row echelon form. Deduce the well-known
important theorem from Linear Algebra that every matrix has only one reduced
row echelon form.

Lemma 1.7.8. For every two objects a, b of a confluent rewriting system Γ,

if a
∗
←→

Γ
b, then there exists an object c such that a

∗
→

Γ
c and b

∗
→

Γ
c.

Proof. Since a
∗
←→

Γ
b there exists a sequence of positive or negative moves

connecting a and b. In other words we have a picture like the one on Figure 1.6
This picture means that there are several negative moves at the beginning

(moving the object uphill), followed by some positive moves (moving the object
downhill), followed by some negative moves, etc. Thus there may be several
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a b

Figure 1.6. A typical derivation

“peaks” between a and b. Using the confluence we can remove the “peaks” one-
by-one (this is called the peak reduction) and make one deep canyon instead of
several peaks (as on Figure 1.7)).

b

c

a

Figure 1.7. Turning peaks into canyons

�

Lemma 1.7.8 implies that if Γ is confluent, then every equivalence class of
∗
←→

Γ
contains at most one terminal object, and if Γ is also terminating, then

every equivalence class contains exactly one terminal object. In this case termi-
nal objects can be considered canonical representatives (or normal forms) of the

equivalence classes of
∗
←→

Γ
.

Exercise 1.7.9. Let Γ1 be the rewriting system where objects are natural
numbers and positive moves take a number to its sum of decimal digits. Let Γ2

be the rewriting system where objects are natural numbers and positive moves

take a number n > 9 to n − 9. Prove that the equivalence relations
∗
←→

Γ1
and

∗
←→

Γ2
coincide with the congruence relation mod 9 (that is two numbers are

equivalent if and only if their remainders modulo 9 are equal).

Thus if an equivalence relation is generated by a Church–Rosser rewriting
system, then there usually is a nice set of representatives of equivalence classes.
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What is even more important, there is a nice algorithm to check if two objects
are equivalent: just apply positive moves to both objects until you get the
same object or until you get two different terminal objects. In the first case
the objects are equivalent, in the second case they are not equivalent. This
procedure may be long and boring but it always works (provided the rewriting
system is Church–Rosser ).

It is not always easy to check if a rewriting system Γ is confluent. It is easier
to check that it is locally confluent that is for every three objects a, b, c such

that a →
Γ
b and a →

Γ
c there exists an object d such that b

∗
→

Γ
d and c

∗
→

Γ
d.

In many cases local confluence implies confluence. The following classical result
is sometimes called the Diamond Lemma. It shows that in order to check that
a system is confluent it is often enough to complete diamonds with short (one
move) top sides.

Theorem 1.7.10 (Newman, [250]). Every terminating locally confluent rewrit-
ing system is confluent.

Proof. Suppose that a
∗
→

Γ
b and a

∗
→

Γ
c. We need to show that there

exists an object d such that b
∗
→

Γ
d and c

∗
→

Γ
d. By contradiction, suppose

that it is not always true. Since Γ is terminating, we can assume that a is a

“best” counterexample, that is every a′ ≠ a such that a
∗
→

Γ
a′ is no longer a

counterexample. Clearly b ≠ a and c ≠ a. Therefore there exist b′ ≠ a and c′ ≠ a
such that a →Γ b′

∗
→

Γ
b and a →Γ c′

∗
→

Γ
c. By local confluence there exists an

object a′ such that b′
∗
→

Γ
a′ and c′

∗
→

Γ
a′. Since b′ and c′ are “better” than a, we

can find objects b′′ and c′′ such that b
∗
→

Γ
b′′, a′

∗
→

Γ
b′′, a′

∗
→

Γ
c′′ and c

∗
→

Γ
c′′.

Finally since a′ is “better” than a, we can find an object d such that b′′
∗
→

Γ
d

and c′′
∗
→

Γ
d. This d is what we need because b

∗
→

Γ
b′′

∗
→

Γ
d and c

∗
→

Γ
c′′

∗
→

Γ
d

(see Figure 1.8).

a

b′ c′

a′
b c

b′′ c′′

d

Figure 1.8. Local confluence implies confluence

�

Exercise 1.7.11. Let Γ be the rewriting system where objects are natural
numbers and positive moves are of two types. The moves of the first type take
every perfect square to its positive square root. The moves of the second type
take every even number n to n

2
. Show that this system is locally confluent and
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terminating (so it is confluent by the Diamond Lemma). Describe all terminal
objects of this rewriting system.

Exercise 1.7.12. Let Γ be the rewriting system where objects are all finite
sequences of letters a and b and a positive move replaces two neighbor letters
b, a by a, b. For example,

(b, b, b, a, a, b, a) →Γ (b, b, b, a, a, a, b) →Γ (b, b, a, b, a, a, b) →Γ(b, a, b, b, a, a, b) →Γ (b, a, b, a, b, a, b) → . . .
.

Prove that this rewriting system is Church–Rosser. Describe all terminal objects
of this rewriting system.

Exercise 1.7.13. Consider the following rewriting system. The objects are
all finite automata Γ that are graphs in the sense of Serre with correct labeling
(see Section 1.3.5). Positive moves are the edge foldings. Prove that this rewrit-
ing system is Church–Rosser, so for every automaton Γ there exists a unique
inverse automaton obtained from Γ by a series of foldings.

1.7.3. What if a rewriting system is not confluent? The art of

Knuth–Bendix. In “real life” we often have an equivalence generated by some
rewriting system Γ and we want to find some easy canonical representatives in
the equivalence classes. If Γ is Church–Rosser, then we know how to find these
representatives. But what if it is not Church–Rosser? The idea is to find a
Church–Rosser rewriting system Γ′ that has the same set of objects X and is

equivalent to Γ, meaning that the equivalence relations
∗
←→

Γ
and

∗
←→

Γ′
coincide.

There are certain operations, which can be applied to any rewriting system

Γ without changing the equivalence
∗
←→

Γ
. For example, we can change the

partition of the set of moves into positive and negative moves. Clearly the

equivalence
∗
←→

Γ
does not depend on which moves are called positive and which

moves are called negative. Also if there exists a derivation connecting objects a

and b, then we can add a move a → b to Γ, and this does not change
∗
←→

Γ
either.

Conversely if Γ contains a move m ∶ a → b and there exists a derivation from a

to b that does not involve the move m, then we can remove m from Γ.
Using these three transformations one needs to transform the rewriting sys-

tem Γ into an equivalent Church–Rosser rewriting system. Clearly it is always
possible to do. Indeed, we can simply choose one representative from each class

of
∗
←→

Γ
and consider a rewriting system with the same set of objects as Γ and

positive moves that rewrite every object a into the representative of the class
containing a. This rewriting system is clearly Church–Rosser.

Of course this method amounts to cheating. If we can find a good system of
representatives of the equivalence classes, we do not need to change the rewriting
system anyway. But at least it gives us some hope that the goal is achievable.

The simplest real procedure of converting a bad rewriting system into a
Church–Rosser one is the following. It is one of the simplest versions of the
so-called Knuth–Bendix procedure (originated in [182]). First equip the set X
of objects of Γ with a total order ⪯ satisfying the descending chain condition.
Remove all moves of the form a → a (this does not change the equivalence
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relation). Then choose the set of positive moves in such a way that if a→ b is a
positive move, then b ≺ a (if m ∶ a → b is a positive move and a ≺ b, then put m
into E− and put m−1 into E+). This will make Γ terminating.

Thus assume that Γ is already terminating. Suppose that Γ is not confluent.

Then there exists a pair of derivations a
∗
→

Γ
b and a

∗
→

Γ
c, which is impossible to

complete to a diamond. Since Γ is terminating, then we can assume that b and
c are terminal objects. Let b ≺ c. Then add a positive move c → b to Γ. Clearly

Γ will remain terminating and the equivalence
∗
←→

Γ
will not change.

If we are smart enough or just lucky enough, then after a (possibly infinite)
number of such transformations, Γ will turn into a nice Church–Rosser rewriting
system. If we are not smart or not lucky, then the rewriting system will become
more and more complicated. The hardest part here is choosing the order ⪯ .
Different choices of orders can lead to drastically different results.

1.7.4. String rewriting. A string rewriting system is a rewriting system
where objects are words over some alphabet X, and moves are determined by
a set of rules ui → vi, i = 1,2, . . . , where ui, vi ∈ X∗. A move corresponding to
the rule u → v replaces subword u by v. The tail of this move has the form puq

and the head has the form pvq where p, q ∈ X∗. We will denote this move by the
triple (p,u → v, q).

The string rewriting system Γ with alphabet X and the set of rules R will
be denoted by sr⟨X ∣ R ⟩. It is also called a Thue system.

A move (p,u → v, q) in Γ can be illustrated by the Figure 1.9.

u

v

ı τ

p q

Figure 1.9. An elementary diagram

This picture is called the elementary diagram corresponding to the move(p,u → v, q). It is a plane graph with the initial vertex ı, the terminal vertex τ ,
every edge is oriented from left to right and is labeled by a letter from X in such
a way that on the top path of this diagram we can read the word puq and on
the bottom path we can read the word pvq. The cell is bounded by two paths:
the top path is labeled by u and the bottom path is labeled by v.

With every derivation w0 →Γ
w1 →Γ

. . . →
Γ
wn one can associate a (w0,wn)-

diagram ∆ over Γ that is obtained by taking the elementary diagrams ∆1, . . . ,
∆n corresponding to the moves and gluing the top of ∆2 to the bottom of ∆1,
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the top of ∆3 to the bottom of ∆2, etc. This diagram is also a plane labeled
graph with the initial vertex ı, the terminal vertex τ , every edge is oriented from
left to right and is labeled by a letter from X in such a way that on the top path
of ∆ we can read the word w0 and on the bottom path we can read the word wn.

Each cell corresponds to a rule ui → vi or vi → ui. It is clear that ∆ has exactly
n cells.

Example 1.7.14. Let Γ be the string rewriting system with the alphabet{a, b} and one rule ba → ab (like in Exercise 1.7.12). Then the following diagram
(Figure 1.10) corresponds to the derivation (consisting of negative moves):

(1.7.1) aabb ≡ a ⋅ ab ⋅ b → a ⋅ ba ⋅ b ≡ ab ⋅ ab → ba ⋅ ab→ ba ⋅ ba ≡ baba

a

a b

b

b a

b aab

Figure 1.10. The diagram corresponding to a derivation

If the top and the bottom paths of a diagram have the same labels, then
the diagram is called spherical (because by identifying these two paths, we get
a graph on a sphere). Any linear diagram over the alphabet X is also a diagram
over Γ: it just has no cells.

A diagram is called positive if it corresponds to a positive derivation. A
diagram is called negative if it corresponds to a negative derivation. It is clear
that if we take a positive diagram and reflect it about a horizontal line, we get
a negative diagram.

A string rewriting system Γ is clearly terminating when in every rule u → v

the word v is smaller than u in the ShortLex order. Indeed in this case for every
move (p,u → v, q) the head is ShortLex smaller than the tail, and the ShortLex
order satisfies the descending chain condition.

Example 1.7.15. The string rewriting system from Exercise 1.7.12 is ter-
minating because ab <sl ba if we assume that a < b (and we can assume that
because we can order letters in any way we like).

If a string rewriting system with finitely many rules is terminating, then
checking whether it is confluent is a “finite” problem. This means that we need
to complete only finitely many diamonds.

Theorem 1.7.16. Let Γ = sr⟨X ∣ R ⟩ be a terminating string rewriting sys-
tem. Then Γ is confluent if and only if the following two conditions hold:
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(1) Suppose that xy → s, yz → t are two positive rules in Γ, where y is not
empty and let w1 ≡ sz,w2 ≡ xt. Then there exists a word w such that

w1
∗
→

Γ
w,w2

∗
→

Γ
w.

(2) Suppose that xyz → s, y → t are two positive rules from Γ and let w1 ≡
s,w2 ≡ xtz. Then there exists a word w such that w1

∗
→

Γ
w,w2

∗
→

Γ
w.

In other words any 2-cell diagram of one of the two forms on Figure 1.11.

ı τ ı τ
x y z x y z

s
s

t t

Figure 1.11. Pictures of overlaps

can be extended to a spherical (w,w)-diagram with the same initial and terminal
vertices, which is cut by the path labeled by xyz into a negative (top) diagram
and a positive (bottom) diagram as in Figure 1.12

ı τ ı τ
x y z x y z

s
s

t t

w
w

w w

Figure 1.12. Extending an overlap into a spherical diagram

(arrows in these pictures indicate the direction of positive derivation).

Exercise 1.7.17. Prove this theorem.

The word xyz from parts 1 and 2 of Theorem 1.7.16 is called an overlap).
Constructing this diagram (or, equivalently, two positive derivations with

the same terminal word) is called a resolution of an overlap.
In particular, the Knuth–Bendix procedure for a string rewriting system

sr⟨X ∣ R ⟩ can be organized as follows. First choose a total order > on X∗ that
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respects the concatenation and satisfies the descending chain condition. Make
sure that the left-hand sides of the positive rules from R are bigger in that
order than the right-hand sides (if not, replace the positive rule by its inverse).
If all overlaps of the left-hand sides of the positive rules can be resolved, the
system is Church–Rosser. If some overlap w cannot be resolved, consider any
two sequences of positive moves xyz → w1 → ⋅ ⋅ ⋅ → w,xyz → w2 → ⋅ ⋅ ⋅ → w′ (the
words w1,w2 are defined in the formulation of Theorem 1.7.16) where w ≠ w′ are
terminal words (such sequences exist since the total order satisfies the descending
chain condition and the words in these sequences become smaller and smaller).
Suppose, without loss of generality, that w > w′. Then add a new positive rule
w → w′ to the rewriting system. This will resolve the overlap xyz, but perhaps
new overlaps are introduced (possibly involving the new rule), so repeat the
procedure. If there are no more unresolvable overlaps, the procedure stops and
we get a Church–Rosser rewriting system. The origin of this useful procedure is
hard to trace. It was probably first used by Cohn in [71],[72] (see also Bergman
[45] and the introduction to Book and Otto [49]).

1.8. Presentations of semigroups

1.8.1. Semigroups and monoids: basic definitions. As we mentioned
before, a semigroup is a set with an associative binary operation (usually called
“product”). If a, b are elements in a semigroup, then their product is usually
denoted by ab. A monoid is a semigroup with an identity element, usually de-
noted by 1. And a group is a monoid where every element a has an inverse a−1

such that aa−1 = a−1a = 1.

Exercise 1.8.1. Prove that a semigroup S with an identity element 1 is a
group if and only if every element a in S has a left inverse b and a right inverse
c (that is ba = ac = 1).

A subsemigroup of a semigroup S is a subalgebra of S, i.e., any subset of S
closed under taking products. A submonoid of a monoid S is any subsemigroup
of S containing the identity element of S. One can also consider submonoids
of semigroups. Then we do not require the submonoids to contain the identity
element of the semigroup S. The semigroup S may not contain an identity ele-
ment at all, and even if it has one, the submonoid may contain its own identity
element. A subgroup of a semigroup S is a subsemigroup that is also a group.

Exercise 1.8.2. (1) Prove that the free monoid X∗ is generated as a monoid
by X and is generated as a semigroup by X ∪ {1}.

(2) Prove that the group Sn of all permutations of the set {1,2, . . . , n}, n ≥ 2
is generated by the transposition

1 2 3 n

1 2 3 n
a = . . .

and the cycle
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1 2 3 n − 1 n

1 2 3 n − 1 n
b = .

(3) Prove that the semigroup Fn of all functions from {1,2, . . . , n} (n ≥ 2) to
itself is generated by the transposition a, the cycle b from Part (2) and the map

1 2 3 n − 1 n

1 2 3 n − 1 n
c = . . . .

Exercise 1.8.3. Let a1, . . . , ak be natural numbers, let

d = gcd{a1, . . . , ak}
and let S be the subsemigroup of the additive semigroup of natural numbers
generated by these numbers. Then clearly every number in S is divisible by d.
Prove that S contains all but finitely many natural numbers divisible by d.

1.8.2. Free and non-free semigroups. If S is any semigroup, then any
map φ ∶ X → S extends uniquely to a homomorphism φ̄ ∶ X+ → S (it takes every
word w ≡ x1 . . . xn, xi ∈ X, to the product φ(x1) . . . φ(xn) in S). Recall that this
property is the (universal algebraic) reason why X+ is called free.

Similarly if S is a monoid, then every map φ ∶ X → S extends uniquely to a
homomorphism φ̄ ∶ X∗ → S (the empty word maps to 1).

Thus if S is a semigroup (monoid) generated by X and φ is the identity map
X → X, then for every s ∈ S there exists at least one word w such that φ̄(w) = s.
In this case we say that s is represented by the word w.

Exercise 1.8.4. Let B be the submonoid of F3 generated by two functions

1

1

1

1

2

2

2

2

3

3

3

3

e =

x = .

,

Prove that B consists of six elements and find the shortest words representing
each of these elements. This is the so-called 6-element Brandt monoid, it is
usually denoted by B1

2 . If we remove the identity element 1 from B1
2 , we get

the 5-element Brandt semigroup B2. (see Exercise 1.4.6) Prove that semigroup

B2 has the following representation by 2 × 2 matrix units: ( 1 0
0 0

), ( 0 1
0 0

),
( 0 0

1 0
), ( 0 0

0 1
), ( 0 0

0 0
) .

Exercise 1.8.5. By Exercise 1.8.2 the semigroup Fn is generated by three
functions a, b, c described there. Find a word in a, b, c that represents the follow-
ing function.

(1)
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1 2 3 n

1 2 3 n
. . . .

(2)
1 2 3 n − 1 n

1 2 3 n − 1 n
. . . .

1.8.3. A characterization of free semigroups. A semigroup S is called
cancellative if ab = ac or ba = ca always implies b = c. We say that an element x in
a semigroup S is indecomposable if x is not equal to a product of any two other
elements. Every free semigroup is cancellative and all its elements are products
of indecomposable elements.

The following theorem gives a (more semantic) characterization of free semi-
groups

Theorem 1.8.6 (Levi, [198]). Suppose that S is a cancellative semigroup
without an identity element, in which every element is a product of indecompos-
able elements, and for every four elements a,u, v, c from S the equality au = vc,
implies either u = c or u = bc or c = bu for some b. Then S is a free semigroup
and the set of indecomposable elements of S is its free generating set.

Proof. Let X be the set of indecomposable elements of S. By assumption,
X generates S. Suppose that two words w and w′ in X are equal in S. We need
to show that w ≡ w′. Suppose that w /≡ w′ and w′ is a shortest possible such
word that there exists another word w with w = w′ in S (in particular w is not
shorter than w′). Since S is cancellative, we can assume that the first (last)
letters of w and w′ are different. Represent w ≡ au,w′ ≡ vc where a, c ∈ X. Then
u /≡ c and u, v are not empty (why?). By the assumption of the theorem, there
exists an element b such u = bc in S because the case c = bu is not possible for
c ∈ X. Then abc = vc, so ab = v in S (by cancellation). If b is represented by a
word z in X, then the words az and v represent the same element in S but are
not the same words because the first letter of v is not a. This contradicts the
assumption that w′ was a shortest possible because v is shorter than w′. �

1.8.4. Congruences, ideals and quotient semigroups. A cyclic semi-
group is a semigroup generated by one element. Each cyclic semigroup is isomor-
phic to a quotient semigroup of the free semigroup {x}+ (by the main property
of free semigroups).

Exercise 1.8.7. Describe all congruences on the additive semigroup of pos-
itive integers. Show that any cyclic semigroup generated by x either is equal to{x}+ or is finite.

If a cyclic semigroup generated by an element x is finite, then xm = xm+p for
some m,p ≥ 1. The smallest such m (denoted mx) is called the index and the
smallest n such that xmx = xmx+n is called the period or exponent of x.

Exercise 1.8.8. Show that the subsemigroup ⟨x ⟩ generated by x is a group
if and only if the index of x is 1.
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Exercise 1.8.9. Show that if xm = xm+n for some element x of a semigroup
S, m,n ≥ 1, then m is at least as large as the index of x and n is divisible by
the period of x.

Exercise 1.8.10. Let a be an element of a finite group G. Prove that the
exponent of a divides ∣G∣. Hint: The exponent of a is the number of elements
in the subgroup C generated by a. The group G is subdivided into a union of
disjoint cosets aC, each of which is of size ∣C ∣, hence ∣C ∣ divides ∣G∣.

Exercise 1.8.11. Prove that every subgroup of a cyclic group is cyclic.
Prove that every subsemigroup of a cyclic semigroup is finitely generated. Hint:

The first part is an application of the Euclidean algorithm. For the second part
only the infinite cyclic semigroup N needs being considered (by Exercise 1.8.7).
Let H be a subsemigroup of N. Let d be the greatest common divisor or numbers
from H. By Exercise 1.8.3 H contains all numbers that are divisible by d and
greater than some number nd, n ∈ N. Let S be the finite set of numbers from H

that do not exceed nd. Show that the set S together with a finite set of multiples
of d generate H.

Exercise 1.8.12. Describe all congruences on the semigroup F2.

Recall that a subset I of a semigroup S is called an ideal if for every a ∈ I,
b ∈ S we have ab, ba ∈ I.

Exercise 1.8.13. Let I be an ideal of S. Consider the partition σI of S with
one class I and each of the other classes consisting of one element. Prove that
this partition is a congruence.

The congruence described in Exercise 1.8.13 is called the Rees congruence
associated with the ideal I, the corresponding quotient semigroup S/σI is called
the Rees quotient semigroup of S over the ideal I and is denoted by S/I.

A semigroup is called nilpotent of class k,k ≥ 1, if the product of every k

elements of it is zero. Note that under this (not very standard but convenient)
definition, a semigroup that is nilpotent of class k is also nilpotent of class k+1.

Exercise 1.8.14. Show that the class I plays the role of zero in S/I, that
is Ix = xI = I for every x ∈ S/I.

Exercise 1.8.15. Let k be a natural number. Let Ik be the set of all words
in X+ with length ≥ k. Prove that Ik is an ideal of X+. Prove also that the
semigroup X+/Ik is nilpotent of class k.

1.8.5. String rewriting and presentations. The equivalence generated
by a string rewriting system Γ = sr⟨X ∣ R ⟩ is a congruence on X+ (or X∗).
Indeed, if there exists a derivation w = w1 →Γ

. . . →
Γ
wn = w′ from w to w′,

then for every two words p, q we have a derivation pwq = pw1q →Γ
. . . →

Γ
pwnq =

pw′q. Geometrically this means that for every (w,w′)-diagram ∆ over Γ we can
construct a (pwq, pw′q)-diagram by attaching linear diagrams ε(p) and ε(q) to
ı(∆) and τ(∆) as on Figure 1.13

Conversely every congruence σ on X+ is generated by a string rewriting
system. For example, one can pick a representative xC in each class C of σ and
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p
∆

q

w

w′

Figure 1.13. Attaching linear diagrams to a diagram

consider the rewriting system with (infinitely many) rules z → xC where C is the
σ-class containing z. This rewriting system clearly generates σ. Therefore every
semigroup S is isomorphic to the quotient semigroup X+/σ of X+ over some
congruence generated by a string rewriting system Γ = sr⟨X ∣ R ⟩. In this case
the rewriting system Γ is called a presentation of S by the set of generators X
and the set of defining relations R and we shall write S = sg⟨ X ∣ R ⟩. Similarly
one can define monoid presentations (replacing X+ by X∗). If S is a monoid
presented by sr⟨X ∣ R ⟩, then we shall write S =mn⟨X ∣ R ⟩.

The monoid X∗/σ comes with the natural homomorphism X∗ → X∗/σ.
Notice that two words w and w′ over X represent the same element in S (we
shall say that these words are equal in S) if and only if there exists a derivation of
w from w′. Geometrically this means that w and w′ are equal in S if and only if
there exists a (w,w′)-diagram over Γ. In this case we shall write w = w′ (mod R)
or w =S w

′. If we consider (u → v) ∈ R as a defining relation of S then we shall
use “ = ” instead of → and write u = v. Notice that all equalities from R are true
in S and all other relations (i.e., equalities between products of generators of
S), follow from the defining relations. If S =mn⟨X ∣ R ⟩ happens to be a group,
then we shall write S = gp⟨X ∣ R ⟩. In that case we will omit obvious relations
xx−1 = 1, x−1x = 1, 1x = x,x1 = x.

Exercise 1.8.16. Let S = mn⟨ X ∣ R ⟩ and let T be any monoid. Prove
that a map φ ∶ X → T extends to a homomorphism S → T if and only if the
equalities φ(R) hold in T. Here φ(R) is the set of equalities obtained from R
by replacing each letter x ∈X with φ(x).

When we consider monoids or semigroups presented by generators and defin-
ing relations Γ, one of the main problems is the word problem that asks when
two words in X represent the same element in S. In general there is no algorithm
to solve this problem.

But if Γ is finite and Church–Rosser (i.e., the semigroup is given by a finite
Church–Rosser presentation), then such an algorithm exists, as we have men-
tioned in Section 1.7. Every congruence class contains a unique terminal word
usually called canonical. The canonical words have a nice description as exactly
those words that do not contain the left parts of the rewriting rules as subwords.
Thus canonical words are defined in terms of forbidden subwords (as subshifts
in Section 1.6.2). In particular, by Exercise 1.3.5, we have the following lemma:
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Lemma 1.8.17. If a Church–Rosser string rewriting system is finite or,
more generally, the set of left-hand sides of the positive rules forms a rational
language, then the language of canonical words is rational.

It is usually convenient to assume that the monoid (semigroup) presented
by a Church–Rosser rewriting string system Γ consists of the canonical words
with the natural multiplication: the product of two canonical words w and w′

is the canonical word in the class containing the word ww′.

Exercise 1.8.18. Prove that the monoid (semigroup) A consisting of all
words of the form ambn, m ≥ 0, n ≥ 0 (resp. m ≥ 0, n ≥ 0,m + n > 0) with oper-
ation ambn ⋅ apbq = am+pbn+q is isomorphic to the monoid (semigroup) mn⟨a, b ∣
ba = ab ⟩ (resp. sg⟨a, b ∣ ba = ab ⟩). Generalize this result to the monoid
An = mn⟨a1, . . . , an ∣ aiaj = ajai, i > j ⟩, n > 1 (semigroup A′n = sg⟨a1, . . . , an ∣
aiaj = ajai, i > j ⟩). The monoid An (semigroup A′n) is called the free commuta-
tive monoid (free commutative semigroup) of rank n.

Exercise 1.8.19. Consider the monoid B = mn⟨a, b ∣ aba = a, bab = b, bb =
aa, aaa = aa, aab = aa, baa = aa ⟩. Prove that it is isomorphic to the Brandt
monoid B1

2 from Exercise 1.8.4.

Exercise 1.8.20. Consider the semigroup P = sg⟨a, b ∣ aa = a, ab = b, bb =
ba ⟩. Find the number of elements in P and construct the multiplication table
of P. Prove that P is isomorphic to a subsemigroup of the Brandt monoid B1

2 .

Exercise 1.8.21. Let n > 1. Consider the monoid D2n =mn⟨a, b ∣ a2 = 1, bn =
1, ab = bn−1a ⟩, n > 1. Prove that the presentation is Church–Rosser and defines
a group of order 2n. Show that D is isomorphic to the group of all symmetries
of the regular n-gon on the plane. This is the so-called dihedral group of order
2n.

Exercise 1.8.22. Consider the monoid Q =mn⟨a, b ∣ a4 = 1, a2 = b2, aba = b ⟩.
Show that this presentation defines a group of order 8 that is not isomorphic
to D4. This group is called the group of quaternions. Hint: Use the order
a > b on the set of generators, and use the Knuth–Bendix procedure to find a
Church–Rosser presentation and canonical words.

Exercise 1.8.23 (Page 182, [194]). Let n ≥ 2. Consider the monoid

Sn =mn⟨a1, . . . , an−1 ∣ a2
i = 1 (i ≥ 1),
ajai = aiaj (j ≥ i + 2),

ai+kai+k−1 . . . ai+1aiai+k = ai+k−1ai+kai+k−1 . . . ai+1ai (i ≥ 0, k ≥ 1) ⟩.
Show that Sn is isomorphic to the group of all permutations of the set {1, . . . , n},
i.e., the symmetric group of order n!. Hint: Show that the presentation is
Church–Rosser, find canonical forms, and the number of elements of Sn. Then
consider a map sending ai to the transposition that is the permutation switching
i and i+ 1 and leaving other numbers fixed. Show that this map is a homomor-
phism onto the symmetric group. Then show that the homomorphism must be
injective by counting the number of canonical words in Sn (that is the most
interesting part of the exercise).
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Exercise 1.8.24. Consider the monoid

mn⟨a1, . . . , an, ā1, . . . , ān ∣ aiāi = 1, āiai = 1, aiaj = ajai ⟩.
Find a Church–Rosser presentation of that monoid and prove that it is a commu-
tative group that is isomorphic to the Cartesian product of n copies of Z. Under
this isomorphism any word am1

1 . . . amn
n corresponds to the vector (m1, . . . ,mn).

Show that this is a relatively free group in the variety of commutative groups.

Exercise 1.8.25. Consider the monoid

mn⟨ t, t̄, xi, x̄i, i ∈ Z ∣ xix̄i = 1, x̄ixi = 1, tt̄ = 1, t̄t = 1, xixj = xjxi, t̄xit = xi+1, i, j ∈ Z ⟩.
Find a Church–Rosser presentation of this monoid; show that it is a group
generated by t and x0 and the subgroup generated by xi, i ∈ Z is free commuta-
tive. Find an infinite Church–Rosser presentation of this group in generators
x0, t, x̄0, t̄. This group is called the wreath product of Z and Z and is denoted by
Z ≀Z.

1.8.6. The free group. The syntactic definition. We know that every
variety of algebras contain relatively free algebras of arbitrary ranks. Here we
give an explicit (syntactic) definition of free groups (i.e., relatively free groups
in the variety of all groups). More semantic definitions are given in the next two
sections.

Let X be an alphabet, X− be a copy of X, and let x ↦ x̄ be a bijection
X ↔ X−. Consider the following presentation mn⟨X∪X− ∣ xx̄ = 1, x̄x = 1, x ∈ X ⟩.

Exercise 1.8.26. Check that the string rewriting system corresponding to
this presentation is Church–Rosser and that the resulting monoid FX is a group.
Prove that for every group G, every map X → G uniquely extends to a homo-
morphism FX → G.

The canonical words of this string rewriting system are precisely the words
in X ∪X− without subwords of the form xx̄, x̄x, x ∈ X. These words are called
freely reduced. Thus every word in the alphabet X is equal to a unique freely
reduced word in FX .

The group FX is the free group with free generating set X+ (prove it!).

Exercise 1.8.27. Show that the spherical growth function of the free group
with free generating set x1, . . . , xk is s(n) = 2k(2k − 1)n−1, n ≥ 1.

Theorem 1.8.28. Two elements u, v in the free group FX commute if and
only if u and v are powers of another element w in FX , in particular some
powers of u and v coincide.

Proof. Induction on the length of u. If u is empty, the statement is clear.
Suppose that the length of u is the smallest possible for a counterexample.
Suppose first that u ≡ a−1u′a for some letter a. Then the equality uv = vu is
equivalent to a−1u′av = va−1u′a or u′ava−1 = ava−1u′. Since u′ is shorter than
u, there exists a word w such that u′ = wk, ava−1 = wℓ in the free group. Then
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a−1u′a = (a−1w′a)k, v = (a−1wa)ℓ, as required. Hence u /≡ a−1u′a for any letter a
(i.e., u is cyclically reduced).

Note that uv ≡ u1v1 where u ≡ u1p, v ≡ p−1v1, that is p is the maximal
suffix of u that cancels with a prefix of v. Then the equality uv = vu becomes
u1v1 = p−1v1u1p or (pu1)(v1u1) = (v1u1)(pu1) where we can assume that all
the words in parentheses are reduced. There is no cancellation between the
two words in parentheses on the left and right sides of this equality. Hence
this equality holds in the free semigroup. By Theorem 1.2.9 then pu1 and v1u1

are powers of another word q in the free semigroup. Conjugating by u−1
1 , we

conclude that u = u1p and uv = u1v1 are powers of u1qu
−1
1 in the free group.

Hence v is a power of u−1
1 qu−1

1 too. �

Theorem 1.8.28 and Exercise 1.8.11 immediately imply

Corollary 1.8.29. Every commutative subgroup of the free group F is
cyclic.

Exercise 1.8.30. Prove this corollary. Hint: You will need to prove first
that every subgroup of a cyclic group is cyclic, see Exercise 1.8.11.

1.8.7. The free group and ping-pong. One of the best semantic ways
to show that a group with two generators is free is to let the generators play
ping-pong. The game has the following setting (it was invented by Felix Klein).

Theorem 1.8.31. Let X be a set (call it a ping-pong table), on which the
group G = gp⟨a, b ⟩ acts, i.e., there exists a homomorphism from G to the group
of bijections from X to X that takes every g ∈ G to a bijection ⋅g∶X → X. Suppose
that X is a disjoint union of two nonempty subsets Xa∪Xb (the two sides of the
table). Suppose also that Xa ⋅an ⊆Xb and Xb ⋅ bn ⊆Xa, n ∈ Z, n ≠ 0 (the player a
sends the ball to b’s side of the table and vice versa). Then the group G is free.

Proof. Let F2 be the free group with free generators x, y. Then the map
x ↦ a, y ↦ b extends to a homomorphism of F2 onto G. We need to show that
this homomorphism is injective. For this, we need to take a canonical form of
a non-identity element of F2 and show that the corresponding element in G is
not an identity. Let w be such a canonical word w = xǫ1yδ1 . . . xǫnyδn where
ǫi, δi ∈ Z and ǫ1, δn may be equal to 0, other ǫi, δj are not zero. Note that if
w(a, b) = 1 in G, then a−1w(a, b)a = 1 in G as well. Therefore we can assume
that ǫ1 ≠ 0, δn = 0. Now take any element z in Xa, and apply the bijection
corresponding to w(a, b) to z. The result is an element in Xb. Indeed, ⋅aǫ1 sends
z to z1 ∈ Xb, then ⋅bδ1 sends z1 back to Xa, etc., until finally ⋅aǫn sends the
element to Xb). Therefore the bijection ⋅w(a, b) is not the identity function.
Hence w(a, b) is not the identity in G. �

Exercise 1.8.32. Consider two matrices a = [ 1 2
0 1

] , b = [ 1 0
2 1

] . The

matrices have determinant 1, and so they generate a subgroup (called the Sanov
subgroup of the multiplicative group SL2(R) of all 2×2-matrices with real entries
and determinant 1. Show that this subgroup is free. Hint: Let C∗ be the set
of all complex numbers with infinity ∞ adjoined.
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Define a homomorphism from SL(2,R) to the group of all bijections of C∗

to C∗ that takes every matrix [ p q

r s
] to the Möbius transformation

z ↦
pz + q
rz + s .

If z = ∞ or rz + s = 0 then the image of z is defined naturally, say, 1/0 = ∞,
5 ⋅∞/3 ⋅∞ = 5/3 (show that this is indeed a homomorphism). Let Xa be the set{z ∣ ∣z∣ < 1}, Xb = {z ∣ ∣z∣ > 1}. Show that matrices a and b play ping-pong on X.
6

Exercise 1.8.33. Consider the monoid S = mn⟨a, b ∣ b6 = 1, a2 = b3 ⟩. Show
that S is a group and find a Church–Rosser presentation of that group. Show
that elements from {1, a, a2, a3} are different and all elements from {1, b, b2,

b3, b4, b5} are different in that group. Show that this group is isomorphic to
the group SL(2,Z) of all 2 × 2 matrices with integer entries and determinant

1 (compare with Exercise 1.4.2) and the map a ↦ [ 0 −1
1 0

] , b ↦ [ 1 −1
1 0

]
extends to an isomorphism. Hint: The last statement is a more difficult part
of the exercise, you may have to modify the ping-pong Theorem 1.8.31 to prove
that.

1.8.8. Free groups and rings of formal infinite linear combinations.

A yet another way to construct a free group is the following. Let A be an
alphabet. Let K be any field. Consider the set K⟪A⟫ of all formal infinite
linear combinations

∑
u∈A∗

αuu

where αu ∈K. One can define addition and multiplication on that set as follows:

∑
u∈A∗

αuu + ∑
u∈A∗

βuu = ∑
u∈A∗
(αu + βu)u,

( ∑
u∈A∗

αuu)( ∑
u∈A∗

βuu) = ∑
u∈A∗,v∈A∗

(αuβv)uv.
Exercise 1.8.34. Prove that K⟪A⟫ is a ring (in fact an associative algebra

over the field K) with the identity element ∑u∈A∗ αuu where α1 = 1 and all other
αu are equal to 0.

Note that all elements 1+a, a ∈ A are invertible in K⟪A⟫. Indeed, (1+a)−1 =
1 − a + a2 − a3 + . . . (the sum of a geometric progression!). 7 Hence 1 + a, a ∈ A,
and their inverses generate a subgroup G of the multiplicative semigroup of the
ring Q⟪A⟫. The following result was proved by Magnus [215].

Theorem 1.8.35. The group G is free with free generating set {1+a ∣ a ∈ A}.
6The set {z ∣ ∣z∣ = 1} that separates Xa from Xb is of course the ping-pong net.
7Moreover, an infinite linear combination of elements from A+ is invertible if and only if

the coefficient of 1 is not 0.
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Proof. Consider any nontrivial reduced word w in A ∪A−1 and its image
φ(w) in G under the substitution a ↦ 1 + a, a ∈ A,a−1 → (1 + a)−1. We need to
show that φ(w) ≠ 1. Since w is reduced and nontrivial, w = an1

1 an2

2 . . . anm
m where

ai ∈ A, ai ≠ ai+1, ni ∈ Z, ni ≠ 0. Suppose that the characteristic p of K is not
0. Then for every i = 1, . . . ,m let qi be the maximal power of p dividing ni.
If the characteristic of K is 0, then let qi = 1, i = 1, . . . ,m. By Exercise 1.4.18(1 + ai)qi = 1 + aqi

i in G for every i. Let u be the word a
q1

1 a
q2

2 . . . a
qm
m ∈ A+. Then

u is a nontrivial reduced word and the coefficient of u in the linear combination
φ(w) is – up to the sign – the product of integers ni

qi
, i.e., it is equal to

n1

q1

n2

q2

. . .
nm

qm

(check it!), which is not equal to 0 in K. Hence, indeed, φ(w) ≠ 1 in G �

As a corollary of Theorem 1.8.35 we deduce

Theorem 1.8.36. There exists a total order ≤ on any free group FA that is
compatible with the product, i.e., g ≤ h→ tg ≤ th, gt ≤ ht for every g,h, t ∈ FA.

Proof. Let K = Q, the field of rational numbers. Let g ∈ FA. Consider the
linear combination φ(g). We can represent φ(g) as 1 + αww +∑u≠w αuu where
w is the ShortLex smallest word in A+ whose coefficient in φ(g) is not 0. Let
us call αw the chief coefficient of φ(g). For example, the chief coefficients of
1 + 3a, a ∈ A is 3, and the chief coefficient of (1 + a)−1 is −1. Now we can write
g ≤ h if either g = h or the chief coefficient of φ(g−1h) is positive.

Exercise 1.8.37. Show that ≤ is a total order that is compatible with the
product in the free group FA.

�

1.8.9. The growth function, growth series and Church–Rosser pre-

sentations. Suppose that a rewriting system P = sr⟨X ∣ ui → vi, i ∈ I ⟩ is
Church–Rosser (but possibly infinite) and ∣vi∣ ≤ ∣ui∣ for every i ∈ I. Then the
canonical words for this rewriting system are shortest representatives in their
equivalence classes. Hence in order to compute the growth function of the semi-
group presentation S = sg⟨X ∣ ui = vi, i ∈ I ⟩, one needs to count the number
of canonical words of length ≤ n, n ∈ N. Since the rewriting system is Church–
Rosser, the canonical words are precisely the words that do not contain subwords
ui, i ∈ I.

Let PX be the growth series of the semigroup S. It turns out that PX is
often a rational function (a quotient of two polynomials).

For example, this is the case if the language of the left-hand sides of the
rewriting system is rational. This follows from Lemma 1.8.17 and the following
classical result by Chomsky and Schützenberger about rational languages (see
[95, 275]).

Theorem 1.8.38. The growth series of every rational language is a rational
function.
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Proof. (Requires some knowledge of Linear Algebra.) Indeed, let L be
a rational language. By Theorem 1.3.6, there exists a finite deterministic au-
tomaton (Q,A) with one input vertex q0 and a set of output vertices Q+ that
recognizes L. Since (Q,A) is deterministic, the number c(k) of words of length
k in L is the same as the number of paths of length k that start at q0 and end
in Q+. For every q ∈ Q+ let cq(k) be the number of paths p of length k with

p− = q0, p+ = q. Let fq be the corresponding series ∑ cq(k)zk. Then the growth
series of L is a finite sum ∑q∈Q+ fq. Thus it is enough to prove that each fq is
a rational function. Let M be the adjacency matrix of the underlying graph of(Q,A), that is the ∣Q∣ × ∣Q∣-matrix with (i, j)-entry equal the number of edges
i → j. A standard Linear Algebra exercise gives that cq(k) is the (q0, q)-entry

of Mk (prove it!). Let e⃗ be the row vector from R∣Q∣ with q0-coordinate 1 and

other coordinates 0, and f⃗ be the column vector from R∣Q∣ with q-coordinate 1
and the other coordinates 0. Then

ck(q) = e⃗Mkf⃗ .

Therefore
fq(z) = ∑ e⃗Mkf⃗zk = e⃗ (∑(Mz)k) f⃗ .

The sum ∑(Mz)k is equal to (1−Mz)−1 (the sum of a geometric progression!).
Hence

fq(z) = e⃗(1 −Mz)−1f⃗ ,

i.e., the (q0, q)-entry of (1 −Mz)−1. That entry (also from Linear Algebra) is
the quotient of the (q, q0)-cofactor of the matrix 1 −Mz by the determinant of
1−Mz. Both the numerator and the denominator of this fraction are polynomials
in z, hence fq(z) is a rational function. �

Exercise 1.8.39. Represent the growth series of the free group with respect
to its free generating set as a rational function. Hint: Use Exercise 1.8.27.

Exercise 1.8.40. Compute the rational function represented by the growth
series of the standard presentation of the free commutative semigroup

sg⟨a1, . . . , an ∣ aiaj = ajai, i > j ⟩
with n generators.

1.8.10. The Cayley graphs. Suppose that a semigroup S is generated
by a set X. Consider the following directed graph ΓX(S). Its vertices are all
elements of S, and edges are s → sx, s ∈ S,x ∈ X. This graph is called the
(right) Cayley graph of S relative to the generating set X. We can label each
edge s→ sx by the letter x and obtain the labeled Cayley graph of S with respect
to X, denoted by Γl

X(S).
If S is a group and X is symmetric, that is X−1 =X, then every edge s→ sx

of ΓX(S) has an inverse edge sx→ s, so ΓX(S) becomes a graph in the sense of
Serre.

Words in the alphabet X label paths on Γl
X(S). Given a vertex s and a word

u by s ⋅u we denote the terminal vertex of the path starting at s and labeled by
u. If two words u, v over X are equal in X, then s ⋅ u = s ⋅ v for every s ∈ S. If
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S is a monoid, then the converse is true (take s = 1). In particular, the words
that are equal to 1 in a group S are precisely the words that label loops in the
labeled Cayley graph Γl

X(S).
Exercise 1.8.41. Show that the Cayley graph of the free group FX with

respect to X is a tree with every vertex of degree 2∣X ∣, and the Cayley graph
of the free semigroup is a tree with distinguished vertex (root) ∅, each vertex
having out-degree ∣X ∣ and all vertices except the root having in-degree 1, the
in-degree of the root is 0. On Figure 1.14, the graph on the left is a part of the
Cayley graph of the free group gp⟨x, y ⟩. All edges there are pointed away from
the origin O, horizontal edges are labeled by a, vertical edges are labeled by b.
The graph on the right is a part of the Cayley graph of the free monoid mn⟨a, b ⟩.
All edges are pointed down (away from the root O). The edges pointing down
and left are labeled by a, the edges pointing down and right are labeled by b.

Note that the graph is the infinite full binary tree without leaves. Every full
binary tree is a subtree of this tree containing the root.

O

O

Figure 1.14. The Cayley graphs of the free group and free
monoid with 2 generators

Exercise 1.8.42. Find the Cayley graph of the group of all permutations of{1,2,3} with respect to the generating set consisting of permutations
1

1

1

1

2

2

2

2

3

3

3

3

α =

β = .

,
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More generally, one can define the (right) Cayley graph of a semigroup act(Y,S), i.e., a set Y with unary operations ⋅s, s ∈ S satisfying the identities

(y ⋅ s) ⋅ t = y ⋅ st,
y ∈ Y, s, t ∈ S (in this case we shall say that S is a semigroup acting on a set
Y ). If S is generated by a set A, then the Cayley graph of the act (Y,S) with
respect to the generating set A is the directed graph with vertex set Y and edge
set y → y ⋅ a, y ∈X, a ∈ A.

For example, if S is a group, H is a subgroup of S, then S acts on the set of
all right cosets Hg of H: Hg ⋅ t = Hgt. The corresponding Cayley graph of the
act (with respect to a generating set of S) is called a (right) Schreier graph of the
subgroup H [286]. One can similarly introduce the labeled Cayley graph of an
act and the labeled Schreier graph of a subgroup (corresponding to a generating
set).

Exercise 1.8.43. Show that the labeled Cayley graph of every finite act of
the free monoid A∗ is a complete automaton with out-degree ∣A∣ of every vertex.
Show that, conversely, every finite complete automaton (Q,A) is the labeled
Cayley graph of a finite act of A∗.

1.8.11. Cayley graphs, transition monoids of automata and syn-

tactic monoids of languages. Recall that, by definition, in a deterministic
automaton A = (Q,A), for every letter a ∈ A there is at most one edge with label
a whose tail is q; we denote the head of this edge by q ⋅ a. Thus for every a ∈ A
we have a partial map φa∶Q → Q. The (finite!) monoid of partial maps Q → Q

(under composition of partial functions) generated by all φa, a ∈ A is called the
transition monoid of the automaton A. Note that a finite deterministic (Q,A)
automaton is complete if and only if the maps from its transition monoid are
defined on the whole Q.

Exercise 1.8.44. Prove that the transition monoid of a complete automatonA is a group if and only if the automaton obtained by reversing the orientation
of all edges of A (but keeping the labels) is also complete.

Exercise 1.8.45. Draw an automaton whose transition monoid is the cyclic
group of integers modulo p.

One can associate a monoid with an arbitrary language as follows. Let
L ⊆ X∗ be a language. Define an equivalence relation on the free monoid X∗:
u ∼ v if and only if for every w1,w2 ∈ X∗,

w1uw2 ∈ L↔ w1vw2 ∈ L.
Exercise 1.8.46. Prove that ∼ is a congruence relation on X∗, hence X∗/∼

is a monoid.

The monoid X∗/∼ is called the syntactic monoid of the language L.

Exercise 1.8.47. What is the syntactic monoid of the language of all words
from X∗ of even length?

Theorem 1.8.48. The following conditions are equivalent.
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(1) A language L ⊆ A∗ is rational;
(2) The syntactic monoid of L is finite;

Proof. (1)→ (2) Suppose that L is recognized by a finite deterministic
automaton (Q,A) with input vertex ι and the set of output vertices Q+.

Consider the homomorphism φ from A∗ to the transition monoid of (Q,A)
that takes each a ∈ A to the partial function onQ defined by the letter a. Suppose
that u and v are in different classes of the equivalence relation ∼, that is for some
w1,w2 ∈ A∗ we have w1uw2 ∈ L, but w1vw2 /∈ L. This means ι ⋅w1uw2 ∈ Q+ but
ι ⋅w1vw2 /∈ Q+. Therefore the partial maps Q → Q defined by the words u, v are
different. Thus the number of ∼-classes cannot exceed the number of elements
in the transition monoid of (Q,A), and the syntactic monoid of L is finite.

(2)→ (1) Suppose that the syntactic monoid M = A∗/∼ of a language L ⊆ A∗
is finite. Note that by the definition of ∼, L is a union of ∼-classes (indeed, if
u ∼ v and u ∈ L, then 1u1 ∈ L, hence v = 1v1 ∈ L). Let M ′ = L/∼ be the set of all∼-classes contained in L.

Let (Q,A) be the Cayley graph of M with respect to the generating set A
considered as an automaton with input vertex 1 and output vertices M ′. Let us
show that the language recognized by (Q,A) is L. By the definition of M ′, we
have 1 ⋅L ∈M ′, therefore the language recognized by (Q,A) contains L. Suppose
that for some u ∈ A∗, we have 1 ⋅ u ∈ M ′. That means u belongs to one of the∼-classes contained in L, hence u ∈ L, so the language recognized by (Q,A) is
equal to L. �

Exercise 1.8.49. Prove that every finite monoid is the transition monoid
of a finite automaton. Hint: Let M be a finite monoid with generating set A.
Consider the corresponding Cayley graph (Q,A) of M as a finite automaton.
Then the transition monoid of that automaton is M.

Remark 1.8.50. Not every finite monoid is the syntactic monoid of some
rational language. For example, let M be the monoid {1, α, β, γ} with mul-
tiplication m1m2 = m2 whenever m2 ≠ 1 (i.e., M is the 3-element right zero
semigroup with adjoined identity, see Section 3.1). Then M is not the syntactic
monoid of any language [193]. On the other hand, every finite group is the
syntactic monoid of some rational language [226].

Not every language is rational, that is not every language has a finite syn-
tactic monoid. This easily follows from the fact that the set of all languages
is uncountable while the set of all finite automata is countable. But here is a
concrete example.

Exercise 1.8.51. Let A = {a1,⋯, ar} and let L be the set of words wn, in
which each ai occurs exactly n times. Then the free commutative monoid over
A of rank n (see Exercise 1.8.18) is isomorphic to the syntactic monoid of L (in
particular L is not a rational language).

For another example, consider the alphabet consisting of two symbols - the
left and right parentheses “(” and “)”. The Dyck language consists of balanced
sequences of parentheses. More precisely we define Dyck words by induction:
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the empty word is a Dyck word, () is a Dyck word. If we insert a subword ()
in any place of a Dyck word, we get a Dyck word again. One can obtain all
Dyck words by taking all terms of the signature with one binary operation and
removing all variables and operation symbols (leaving the parentheses only):

((x ⋅ y) ⋅ (z ⋅ t)) ⋅ (((z ⋅ y) ⋅ x) ⋅ t)→ (()())((())).
Exercise 1.8.52. Show that the syntactic monoid of the Dyck language is

infinite and has two generators p, q satisfying pq = 1, qp ≠ 1.

We shall meet this semigroup (called the bicyclic semigroup) again in Section
3.8.1.
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CHAPTER 2

Words that can be avoided

We start with an old problem from number theory whose solution lead to
the first example of an infinite cube-free word, thus showing that the word x3 is
avoidable. Then we shall describe all avoidable words.

Theorems proved in this Chapter include.

● Theorem 2.1.2 of Thue, Hedlund, Morse and Arshon about cube-free
words.
● Theorem 2.3.4 of Thue characterizing square-free substitutions.
● Theorem 2.5.14 of Bean, Ehrenfeucht, McNulty and Zimin characteriz-

ing avoidable words.

2.1. An old example

In 1851 Eugène Prouhet [271] (see also [5]) studied the following number
theory problem, which on the first glance has nothing to do with combinatorial
algebra.

Question. Are there arbitrary big numbers m such that some intervals [1,M],
M depends on m, of natural numbers can be divided into 2 disjoint parts
P1, P2 such that the sum of all elements in P1 is the same as in P2, the
sum of all squares of elements P1 is the same as in P2,. . . , the sum of
m-th powers of elements of P1 is the same as in P2.

This problem has long history. In particular, Gauss and Euler studied some
variations of this problem.

Prouhet came up with a solution. His solution may be interpreted in the
following way. Let us consider an example. Take m = 2. Consider the word
p2 ≡ abbabaab, and produce the following table:

1 2 3 4 5 6 7 8
a b b a b a a b

Now let Pa be the set of numbers from 1 to 8, that are above a in this table, Pb

be the set of numbers, that are above b: Pa = {1,4,6,7}, Pb = {2,3,5,8} (recall
the connection between words and partitions from Example 1.2.2). Let us check
the Prouhet condition:

1 + 4 + 6 + 7 = 18 = 2 + 3 + 5 + 8,

12 + 42 + 62 + 72 = 102 = 22 + 32 + 52 + 82.

If we want to construct the Prouhet decomposition for m = 3 we have to
take this word p2 ≡ abbabaab, change a by b and b by a (we’ll get baababba), and
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concatenate these two words:

p3 ≡ abbabaabbaababba.
By induction one can easily define the Prouhet word for every m: pm is ob-
tained by concatenating pm−1 and p′m−1 where p′m−1 is obtained from pm−1 by
the substitution a ↦ b, b ↦ a.

Exercise 2.1.1. Prove that for every m the partition corresponding to the
Prouhet word pm satisfies the Prouhet condition for the sums of nth powers for
every n ≤m.

The word pm was rediscovered several times after Prouhet. Axel Thue re-
discovered this word in 1906 [314] and he was the first to prove the following
result:

Theorem 2.1.2. The word pm does not contain subwords of the form www

where w is any nonempty word. Thus words pm are cube-free.

Arshon, Hedlund and Morse proved the same result in the late 30s [14],
[238]. Now it belongs to some collections of problems for high school students.

2.2. Proof of Thue’s theorem

Let us consider the following substitution:

φ(a) ≡ ab, φ(b) ≡ ba.
Words ab and ba will be called blocks.
Let t1 = a, . . . , tn = φ(tn−1).
Exercise 2.2.1. Prove that tn = pn−1 for every n ≥ 2.

Lemma 2.2.2. If w is cube-free, then φ(w) is also cube-free.

Proof. Suppose that φ(w) contains a cube ppp.
Case 1. The length of p is even.
Case 1.1. The first occurrence of p starts with the first letter of a block.

Since φ(w) is a product of blocks of length 2, and ∣p∣ is even, p ends with the
second letter of a block. Then the second and the third occurrence of p also
start with the first letter of a block and end with the second letter of a block.
Thus p is a product of blocks, so p = φ(q) for some word q. Now let us substitute
every block in φ(w) by the corresponding letter. Then φ(w) will turn into w

and ppp = φ(q)φ(q)φ(q) will turn into qqq. Therefore w contains a cube qqq.
Case 1.2. The first occurrence of p starts with the second letter of a block.

Then it ends with the first letter of a block, and the same is true for the second
and the third occurrence of p. Without loss of generality assume that p starts
with a. This a is second letter of the block ba. Since the second occurrence of
p also starts with a and this a is the second letter of a block, we can conclude
that p ends with b. Therefore p ≡ ap′b. Then we have:

φ(w) ≡ . . . b ap′b ap′b ap′b . . . .
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Consider the word bap′. This word has even length, starts with the beginning
of a block and repeats 3 times in φ(w), which is impossible by the previous case.

Case 2. The word p has odd length. If the first occurrence of p starts with
the first letter of a block, then the second occurrence of p starts with the second
letter of a block. If the first occurrence of p starts with the second letter of a
block, then the second occurrence of p starts with the first letter of a block and
the third occurrence of p starts with the second letter of a block.

In any case there are two consecutive occurrences of p such that the first one
starts with the first letter of a block and the second one starts with the second
letter of a block. Let us denote these copies of p by p′ and p′′.

It is clear that ∣p∣ ≥ 2.
Suppose that p′ starts with ab. Then p′′ also starts with ab. This b is the

first letter of a block. Therefore the third letter in p′′ is a. Therefore the third
letter in p′ is also a. This a is the first letter of a block. The second letter of
this block is b. Therefore the fourth letter of p′ is b. Then the fourth letter of
p′′ is b, which is the first letter of a block, the fifth letter of p′′ is a, same as the
fifth letter in p′, and so on. Every odd letter in p is a, every even letter in p is
b. Since p′ has odd number of letters, the last letter in p′ is a. This a is the first
letter of a block. The second letter of this block is the first letter of p′′, which
is a — a contradiction (we found a block aa). �

Exercise 2.2.3. Prove that tn does not contain subwords of the form qpqpq

for any words p and q.

2.3. Square-free words

The words constructed in the previous section do not contain cubes. Now
we will consider words that do not contain squares, the square-free words.

A word is called square-free if it does not contain a subword of the form uu.

Exercise 2.3.1. Prove that every square-free word over an alphabet with 2
letters has length at most 3.

Theorem 2.3.2 (Thue, [314]). There exist arbitrary long square-free words
over a 3-letter alphabet.

Consider the following substitution:

φ(a) ≡ abcab, φ(b) ≡ acabcb, φ(c) ≡ acbcacb.
Theorem 2.3.2 easily follows from the following

Lemma 2.3.3. For every square-free word w, φ(w) is square-free.

A substitition satisfying the condition of Lemma 2.3.3 will be called square-
free.

In turn, Lemma 2.3.3 will be a corollary of the following powerful theorem
of Thue.

Theorem 2.3.4. Let M and N be alphabets and let φ be a substitution from
M to N+. If
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(1) φ(w) is square-free whenever w is a square-free word from M+ of length
no greater than 3,

(2) a = b whenever a, b ∈M and φ(a) is a subword of φ(b),
then φ is a square-free substitution.

Proof of theorem 2.3.4. Let φ satisfy (1) and (2). First of all let us
prove the following “rigidity” statement:

Claim. If a, e1, . . . , en are letters from M , E ≡ e1 . . . en is a square-free word,
and φ(E) ≡Xφ(a)Y then a = ej , X = φ(e1 . . . ej−1), Y = φ(ej+1 . . . en) for
some j.

Suppose this is not true. Since φ(ei) cannot be a subword of φ(a) (by (2) ),
φ(a) intersects with at most 2 factors φ(ei). Since φ(a) cannot be a subword of
φ(ei) (again by (2) ), φ(a) intersects with exactly 2 factors, say φ(ejej+1). Then
φ(ej) ≡ pq, φ(ej+1) ≡ rs, and φ(a) ≡ qr. Now φ(aeja) ≡ qrpqqr is not square-free.
By condition (1) the word aeja is not square-free, thus a = ej . On the other hand:
φ(aej+1a) ≡ qrrsqr also is not square-free. Thus a = ej+1. Therefore ej = ej+1,
which contradicts the fact that e1 . . . en is a square-free word.

Now suppose that w is a square-free word from M+ and φ(w) ≡ xyyz for
some nonempty word y. Let w ≡ e0 . . . en. Let us denote φ(ei) by Ei. We have

E0E1 . . . En ≡ xyyz.
If E0 is contained in x or En is contained in z then we can shorten w (delete e0

or en). Therefore we can suppose that

E0 ≡ xE′0, En = E′nz, yy ≡ E′0E1 . . . En−1E
′
n.

By condition (0) we have that n ≥ 3.
The word y is equal to E′0E1 . . . E

′
j ≡ E′′j Ej+1 . . . E

′
n with E′jE

′′
j ≡ Ej . If j = 0

then E1E2 must be a subword of E0, which is impossible. Similarly, j ≠ n.
Now by the rigidity statement,

E′0 ≡ E′′j , E1 ≡ Ej+1, . . . ,E
′
j ≡ E′n,

and, in particular, n = 2j. Therefore

φ(e0ejen) ≡ E0EjEn ≡ xE′0E′jE′′j E′nz ≡
xE′0E

′
jE
′
0E
′
jz.

By condition (1) either e0 = ej or ej = en. Without loss of generality let
e0 = ej . We also know that E1 ≡ Ej+1, . . . ,Ej−1 ≡ E2j−1. Condition (1) implies
that φ is one-to-one. Therefore e0 = ej, e1 = ej+1, . . . . Hence w is not square-free:
it is equal to e0e1 . . . ej−1e0 . . . ej−1en. �

Theorem 2.3.4 implies Lemma 2.3.3 (check it!) and Theorem 2.3.2.
A complete algorithmic characterization of square-free substitutions was

found first by Berstel [47], [46]. The best (in the computational sense) charac-
terization was found by Crochemore.

Theorem 2.3.5 (Crochemore [76]). Let φ be a substitution, M be the max-
imal size of a block, m be the minimal size of a block, k be the maximum of 3
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and the number 1 + [(M − 3)/m]. Then φ is square-free if and only if for every
square-free word w of length ≤ k φ(w) is square-free.

Using theorem 2.3.4 and a computer, one can establish a substitution from
an infinite alphabet to {a, b, c}+ that is square-free. We will present here a substi-
tution from {x1, x2 . . .} to {a, b, c, d, e}+ . Let w1,w2, . . . be an infinite sequence
of distinct square-free words on a three-letter alphabet {a, b, c}. Consider the
following substitution from x1, x2, . . . to {a, b, c, d, e}+ :

xi → dwiewi.

This substitution is square-free by Theorem 2.3.4. Indeed it is clear that a
word dwiewi cannot be a subword of dwjewj because wi and wj do not contain
d and e. Now if dwiewidwjewjdwkewk contains a square uu then the numbers of
d′s and e′s in uu must be even. Neither of them may be 0, because otherwise one
of the words wi,wj ,wk would contain a square. So each of them is 2. Therefore
each of the copies of u has one d and one e. The first d cannot participate,
otherwise u must be equal to dwiewi, and wi ≠ wj . Therefore u must start at
the middle of the first wi, and end in the middle of the first wj. Then u must
contain the subword ewid. But this subword occurs in our product only once, so
the second copy of u cannot contain it, a contradiction.

A square-free substitution from {a1, a2, a3 . . .} to {a, b, c}+ has been found
by Bean, Ehrenfeucht and McNulty [28].

2.4. kth power-free substitutions

For every natural k ≥ 2, a substitution φ is called kth power free if the word
φ(w) is k-power free whenever w is.

The following theorem, also proved by Bean–Ehrenfeucht–McNulty, gives a
sufficient condition for a substitution to be kth power-free for k > 2.

Theorem 2.4.1. Let M and N be alphabets and let φ be a substitution M →

N+ that satisfies the following three conditions

(1) φ(w) is kth power-free whenever w is a k-power free word of length no
greater than k + 1.

(2) a = b whenever φ(a) is a subword of φ(b).
(3) If a, b, c ∈M and xφ(a)y ≡ φ(b)φ(c) then either x is empty and a = b or

y is empty and a = c.
Then φ is kth power-free.

Exercise 2.4.2. Prove theorem 2.4.1.

In particular, Theorem 2.4.1 implies existence of cube-free substitutions from
the infinite set {a1, a2, . . . ,} to {a, b}+. An explicit substitution has been con-
structed in [28].

2.5. Avoidable words

2.5.1. Examples and simple facts. We say that a word u avoids a word
v if u does not contain the value of v under any substitution replacing letters
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by nonempty words (in that case we also call the word u v-free). A word v is
called k-avoidable if there exists an infinite word in a k-letter alphabet avoiding
v (equivalently, if there are infinitely many (finite) words in a k-letter alphabet
avoiding v). If v is k-avoidable for some k, then v is called avoidable. We already
know that xk, k ≥ 2, are avoidable words. It is clear that x2yx and xyxy are
also avoidable words because, in general,

Exercise 2.5.1. Prove that if u is a k-avoidable word and φ is any substi-
tution then any word containing φ(u) is also k-avoidable.

The following exercise is also useful.

Exercise 2.5.2. Prove that for every words u and w, if w avoids u, then
every subword of w avoids u.

On the other hand, the word xyx is unavoidable. Indeed, let k be any
natural number. Suppose that there exists an infinite set of words W in a k-
letter alphabet that avoid xyx. Then W must contain a word w of length > 2k.
Since we have only k letters in the alphabet, one of these letters, say a, occurs
twice in w, that is w contains a subword apa for some nonempty word p. This
word is of the form xyx (φ ∶ x↦ a, y ↦ p).

Let us consider the following words Zn, which will be called Zimin words:

(2.5.1) Z1 ≡ x1,Z2 ≡ x1x2x1, . . . ,Zn ≡ Zn−1xnZn−1.

Notice that these words were studied before Zimin. They appear in [28] as
“maximal” unavoidable words. Before that they were considered by Coudrain
and Schützenberger [75], and even before that they were considered by Levitzki
[201] also in connection to Burnside-type problems (for rings).

The next exercise shows that prehistoric humans discovered Zimin words as
soon as they learned how to count and divide by 2.

Exercise 2.5.3. Count the numbers i from 1 to 2n − 1 and write down the
maximal exponent of 2 dividing i. The word we obtain is 01020103 . . . . Show
that this word is the value of Zn under the substitution xj ↦ j − 1.

Zimin was first to understand the real role of Zimin words in the theory of
avoidable words and Burnside problems for semigroups.

Exercise 2.5.4 (Bean–Ehrenfeucht–McNulty [28], Zimin [337], [338]). Zn

is an unavoidable word (for every n).

We shall show that the Zimin word Zn is a “universal” unavoidable word in
an n-letter alphabet.

Let us list some properties of these words.

Exercise 2.5.5. (1) ∣Zn∣ = 2n − 1,
(2) Every odd letter in Zn is x1, every even letter in Zn is xi for i > 1,
(3) For every k ≤ n, Zn ≡ Zk(Zn−k+1, xn−k+2, . . . , xn),
(4) For every k,n, Zn(Zk+1, xk+2, . . . , xk+n) ≡ Zn+k(x1, . . . , xn+k),
(5) For every k,n, Zk ⋅Zn(xk+1Zk, . . . , xk+nZk) ≡ Zn+k(x1, . . . , xn+k),
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(6) If we delete the letter x1 from Zn then we get a word that differs from
Zn−1 only by names of the letters.

(7) Every word in the n-letter alphabet {x1, . . . , xn}, which properly contains
Zn, contains a square, and so is avoidable.

2.5.2. Fusions, free sets and free deletions.

Definition 2.5.6. Let u be a word in an alphabet X, let B and C be subsets
of X. We call the pair (B,C) a fusion in u if for every two-letter subword xy in
u

x ∈ B if and only if y ∈ C.
We will call B and C components of the fusion.

For example the sets {x} and {y} form a fusion in the word yxyzxytx and
in the word xyxy. Sets {x, z} and {z, t} form a fusion in the word xtxzztxz.

Definition 2.5.7. If B,C is a fusion in u, then any subset A ⊆ B/C is called
a free set of u.

For example, {x} is a free set in xtxzztxz.

Exercise 2.5.8. Find all fusions and all free sets in Zn.

Let u be a word, Y be a subset of letters of u. Consider the word obtained
from u by deleting all letters that belong to Y. This word will be denoted by uY .

Definition 2.5.9. A deletion of a free set A in a word is called a free
deletion and is denoted by σA.

Definition 2.5.10. A sequence of deletions σY , σZ , . . . in a word u is called
a sequence of free deletions if Y is a free set in u, Z is a free set in uY ≡ σY (u),
etc.

Let us fix some notation. Let u = x1x2 . . . xn be a word, a be a letter. For
α,β ∈ {0,1} we denote by [u,a]αβ the word u with letter a inserted between
every two consecutive letters and possibly at the beginning and at the end.
More precisely

(2.5.2) [u,a]αβ = aαx1ax2a . . . axna
β

Definition 2.5.11. Let u be a word, B,C be a fusion in u, A ⊆ B/C and a

be a letter not in cont(u). For every substitution φ of the word σA(u) we can
define a substitution φ∗ of u by the following rules:

(2.5.3) φ∗(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a if x ∈ A[φ(x), a]00 if x ∈ C/B[φ(x), a]01 if x ∈ B ∩C[φ(x), a]11 if x ∈ B/(C ∪A)[φ(x), a]10 otherwise.

We will call φ∗ the substitution induced by φ relative to the triple (A,B,C).
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For example, if u ≡ xyzt, B = {x, z}, C = {y, t}, A = {x}, and φ(x) ≡ x,φ(y) ≡
y,φ(z) ≡ z,φ(t) ≡ t, then φ∗(x) ≡ a, φ(y) ≡ y, φ(z) ≡ aza, φ(t) ≡ t. Therefore
φ∗(u) ≡ ayazat.

The following lemma contains the main property of free deletions.

Lemma 2.5.12. For every word u, φ∗(u) = [φ(σA(u)), a]αβ for some α and

β. If u starts and ends with a letter from B/C then α = β = 1.

Exercise 2.5.13. Prove lemma 2.5.12.

2.5.3. The Bean–Ehrenfeucht–McNulty & Zimin theorem.

2.5.3.1. The formulation.

Theorem 2.5.14 (Bean–Ehrenfeucht–McNulty, Zimin). The following con-
ditions are equivalent for every word u:

(1) u is unavoidable.
(2) Zn contains a value of u, where n is the number of distinct letters in u.

(3) There exists a sequence of free deletions that reduces u to a 1-letter word.

Exercise 2.5.15. Deduce the following two facts from Theorem 2.5.14

(1) Every word of length ≥ 2n in a n-letter alphabet is avoidable.
(2) Every unavoidable word u contains a linear letter, i.e., a letter that occurs

in u only once.

Exercise 2.5.16. Zn has a sequence of free deletions of length n − 1 which
reduces Zn to xn. Hint: The set {x1} is a free set in Zn. Deleting x1, we obtain
a word that differs from Zn−1 only by names of letters (part (6) of Exercise
2.5.5).

Our proof of Theorem 2.5.14 is simpler than the original proofs of Bean–
Ehrenfeucht–McNulty and Zimin. We shall follow [277]. It is also more general:
the same ideas will be used later in a more complicated situation.

2.5.3.2. Proof of (3) → (2).
Exercise 2.5.17. Prove this implication. Hint: Suppose that a one letter

word p is obtained from u by a sequence of free deletions σ1, . . . , σk: u → u1 →

. . . uk ≡ p. Note that k ≤ n − 1. Let φ be the identity substitution p ↦ p.
Then apply induced substitutions (2.5.3) and Lemma 2.5.12 k times using letters
xk, xk−1, . . . , x1 and notice that φ∗(uk−1) is a subword of xkpxk, φ∗∗(uk−2 is a
subword of xk−1xkxk−1pxk−1xkxk−1, etc.

2.5.3.3. Proof of (2) → (1). This implication immediately follows from Ex-
ercises 2.5.1 and 2.5.2.

2.5.3.4. Proof of (1) → (3). Suppose that there is no sequence of free dele-
tions that reduces u to a 1-letter word. We shall prove that u is avoidable.

In fact we will construct a substitution γ such that for some letter a words
γ(a), γ2(a), . . . are all different and avoid u.

The substitution γ is constructed as follows. Let r be a natural number. LetA denote the alphabet of r2 letters aij , 1 ≤ i, j ≤ r. Consider the r2 × r-matrix
M , in which every odd column is equal to

(1,1, . . . ,1,2,2, . . . ,2, . . . , r, r, . . . , r),
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and each even column is equal to

(1,2, . . . , r,1,2, . . . , r, . . . ,1,2, . . . , r).
Replace every number i in the j-th column by the letter aij. The resulting

matrix is denoted by M ′. The rows of M ′ can be considered as words in the
alphabet A. Denote these words by w1, . . . ,wr2 counting from top to bottom.
Now define the substitution γ by the following rule:

γ(aij) = w(j−1)r+i.

For every j = 1,2, . . . let Aj be the set {aij ∣ i = 1,2, . . . , r}.
Exercise 2.5.18. γ satisfies the following properties:

(1) The length of each block is r.
(2) No two different blocks have common 2-letter subwords.
(3) All letters in each block are different.
(4) The j-th letter in each block belongs to Aj (that is its second index is j).

Theorem 2.5.19. Suppose that the word u cannot be reduced to a 1-letter
word by a sequence of free deletions. Let r > 6n + 1 (where n is the number of
letters in u). Then γm(a11) avoids u for every m.

Proof. By contradiction, suppose there exists m such that γm(a11) con-
tains δ(u) for some substitution δ. We may suppose that m is minimal possible.
Clearly m > 0.

The idea of getting a contradiction is the following. First of all we will
modify δ and find a substitution ǫ such that ǫ(u) has “long” sequences of free
deletions. Then we prove that if a value of a word has “long” sequences of free
deletions, then so does the word itself.

Let us call images of letters under γ blocks, and let us call products of blocks
integral words.

Let w be an integral word. Let v be a subword of w. Then v is equal to a
product of three words p1p2p3 where p1 is a suffix of a block, p2 is a product
of blocks or lies strictly inside a block, p3 is a prefix of a block. Some of these
words may be empty. The following property of integral words is important. It
easily follows from Exercise 2.5.18.

Lemma 2.5.20. The decomposition v = p1p2p3 does not depend on the par-
ticular occurrence of v in an integral word: if we consider another occurrence of
v, the decomposition v = p1p2p3 will be the same).

Now let w = γm(a11). We have that δ(u) is a subword of w. For every letter
x ∈ cont(u) let δ(x) = px1px2px3 be the decomposition described above.

Now let us take any block B in w. This block can appear in many different
places of w. Let us consider all words pxi that are contained in all possible
occurrences of B. There are no more than 3n such words pxi. Each of them may
occur in B at most once because all letters in B are different. Therefore we may
consider B as an interval, which contains at most 3n other intervals. The length
of B is at least 6n + 2. Therefore there exists a 2-letter subword tB of B that
satisfies the following condition:
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(T) For every subword pxi inside B, the word tB either is contained in pxi or
does not have common letters with it.

This easily follows from the trivial 1-dimensional geometry fact that k intervals
on a line divide this line into at most 2k+1 subintervals two of which are infinite
(why?).

Now let us replace the subword tB in every block B in w by a new letter yB.

We shall get a new word w1 in the alphabet A ∪ {yB ∣ B = γ(aij)}. This word
has the following form:

P0Q1y1P1Q2y2P2 . . . QkykPkQk+1,

where Qi is a prefix of a block, Pi is a suffix of a block, Pi’s and Qi’s do not
overlap, and

(2.5.4) if yi = yj then Qi = Qj and Pi = Pj .

Every word with these properties will be called a quasi-integral word.
Let us consider the substitution ǫ that is obtained from δ by the following

procedure: take each δ(x) and replace each occurrence of tB there by yB. The
property (T) of words tB implies that occurrences of words tB in δ(x) do not
intersect, so our definition of ǫ is consistent. This property also implies that
ǫ(u) is a subword of the quasi-integral word w1.

Now we shall show that w1 (and any other quasi-integral word) has “long”
sequences of free deletions.

Exercise 2.5.21. In any quasi-integral word the sequence of deletions σA1
,

σA2
. . ., σAr is a sequence of free deletions.

The result of this sequence of deletions is, of course, the deletion of all
letters from A. Now we have to understand how free deletions in ǫ(u) relate to
the deletions in u.

First of all we have the following two simple observations.
Let θ be any substitution and let v be any word. Let D be a set of letters

of θ(v). Let D′ be a subset of cont(v) defined as follows:

D′ = {x ∣ cont(θ(x)) ⊆D}.
Now let us define a substitution θD of vD′ :

θD(x) = θ(x)D.
Exercise 2.5.22. θD(vD′) = θ(v)D.
The following exercise, while simple, is a yet another key property of free

sets.

Exercise 2.5.23. If D is a free set in θ(v) then D′ is a free set in v.

Let us apply Exercises 2.5.21, 2.5.22 and 2.5.23 to our situation: ǫ(u) ⪯ w1.

We deduce that there exists a sequence of free deletions σ1 . . ., σr in u. Let uA′
be the result of these deletions. Then by Exercise 2.5.22

ǫA(uA′) ≤ (w1)A = y1y2 . . . yk.
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Now, by definition, each yB determines the block B. Let us consider the
substitution α that takes each yB to B. Then α((w1)A) = w. Therefore αǫA(uA′)
is a subword of w = γm(a11). But the image of each letter from uA′ under αǫA
is a product of blocks. Therefore we can apply γ−1 to αǫA(uA′). The result,
γ−1αǫA(uA′), is a subword of γm−1(a11).

Now we can complete the proof. The word uA′ contains at most the same
number of letters as u, and m − 1 is strictly less than m. By the assumption
(we assumed that m is minimal) there exists a sequence of free deletions, which
reduces uA′ to a 1-letter word. If we combine this sequence of free deletions
with the sequence that we used to get uA′ from u, we will get a sequence of free
deletions that reduces u to a 1-letter word, which is impossible.

The theorem is proved. �

2.5.4. Simultaneous avoidability.

Definition 2.5.24. A set of words W is said to be (k-)avoidable if there
exists an infinite set of words in a finite alphabet (a k-letter alphabet), each of
which avoids each word from W.

Exercise 2.5.25. Prove that a finite system of words W is avoidable if and
only if each word in W is avoidable. Hint: Use Theorem 2.5.19. Alternatively, if
Xw is the finite alphabet of an infinite word avoiding w ∈W , find an infinite word
in the alphabet ∏w∈W Xw (which is the Cartesian product of all Xw) avoiding
all words from W simultaneously.

2.6. Further reading and open problems

More on avoidable words, Prouhet–Morse–Thue words and related topics,
applications to dynamics and arithmetics can be found in the books by Lothaire
[206, 207] and N. Pytheas Fogg [105].

2.6.1. Square- and cube-free words. The subject of k-power free words
and certain nice generalizations of this concept is fast growing. Some of the
recent papers are surveyed by Shur in [304].

One of the interesting problems was: how to decide, given a substitution
φ∶M → M+ and a ∈ M whether φn(a) is k-th power free for all n. Some suffi-
cient conditions are in Thue’s Theorem 2.3.4. Berstel [47] showed that over an
alphabet with three letters, there is an algorithm for k = 2. Then Karhumäki
[171] showed that over a binary alphabet, there is an algorithm for k = 3. The
problem was solved in general by Mignosi and Séébold [231], who showed that
there exists an algorithm for this problem for all alphabet sizes and all k.

There are several interesting generalizations of k-power free word studied,
in particular, by Capri and Currie (see [64] and a survey [78]). For example,
we say that a word u does not contain Abelian k-th powers if it does not contain
products w1w2 . . . wk where all subwords wi are permutations of each other. One
of the typical results about such words is the following. Let a(k) be the smallest
alphabet size, on which Abelian k-powers are avoidable. Then a(4) = 2, a(3) =
3, a(2) = 4 (see [78]).
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2.6.2. Avoidable words. Open problems about avoidable words are dis-
cussed in McNulty’s talks [227]. Since the slides of [227] are not generally
available, we present a few open problems here. Some of these (and other)
problems can be found in the survey by Currie [78] as well.

Problem 2.6.1. For each natural number n find out how many unavoidable
words there are in the n letter alphabet.

If a word u is avoidable, then there is the smallest natural number µ(u) such
that there is an infinite word on µ(u) letters, which avoids u. We can extend
this function µ to all words by putting µ(u) = 1 when u is unavoidable.

Problem 2.6.2. Let u be an avoidable word with µ(u) =m. Can every u-free
word on m letters be extended to a maximal u-free word on m letters?

The answer is yes if m = 1. The answer is not known even for m = 2.

Problem 2.6.3. Is µ a recursive function? That is, is there an algorithm
that computes µ ?

The proof of Theorem 2.5.14 in Chapter 2 gives an upper bound on µ as a
quadratic polynomial in the number c = c(u) of different letters in u. A linear
upper bound was found by I. Mel’nichuk [229]: µ(u) ≤ 3c/2 + 3. She also an-
nounced (in 1988) that µ(u) ≤ c + 6 (unpublished). On the other hand we still
do not know the answer to the following problem, which is open since [28, 337]

Problem 2.6.4. Is µ(u) bounded from above by a constant?

It is not even known if that constant is not equal to 5. By Exercise 2.3.1
and Theorem 2.3.4, µ(x2) = 3. In [17], Baker, McNulty and Taylot found the
first word u = abx1bcx2cax3bax4ac, for which µ(u) = 4. Clark [68] constructed a
somewhat similar looking word u = abx1bax2acx3bcx4cdax5dcd, for which µ(u) =
5. This is all we know about the lower bound of µ. Note that the words from
[17] and [68] contain linear letters, i.e., letters appearing only once.

Problem 2.6.5. Suppose that u does not contain linear letters. Is it true
that µ(u) ≤ 3 ?

One can also consider the following Abelian version of avoidability, which
generalizes the notion of Abelian k-power free words from Section 2.6.1. Let φ
be a substitution. We say that a word W contains an Abelian image of a word
w under φ if it contains a word w′ obtained from w by replacing each letter x
by a permutation of the word φ(x). We say that w is avoidable in the Abelian
sense if there are infinitely many words in a finite alphabet that do not contain
Abelian images of w. The following nice problem from [78] was solved (in the
affirmative) for n = 1,2,3 in Currie and Linek [79].

Problem 2.6.6. Let w be a word in an alphabet with n letters. Is it true
that w is avoidable in the Abelian sense if and only if the Zimin word Zn does
not contain Abelian images of w ?
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CHAPTER 3

Semigroups

Semigroup presentations and identities provide “syntactic tools” to analyze
the structure of semigroups. In this chapter, we start by presenting the “semantic
tools”, main building blocks of semigroups. We also present some results showing
how a semigroup can be constructed from these building blocks.

Then we show how to use interaction between syntax and semantics to de-
scribe varieties of semigroups where nil-semigroups are locally finite and to de-
scribe finite inherently non-finitely based semigroups and inverse semigroups.
One of the main tools used in the proofs here, uniformly recurrent words, come
from symbolic dynamics. Another tool - Zimin words introduced in the previous
chapter.

We give several examples of semigroups of intermediate growth, including a
semigroup of matrices and a semigroup given by a Mealy automaton.

Finally we show that not only symbolic dynamics can help solve problems
about semigroups, but also semigroups can help solve problems in symbolic
dynamics: we present Trahtman’s solution of the famous road coloring problem.

Theorems proved in this Chapter include.

● Theorem 3.1.17 of Hedlund and Morse giving examples of infinite finitely
generated nil-semigroups.
● My Theorem 3.3.4 characterizing varieties of semigroups where all nil-

semigroups are locally finite.
● Theorem 3.4.1 of T.C. Brown showing how to construct locally finite

semigroups from locally finite blocks.
● Theorem 3.6.16 by Rees and Sushkevich characterizing 0-simple peri-

odic semigroups.
● Theorem 3.6.24 by Shevrin characterizing periodic semigroups without

divisors A2 and B2.
● My Theorem 3.6.34 characterizing finite inherently non-finitely based

semigroups.
● Theorem 3.7.4 of Chebyshev about prime numbers.
● Theorem 3.7.11 by Nathanson and Theorem 3.7.14 by Bartholdi, Reznykov

and Sushchansky giving examples of semigroups of intermediate growth.

● My Theorem 3.8.5 about inherently non-finitely based finite inverse
semigroups.
● Trahtman’s road coloring Theorem 3.9.11.
● Theorem 3.9.18 of Adler, Goodwyn and Weiss about the AGW equiv-

alence of subshifts of finite type.
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3.1. Structure of semigroups

If a semigroup S does not contain an identity element or a zero, then we can
formally add such an element to S and obtain a monoid or a semigroup with
zero. These semigroups are denoted by S1 and S0 respectively. If S contains an
identity element (resp. a zero) then by definition S1 = S (resp. S0 = S). Note
that the notation B1

2 above agrees with this notation.

Exercise 3.1.1. Every semigroup has at most one identity element and at
most one zero.

Recall that an element e of a semigroup is called an idempotent if e2 = e. An
identity element and a zero are of course idempotents. The set of idempotents
of a semigroup S is denoted by E(S). There is a natural partial order on the
set E(S): e ≤ f if and only if ef = fe = e.

Exercise 3.1.2. Prove that ≤ is indeed a partial order (i.e., it is reflexive,
transitive and anti-symmetric).

A semigroup where every element is an idempotent, that is it satisfies the
identity x2 = x, is called a band.

A commutative band is called a semilattice.

Exercise 3.1.3. Let S be a set of subsets of a set X closed under taking
intersections. Define a multiplication on S by U ⋅ V = U ∩ V .

(1) Show that S is a semilattice.
(2) Show that every semilattice is isomorphic to a semilattice constructed

this way.
(3) Deduce from (2) that every finitely generated semilattice is finite.

Hint: To prove (2) let S be a semilattice. Consider a map φ from S to the
semilattice of all subsets of S (with operation intersection) that takes e to eS.
Show that φ is an injective homomorphism.

A band satisfying the identity xy = x (resp., xy = y, xyx = x) is called a left
zero band (resp., right zero band, rectangular band).

Exercise 3.1.4. Let I, J be two nonempty sets. Define a multiplication on
S = I × J by (i, j)(i′, j′) = (i, j′).
(1) Show that S is a rectangular band, which is a left (right) zero band if and

only if ∣J ∣ = 1 (resp. ∣I ∣ = 1).
(2) Show that every rectangular band is isomorphic to a band constructed

this way.
(3) Deduce from (2) that every finitely generated rectangular band is finite.

Hint: To prove (2), let S be a rectangular band, e ∈ S. Let I = Se,J = eS.
Show that I, J are subsemigroups of S, I is a left zero band, J is a right zero
band, and S is isomorphic to the direct product I × J . The isomorphism takes(xe, ey) to xey.

Definition 3.1.5. A semigroup S is called a band of semigroups Sα, α ∈ A,
if S is a disjoint union of Sα, and the corresponding partition is a congruence.
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The quotient semigroup of S over this congruence is a band. If this band is
commutative (rectangular), then S is called a semilattice (resp., a rectangular
band) of semigroups Sα.

Let S be any semigroup. Then we shall need four Green’s relations on S:

● aLb ⇐⇒ S1a = S1b

● aRb ⇐⇒ aS1 = bS1

● aJ b ⇐⇒ S1aS1 = S1bS1

● aHb ⇐⇒ aLb and aRb.
Exercise 3.1.6. Prove that each of Green’s relations is an equivalence rela-

tion.

Exercise 3.1.7. Describe Green’s relations on the semigroup B1
2 .

Exercise 3.1.8. Prove that all four relations, L, R, J and H, on the free
semigroup are trivial.

Exercise 3.1.9. LetMn(R) be the multiplicative semigroup of n×n-matrices
with real entries. Prove that two matrices in Mn are L-related if and only if they
are row equivalent (that is one of them can be obtained from another one by
a sequence of elementary row transformations); two matrices are R-equivalent
if and only if they are column-equivalent; two matrices are J -equivalent if and
only if they have the same rank.

3.1.1. Periodic semigroups. A semigroup S is periodic if all its cyclic
subsemigroups are finite, equivalently if for every element x ∈ S there exist two
positive integers m and n such that xm = xm+n.

Example 3.1.10. Every band is a periodic semigroup, every finite semigroup
is periodic.

Exercise 3.1.11. Prove that if e is a minimal idempotent (with respect to
the order ≤, see Exercise 3.1.2) of a periodic semigroup S, then eSe is a maximal
subgroup of S with e as its identity element.

3.1.2. Periodic semigroups with exactly one idempotent. A nil-se-
migroup is a semigroup with a zero element such that a power of every element
is equal to zero. Clearly every nil-semigroup is periodic and contains exactly
one idempotent, the zero.

Recall that a semigroup is nilpotent of class k if it has a zero and any product
of k elements is zero. A nilpotent semigroup of class 2 is called a semigroup with
zero product.

Exercise 3.1.12. Deduce from Exercise 1.8.7 that any finite cyclic semi-
group contains exactly one idempotent. Prove that every periodic semigroup
contains an idempotent.

Exercise 3.1.13. Show that a cyclic semigroup ⟨a ⟩ is a group if and only
if an = a for some n. In this case an−1 is the identity element of this group.

The next lemma gives a description of periodic semigroups with exactly one
idempotent.
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Lemma 3.1.14. A periodic semigroup S contains exactly one idempotent if
and only if S contains an ideal G, which is a subgroup, and the Rees quotient
S/G is a nil-semigroup.

Proof. If S has an idealG that is a group, and S/G is nil, then S contains no
idempotents outside G. There exists only one idempotent inside G, the identity
element of G. Thus S contains exactly one idempotent.

Now let S be a periodic semigroup with exactly one idempotent e. Consider
the set SeS. It is clear that SeS is an ideal of S.

For every p ∈ S, the cyclic subsemigroup ⟨pe ⟩ contains the idempotent e by
Exercise 3.1.12, so (pe)n = e for some n. Multiplying by pe on the left, gives us(pe)n+1 = pe. So ⟨pe ⟩ is a group by Exercise 3.1.13. A group cannot contain two
different idempotents, so e is the identity element for ⟨pe ⟩. Therefore epe = pe
for every p ∈ S. Similarly eqe = eq for every q ∈ S. Therefore epeqe = peq for every
p, q ∈ S, so e is the identity element in SeS. Since a power of any element from
SeS is e, we conclude that SeS is a group.

In the quotient semigroup S/SeS the class SeS is a zero (Exercise 1.8.14).
Since for every x in S, the subsemigroup ⟨x ⟩ contains e, a power of any element
of S/SeS is zero. Thus S/SeS is a nil-semigroup. �

Exercise 3.1.15. Let S be a periodic semigroup. Let E be the set of all
idempotents of S. Prove that SES is an ideal of S and S/SES is a nil-semigroup.

3.1.3. Finite nil-semigroups.

Lemma 3.1.16. Every finite nil-semigroup is nilpotent.

Proof. Let S be a nil-semigroup of order n. Consider the free semigroup
S+ with S as a set of free generators and the natural homomorphism from S+ to
S. We need to show that any word of sufficiently large length in S+ represents 0
in S. Consider any word of length ≥ n+ 1 from S+. By the pigeon-hole principle
there exist two different prefixes u and up of w that represent the same element
in S. Thus u = up in S. Multiplying this equality by p on the right we get
u = up = up2 = ⋅ ⋅ ⋅ = upk in S for every k ≥ 1. Since S is a nil-semigroup, one of
the words pk represents 0 in S. Therefore u represents 0 in S, and since u is a
prefix of w, w represents 0 in S too. Therefore S is nilpotent of class n + 1. �

It is easy to see that every finitely generated nilpotent semigroup is finite
(prove it!). Thus by Lemma 3.1.16 a finitely generated nil-semigroup is finite
if and only if it is nilpotent. The first example of an infinite finitely generated
nil-semigroup was published by Morse and Hedlund [240], but the construction,
which they used, is attributed to Dilworth.

Theorem 3.1.17. There exist

(a) a 2-generated infinite semigroup with 0 that satisfies the identity x3 = 0;
therefore it satisfies the identity x3 = x4,

(b) a 3-generated infinite semigroup with 0 that satisfies the identity x2 = 0;
therefore it satisfies the identity x2 = x3.
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Proof. (The Dilworth construction) Let us take any set of (nonempty)
words W closed under taking (nonempty) subwords. Let S(W ) be the set W
with an additional symbol 0. Define an operation on S(W ) by the following rule:
u ∗ v = uv if uv ∈W , and u ∗ v = 0 otherwise. The set S(W ) with this operation
is a semigroup. It satisfies the identity x2 = 0 (resp. x3 = 0) provided W consists
of square-free (cube-free) words. Indeed, since xx (resp. xxx) is not a word
from W , x ∗ x (resp. x ∗ x ∗ x) must be equal to 0. �

Using the Dilworth construction, it is easy to translate statements from the
language of words into the language of semigroups. For example we can replace
x2 and x3 by arbitrary words u(x1, . . . , xn), and ask the following question:
When does S(W ) satisfy identically u(x1, . . . , xn) = 0 ? The answer is almost
clear:

Theorem 3.1.18. S(W ) satisfies the identity u = 0 if and only if words from
W are u-free.

Exercise 3.1.19. Prove this theorem.

Translating the concept of avoidability from Chapter 2 into the language of
semigroups we get

Theorem 3.1.20. For every word u the following conditions are equivalent:

(1) u is k-avoidable;
(2) There exists an infinite semigroup S generated by k elements, which iden-

tically satisfies u = 0.

Proof. (1) → (2). If u is k-avoidable, then the set W of all words in a
k-letter alphabet that avoid u is infinite. It is clear that W is closed under
taking subwords. Consider S(W ). This semigroup is infinite, k-generated, and,
by Theorem 3.1.18 satisfies the identity u = 0.(2) → (1). Let S be an infinite k-generated semigroup that satisfies the
identity u = 0. Let {x1, . . . , xk} be the generators of S. Let y1, y2, . . . be all
(infinitely many) non-zero elements of S. Since S is generated by x′s, each yi is
represented by a word in x′s (see Section 1.2.1). Take one such word wi for each
yi.

Each of these words is written in the k-letter alphabet of x′s. Suppose
that one of these wi does not avoid u. This means that wi contains φ(u) for
some substitution φ. Therefore wi ≡ pφ(u)q where p, q are words in our k-letter
alphabet.

For every word v in this alphabet let v̄ be the element of S represented by
this word. Then we have that w̄i = yi. So we have

yi = p̄ ¯φ(u)q̄ = p̄u( ¯φ(x1), . . . , ¯φ(xk))q̄.
But the middle term in the last product is 0 since S satisfies u = 0 identically.
Therefore yi = 0, a contradiction (we took yi to be non-zero). �

The proof of the following result is similar to Theorem 3.1.20.

Theorem 3.1.21. A set of words W is k-avoidable if and only if there exists
an infinite k-generated semigroup satisfying identities w = 0 for all w ∈W.
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3.2. Free semigroups and varieties

3.2.1. Free Rees factor-semigroups. Let us take a set of words W , and
an alphabet A, and consider the set I(W ) of all words from A+ that do not
avoid some words from W (i.e., I(W ) is the union of I({w}) for all w ∈ W ).
The set I(W ) is an ideal in A+ (prove it!).

Then we can consider the Rees factor semigroup A+/I(W ) (see Exercise
1.8.13), which consists of the set of words A+/I(W ) (which is, of course, the set
of all words that avoid W ) and 0 with an obvious multiplication: u ⋅ v = uv if
uv ∉ I(W ) and 0 otherwise.

Theorem 3.2.1. A Rees quotient semigroup A+/I is relatively free if and
only if I = I(W ) for some set of words W.

Exercise 3.2.2. Prove Theorem 3.2.1. Hint: For the “if” part use Theorem
1.4.25. For the “only if part”, assume that A+/I is relatively free, then take
W = I and use Theorem 1.4.25 again.

Definition 3.2.3. The ideal I(W ) is called the verbal ideal defined by W.

3.2.2. A description of relatively free semigroups. Every semigroup
is a quotient semigroup of a free semigroup A+ over some congruence σ. So we
have to describe congruences, which give us relatively free semigroups.

Theorem 3.2.4. A quotient semigroup A+/σ is relatively free if and only if
σ is stable under all endomorphisms of A+.

Exercise 3.2.5. Prove this theorem. Hint: Use Theorem 1.4.25.

We will call congruences with the property from Theorem 3.2.4 verbal con-
gruences.

We shall not distinguish between pairs of words (u, v) and identities. In
particular if W is a set of pairs of words, then we will say that an identity u = v
belongs to W if (u, v) ∈W.

Notice that if a pair (u, v) is from a verbal congruence σ then u = v is
always an identity of the relatively free semigroup A+/σ. Conversely if u = v is
an identity of A+/σ then (u, v) ∈ σ. In particular, if I is a verbal ideal of A+ and
v ∈ I then A+/I satisfies the identity v = 0.

Now, given a set of identities W = {ui = vi ∣ i ∈ S} and an alphabet A one
can define a congruence σ(W ) as follows.

We say that a pair of words (u, v) does not avoid a pair of words (p, q) if
u ≡ sφ(p)t, v ≡ sφ(q)t for some substitution φ and some words s and t.

Take the set I(W ) of all pairs that do not avoid W and take the smallest
equivalence relation containing I(W ).

Theorem 3.2.6. A congruence σ on A+ is verbal if and only if it is equal to
σ(W ) for some set of identities W.

Exercise 3.2.7. Prove this theorem.
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3.2.2.1. Examples of varieties of semigroups.

Exercise 3.2.8. Prove that the class of all semigroups with 0 satisfying
identically u = 0 (u is a fixed word) is a variety. It is defined by two identities
uz = u, zu = u where z is a letter not in the content cont(u). Prove that the
verbal congruence on A+, defined by these identities, coincides with the Rees
ideal congruence corresponding to the ideal I({u}).

Exercise 3.2.9. Prove that the class of all monoids satisfying identically
u = 1 (u is a fixed word) is a variety consisting of groups. This variety is defined
(as a variety of semigroups) by two identities uz = z, zu = z where z is a letter
not in cont(u). All groups of this variety satisfy the identity xn = 1 for some
n (n depends on u). What is the minimal n with this property? Hint: If S

satisfies u = 1 and s ∈ S, substitute s for all letters from u and deduce s∣u∣ = 1,
which implies that S is a group satisfying the (group) identity x∣u∣ = 1. P

Exercise 3.2.10. The class of all commutative semigroups is a variety given
by the identity xy = yx. The verbal congruence on A+ corresponding to this
identity consists of all pairs of words (u, v) such that v is a permutation of u.

Exercise 3.2.11. (a) Prove that the verbal congruence defined by xyx =
x2y consists of pairs of words (u, v) such that u and v start with the
same letter, every letter occurs the same number of times in u and v,
and for every two letters x, y, if the first occurence of x precedes the first
occurrence of y in u, then the same is true in v. Hint: Let x1, x2, . . . , xk

be the letters occurring in u listed in the order of their first occurrences

in u, and xi occurs ki times in u, i = 1, . . . , k. Prove that then (u,xl1
1 ...x

lk
k
)

belongs to the verbal congruence defined by xyx = x2y. Then show that

different words of the form xl1
1 ....x

lk
k

(all xi are distinct) are not in the
same class of that verbal congruence.

(b) Describe the verbal congruence on A+ defined by the identity xyx = yx2.

(c) Describe the verbal congruence on A+ defined by two identities x2y = xy
and x2y2 = y2x2.

3.3. The Burnside problem for varieties

Recall that we started with the problem of finding a finitely generated infinite
periodic semigroup. We found such a semigroup that satisfies even the identity
x2 = 0. Then we described all words u such that there exists a finitely generated
infinite periodic semigroup satisfying the identity u = 0. These are exactly the
avoidable words. Then we described finite sets W of words such that there
exists a finitely generated infinite periodic semigroup satisfying all identities
u = 0 where u ∈W.

Thus we have described all varieties given by finitely many identities of
the form u = 0, which contain infinite finitely generated periodic semigroups.
Actually we found a syntactic characterization of these varieties.

Now it is natural to ask
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Problem 3.3.1. What are all the varieties of semigroups that contain infinite
periodic finitely generated semigroups?

Exercise 3.3.2. Prove that every commutative finitely generated periodic
semigroup is finite.

In general, Problem 3.3.1 is extremely difficult. Indeed, since the class of all
groups satisfying the identity xn = 1 is a variety of semigroups (see Ex. 3.2.9)
this problem “contains” the problem of describing natural numbers n such that
every finitely generated group with the identity xn = 1 is finite. Already this
problem seems “hopeless”, and we still do not know if, say, 5 is such a number
n (see Section 5.2.3).

Nevertheless the following similar problem turned out to be decidable. No-
tice that all infinite periodic semigroups that we constructed above turned out
to be nil-semigroups. Thus we can ask

Problem 3.3.3. What are all varieties of semigroups containing infinite fi-
nitely generated nil-semigroups?

It is clear that every nil-semigroup is periodic, but not every periodic semi-
group is nil. For example, a nontrivial periodic group can not be nil (it does
not have 0). Thus if we consider nil-semigroups instead of arbitrary periodic
semigroups, we avoid “bad” groups. It turned out that as soon as we do that,
the situation becomes much more comfortable, and we have the following result.

Theorem 3.3.4 (Sapir, [277]). Let V be a variety given by a set of identities
Σ in at most n letters. Then the following conditions are equivalent:

(1) V does not contain an infinite finitely generated nil-semigroup.
(2) V does not contain an infinite finitely generated semigroup satisfying the

identity x2 = 0.
(3) V satisfies an identity Zn+1 =W where W is a word distinct from Zn+1.

(4) There exists an identity u = v from Σ and a substitution φ such that Zn+1

contains φ(u) or φ(v) and φ(u) /≡ φ(v).
Note that the implication (1) → (2) is trivial.
The equivalence (3) ↔ (4) is also easy to establish. In fact Zn+1 in these

conditions could be replaced by an arbitrary word Z and they would still be
equivalent. Indeed, if (4) holds, then Z = sφ(u)t and sφ(v)t ≠ sφ(u)t for some
substitution φ, words s, t, and identity u = v ∈ Σ. Let W = sφ(v)t. Then the pair(Z,W ) does not avoid Σ. Therefore (Z,W ) ∈ σ(Σ). Hence Σ implies Z =W.

Conversely, if Σ implies Z = W for some W distinct from Z then the pair(Z,W ) belongs to the verbal congruence σ(Σ), which is the smallest equivalence
relation containing the set of pairs I(Σ) that do not avoid Σ. Therefore there
exists a chain of pairs

(Z,W1), (W1,W2), . . . , (Wk,W )
that do not avoid Σ or identities dual to identities from Σ (u = v is dual to v = u).
Since Z differs from W , we may suppose that W1 differs from Z. Therefore the
pair (Z,W1) satisfies condition (4).
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Remark 3.3.5. Condition (4) is effective: one needs to check only finitely
many substitutions φ.

Remark 3.3.6. Let u = v ∈ Σ where u is unavoidable but v is avoidable.
Then condition (4) holds. Indeed, since u is unavoidable, Zn contains a value
φ(u) of u for some substitution φ. That is Zn = sφ(u)t for some words s and t.

Since v is avoidable, Zn cannot contain values of v. In particular, φ(u) ≠ φ(v).
Then the words Zn = sφ(u)t and W = sφ(v)t are distinct. The pair (Zn,W )
does not avoid (u, v). Therefore the identity Zn =W follows from u = v. Hence
Zn+1 =Wxn+1Zn follows from Σ. Therefore Σ satisfies condition (4).

Remark 3.3.7. Suppose that for every u = v ∈ Σ both u and v are avoidable.
Then condition (4) does not hold. Indeed, if (Zn+1,W ) does not avoid (u, v) or(v,u) then Zn+1 does not avoid u or v, and then u or v will be unavoidable.

Therefore the most complicated case is when Σ contains identities u = v with
both u and v unavoidable and does not contain identities u = v where one of the
words u or v is avoidable and another one isn’t. The following example shows
that even if both sides of an identity u = v are unavoidable, u = v can imply no
identity of the form Zn+1 =W.

Exercise 3.3.8. Prove that both sides of the Mal’cev identity

axbybxazbxayaxb = bxayaxbzaxbybxa

(which in the case of groups defines the class of all nilpotent groups of class 3,
see [217]) satisfies the following two conditions

● Both sides of this identity are unavoidable.
● This identity does not imply any identity Z6 =W where W differs from
Z6.

Hence by Theorem 3.3.4, there exists an infinite finitely generated semigroup
satisfying the Mal’cev identity and x2 = 0.

Thus in order to complete the proof of Theorem 3.3.4 it suffices to prove
implications (3) → (1) and (2) → (4).

We will start with implication (3) → (1). This implication is a corollary of
the following lemma.

Lemma 3.3.9. Any finitely generated nil-semigroup S satisfying a nontrivial
identity Zn =W is finite.

We will return to this lemma later, after we get familiar with the following
application of subshifts to semigroups.

3.3.1. Subshifts and semigroups. Let S = ⟨A⟩ be a finitely generated
semigroup. Then as we mentioned in Section 1.2.1, every element of S is repre-
sented by a word in the alphabet A. For every element s in S take all shortest
possible words representing s. These words are called geodesic words: they la-
bel geodesic paths on the Cayley graph of the semigroup, i.e., the shortest paths
connecting given two points. Let W be the set of all geodesic words representing
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elements of S. Notice that W is closed under taking subwords (a subword of a
geodesic word is a geodesic word itself).

Suppose S is infinite. Then W is infinite also. Now, in every word of W ,
mark a letter that is closest to the middle of this word. There must be an
infinite subset W1 ⊆W of words that have the same marked letters, an infinite
subset W2 ⊆ W1 of words that have the same subwords of length 3 containing
the marked letters in the middle, . . . , an infinite subset Wn ⊆ Wn−1 of words
that have the same subwords of length 2n − 1 containing the marked words in
the middle, and so on. Therefore there is an infinite in both directions word α

of marked letters from A such that every subword of α is a subword of a word
from W. Thus every subword of α is a geodesic word. Bi-infinite words with this
property will be called bi-infinite geodesic words. The set D(S) of all bi-infinite
geodesic words of S is a subshift (prove it!).

Remark 3.3.10. An arguments as above is usually called a compactness
argument. It allows finding an infinite object with certain property given an
infinitely many finite objects with that property.

Notice that if the semigroup S is finite, W is also finite and D(S) is empty.
Thus D(S) is not empty if and only if S is infinite.

It is interesting that an arbitrary subshift is D(S) for some S. Indeed, let
D ⊆ AZ be a subshift. Let (as in Section 1.6.2) L(D) be the set of all words
over A, which are not subwords of some words from D. Then L(D) is an ideal
in A+ and the Rees factor-semigroup S = A+/L(D) will be denoted by S(D).

Exercise 3.3.11. Prove that for every symbolic dynamical system D we
have

D(S(D)) =D.
In order to translate properties of subshifts into properties of semigroups we

shall need the following.

Lemma 3.3.12 (Furstenberg, [107]). A bi-infinite word α of a subshift D is
uniformly recurrent if and only if for every subword u of α there exists a number
N(u) such that every subword of α of length N(u) contains u as a subword.

Exercise 3.3.13. Prove this lemma.

Let α be a bi-infinite word from AZ . Let D(α) be the closure of the set of
all shifts of α

. . . , T −2(α), T −1(α), α,T 1(α), T 2(α), . . .
of α. This is a closed set and since T and T −1 are continuous maps, D(α) is
stable under the shift and its inverse. Thus D(α) is a subshift. This is the
minimal subshift containing α, thus we will call D(α) the subshift generated by
α.

Lemma 3.3.14. If β ∈D(α) then every subword of β is a subword of α.

Exercise 3.3.15. Prove this lemma.
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Lemma 3.3.16. Let α be a bi-infinite word in a finite alphabet X. Then there
exist a letter x ∈ X and an integer k such that for any n α has n consecutive
occurrences of the letter x in α at positions i1 < i2 < . . . < in (depending on n)
where ij+1 − ij ≤ k, j = 1, . . . , n − 1.

Proof. Indeed, consider the subshift generated by α. By Theorem 1.6.2
this subshift contains a uniformly recurrent bi-infinite word β. Every (finite)
subword of β is a subword of α by Lemma 3.3.14. It remains to note that by
Lemma 3.3.12 there exists k such that for every letter x occurring in β, every
subword of length k of β contains x. �

3.3.2. An application of subshifts to semigroups. Theorem 1.6.2 and
Lemma 3.3.12 imply

Lemma 3.3.17. For every infinite finitely generated semigroup S = ⟨A⟩ there
exists an infinite uniformly recurrent geodesic bi-infinite word.

Now let us return to the proof of Lemma 3.3.9: if a finitely generated nil-
semigroup S satisfies a nontrivial identity of the form Zn =W then it is finite.
The following Lemma gives us a connection between uniformly recurrent bi-
infinite words and Zimin words Zn.

Lemma 3.3.18. Let β be a uniformly recurrent bi-infinite word, U1aU2 be an
occurrence of letter a in β where U1 is a word infinite to the left, U2 is a word
infinite to the right. Then for every natural number n there exists a substitution
φn such that U3φn(Zn ) ≡ U1a for some word U3 infinite to the left, φn(x1) = a,
and ∣φn(Zn )∣ ≤ A(n,β) where the number A(n,β) depends only on β and n.

Proof. Since β is uniformly recurrent, there exists a number N = N(a)
such that every subword of β of length N contains a. Therefore one can find
another a at most N + 1 letters to the left of our occurrence of a. Then we can
set φ(x1) = a, and φ(x2) equal to the word between our two occurrences of as.
So we get a substitution of Z2 that satisfies the required condition. Since β
is uniformly recurrent, there exists a number N1 = N(φ(Z2)) such that every
subword of β of length N1 contains φ(Z2). So we can find another occurrence of
φ(Z2) to the left of the first occurrence, such that the distance between these
two occurrences does not exceed N1+1. Then we can define φ(x3) to be equal to
the word between these two occurrences of φ(Z2). This gives us a substitution
of Z3 that satisfies the required condition. Now the proof is easy to complete
by induction on n. �

Suppose now that the finitely generated semigroup S = ⟨A ⟩ is infinite. Then
by Lemma 3.3.17 there exists a uniformly recurrent geodesic word in D(S).
Consider one of these uniformly recurrent geodesic words α.

Our goal is to get a contradiction with the following obvious fact.

Lemma 3.3.19. None of the subwords of α is equal to 0 in S.

If a word differs from Zn only by the names of its letters, then we will denote
it by Z ′n. In particular, words xyx, xzx, and Z2 are denoted by Z ′2.
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Recall that S satisfies the identity Zn = W. First of all let us look at the
word W.

Lemma 3.3.20. W contains only letters x1, . . . , xn.

Proof. Indeed, suppose W contains an extra letter y. By Lemma 3.3.18
there exists a substitution φ such that φ(Zn) is a subword of α . Since every
letter of A is an element of S we can consider φ as a map into S. Let φ(y) = 0.
Then φ(W ) = 0 in S. Since S satisfies the identity Zn = W , we have that
φ(Zn) = 0 in S. Hence α has a subword that is equal to 0 in S — a contradiction
with Lemma 3.3.19. �

Exercise 3.3.21. Prove that W has one of the following 4 properties (see
(2.5.2)).

(1) W = [W1, x1]11 where W1 =Wx1
.

(2) W contains x2
1.

(3) W contains a subword xixj for some i, j > 1.
(4) W starts or ends not with x1.

Hint:Less formally, the exercise says that every word W in x1, . . . , xn either has
the form x1 ∗x1 ∗ . . . ∗x1 where ∗ is any letter ≠ x1 or contains x2

1 or contains a
2-letter subword without x1 or does not start or end with x1.

If u, v, p, q are words, then we will write

u = v (mod p = q)
if (u, v) belongs to σ(p, q) (where that σ(p, q) is the smallest equivalence relation
containing the set of pairs that do not avoid (p, q)). Recall that in this case the
identity u = v follows from the identity p = q, so that if S satisfies p = q, then S

satisfies u = v.
Notice that Zn+1 = Znxn+1W,Zn+1 = Wxn+1Zn (mod Zn = W ). Now if W

satisfies condition (4), then Znxn+1W or Wxn+1Zn satisfies condition (3). Thus
we can assume that W satisfies one of the three conditions (1), (2), (3) of Exercise
3.3.21.

Suppose that W satisfies condition (2) or (3) of Exercise 3.3.21. Then the
following statement holds.

Lemma 3.3.22. Let β be an arbitrary uniformly recurrent bi-infinite word, a
be a letter in β. Then β contains a subword u such that

u = pa2q (mod Zn =W )
for some words p and q.

Proof. If W satisfies condition (2) of Exercise 3.3.21, the statement is a
direct consequence of Lemma 3.3.18

Suppose W satisfies condition (3). Since β is uniformly recurrent, it can be
represented in the form . . . p−2ap−1ap0ap1ap2 . . . where lengths of the words pi

are smaller than N(a). Let us introduce a new alphabet B = {a, pi ∣ i ∈ Z}: we
denote words pi by letters, different words by different letters, equal words by
equal letters. Since A is a finite alphabet and there are only finitely many words
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over A of any given length, B is also a finite alphabet. Let β1 be the bi-infinite
word that we get from β by replacing subwords pi by the corresponding symbols.
This bi-infinite word, β1 may not be uniformly recurrent. But let us consider
the subshift D(β1) generated by β1. By Theorem 1.6.2 this subshift contains a
uniformly recurrent bi-infinite word β2. By Lemma 3.3.14 every subword of β2

is a subword of β1. Therefore β2 has the form . . . pi1
api2

api3
a . . . . Let p1 be a

letter from B occurring in β2. By Lemma 3.3.18 there exists a substitution φ of
the word Zn such that φ(Zn) is a subword of β2 and φ(x1) = p1. Then φ(xi),
i = 2,3, . . . , n, must start and end with a. Since W contains a subword xixj for
i, j > 1, we have that φ(W ) contains a2. The word φ(Zn) is a subword of β1. Let
ψ be the substitution that takes a to a and the symbols pi back to the words
denoted by these symbols. Then ψ(φ(Zn)) is a subword of β and ψ(φ(W ))
contains a2. The lemma is proved. �

Lemma 3.3.23. Assume that W satisfy condition (2) or (3) of Exercise
3.3.21. Then for every uniformly recurrent bi-infinite word β, every natural
number k and every letter a occurring in β there exists a subword u of β such
that

u = sakt (mod Zn =W )
for some words s and t.

Exercise 3.3.24. Prove this lemma. Hint: Use Lemma 3.3.22 as the base
of induction (k = 2). To demonstrate the step of induction, let us show how to
get from k = 2 to k = 3 (and in fact to k = 4). Replace every occurrence of the
subword u (from Lemma 3.3.22) in β by sa′t (letter a′ replaces a2) and obtain a
new bi-infinite word β′. Use Theorem 1.6.2 to find another uniformly recurrent
word β1 all of whose subwords are subwords of β′. Then use Lemma 3.3.22 again
for the uniformly recurrent word β1 and letter a′ (you need to observe that a′

does occur in β1 otherwise Lemma 3.3.22 does not apply). Afterward, replacing
a′ back by a2, obtain the statement of Lemma 3.3.23 for k = 4.

Now we can finish the proof of Lemma 3.3.9 in the case when W satisfies
one of the conditions (2) or (3) of Exercise 3.3.21. Indeed, let us apply Lemma
3.3.23 to α. Let a be a letter occurring in α. Since S is a nil-semigroup, an = 0
in S for some n. By Lemma 3.3.23 there exists a subword u in α such that

u = sant (mod Zn =W ).
Since S satisfies Zn =W we conclude that the word u is equal to sant in S. But
sant = 0 in S. This contradicts Lemma 3.3.19.

It remains to consider the case when W satisfies condition (1) of Exercise
3.3.21.

Lemma 3.3.25. If u = v (mod p = q) then [u,a]11 = [v, a]11 (mod [p, a]11 =[q, a]11).
Exercise 3.3.26. Prove this lemma.

Lemma 3.3.27. Let W be an arbitrary word distinct from Zn. Then for every
uniformly recurrent bi-infinite word β there exists a subword p ⪯ β such that for
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every natural number m there exists a subword u in β such that

u = spmt (mod Zn =W )
for some words s, t.

Proof. Induction on n. By Lemma 3.3.23 the statement is true in the case
when W satisfies condition (2) or (3) of Exercise 3.3.21.

Suppose we have proved our lemma for n − 1 (and arbitrary W ) and that
W satisfies the condition (1), that is W = [W1, x1]11. We have Zn = [Z ′n−1, x1]11.
Thus the identity Z ′n−1 = W1 is nontrivial. So we can suppose that the state-
ment of our lemma holds for this identity. As in the proof of Lemma 3.3.22,
let us represent β in the form . . . p1ap2ap3 . . ., and replace each subword pi by
the corresponding symbol (different subwords are replaced by different symbols,
equal subwords – by equal symbols). We get another bi-infinite word β1. Let
β2 be the bi-infinite word obtained from β1 by deleting a. Let β3 be a uni-
formly recurrent bi-infinite word in D(β2). By the induction hypothesis there
exists a subword p′ in β3 such that for every m there exists a subword u in β3

such that u = spmt (mod Z ′n−1 = W1). Then by Lemma 3.3.25 we have that[u,a]11 = [s, a]01([p′, a]01)m[t, a]11 (mod Zn =W ). The word u is a subword of β3.

By Lemma 3.3.14 it is a subword of β2. Then [u,a]11 is a subword of β1. Let ψ
be the “return” substitution that takes a to a and every symbol pi to the word
that is denoted by this symbol. Then we have that

ψ([u,a]11) = s1(ψ([p′, a]01))mt1 (mod Zn =W )
for some words s1 and t1. The word ψ([u,a]11) is a subword of β, and so
ψ([p′, a]01) is the desired word p. �

Exercise 3.3.28. Complete the proof of Lemma 3.3.9.

3.3.3. The completion of the proof of Theorem 3.3.4. Lemma 3.3.9
gives us the implication (3)→ (1). It remains to prove the implication (2) → (4).

Suppose that condition (4) of Theorem 3.3.4 does not hold. We have to
prove that then there exists a finitely generated infinite semigroup S satisfying
all identities of Σ and the identity x2 = 0.

Definition 3.3.29. A word w is called an isoterm for an identity u = v if
for every substitution φ such that φ(u) ≤ w (i.e., φ(u) is a subword in w) we
have φ(v) ≡ φ(u).

Remark 3.3.30. A word w may be an isoterm for u = v but not for v = u.
For example, xyx is an isoterm for x2 = x but not for x = x2.

Remark 3.3.31. Condition (4) of Theorem 3.3.4 may be rewritten in the
form:

(4’) Zn+1 is not an isoterm for u = v or v = u for some identity u = v in Σ.

Since we assume that condition (4’) does not hold, Zn+1 is an isoterm for
u = v and v = u for every u = v ∈ Σ.

In order to construct an infinite finitely generated semigroup satisfying Σ
and x2 = 0, we will employ the Dilworth construction again.

The following lemma is an analog of Theorem 3.1.18.
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Lemma 3.3.32. Let W be a set of words closed under taking subwords. The
semigroup S(W ) satisfies an identity u = v if and only if every word of W is an
isoterm for u = v and v = u.

Exercise 3.3.33. Prove this lemma.

Thus, in order to find a finitely generated semigroup that satisfies Σ and
x2 = 0 it is enough to construct an infinite set W of square-free words over a
finite alphabet, which are isoterms for u = v and v = u for every u = v ∈ Σ.

One can see that, again, we have translated a semantic question about semi-
groups into a syntactic question about words.

Let γ = γr, r > 6n+ 1, be the substitution defined in Section 2.5.3.4. We will
complete the proof of implication (2) → (4) if we prove the following result.

Lemma 3.3.34. Let u = v be an identity in n variables such that Zn+1 is an
isoterm for u = v and v = u. Then all words γm(a11), m ≥ 1 are isoterms for
u = v and v = u whenever r > 6n.

First of all we shall study, using fusions a free deletions, identities u = v such
that Zm is an isoterm for u = v and v = u. Instead of the infinite set of words
Zm, m ≥ 1 we will consider one infinite word

Z∞ = [. . . [x1, x2]11, x3]11 . . .
which is a “limit” of Z ′n. Any word that differs from Z∞ only by the names of
letters, also will be denoted by Z∞.

Exercise 3.3.35. Show that if Zm is not an isoterm for u = v then Zm+1 is
not an isoterm for u = v.

Lemma 3.3.36. Let ∣cont(u)∣ = n. Suppose that a pair of sets of letters B,C
is a fusion in u but not a fusion in v. Let A ⊆ B/C and suppose that uA is
unavoidable. Then Z∞ is not an isoterm for u = v.

Proof. By Theorem 2.5.14, there exists a substitution φ such that φ(uA) ⪯
Z∞. Consider the substitution φ∗. We have that φ∗(u) ≺ Z∞. Since B,C do
not form a fusion in v, there exists a subword xy ⪯ v such that either x ∉ B,
y ∈ C or else x ∈ B, y ∉ C. Suppose x ∉ B, y ∈ C. Then φ∗(x) does not end
with a, and φ∗(y) does not start with a (see the definition (2.5.3)). Therefore
φ∗(v) contains a subword zt where z ≠ a ≠ t. It follows that φ∗(u) ≠ φ∗(v) since
φ∗(u) ≺ Z∞. Suppose x ∈ B, y ∉ C. Then φ∗(x) ends and φ∗(y) starts with a, so
that a2 ⪯ φ∗(v) and again φ∗(u) ≠ φ∗(v). Thus φ∗(u) ≺ Z∞ and φ∗(u) /≡ φ∗(v),
that is Z∞ is not an isoterm for u = v. �

Lemma 3.3.37. Let A be a free set in u such that Zm is not an isoterm for
uA = vA. Then Zm+1 is not an isoterm for u = v.

Proof. Let φ be a substitution such that φ(uA) ⪯ Zm and φ(uA) /≡ φ(vA).
Then we can define φ∗ as in (2.5.3). By Lemma 2.5.12, φ∗(u) is a subword of
Z ′m+1 and φ∗(u) /≡ φ∗(v). �

Lemma 3.3.38. Let u = v be an identity of n variables such that Zn+1 is an
isoterm for u = v. Then Z∞ is an isoterm for u = v.
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Proof. Let u = v be a counterexample to our statement and let the length∣uv∣ be minimal possible. Every subword of Z∞ is contained in some Z ′m. There-
fore, since Z∞ is not an isoterm for u = v, there exists a minimal number m such
that Zm is not an isoterm for u = v. If m ≤ n + 1 then we can apply Exercise
3.3.35. Thus we can assume that m > n + 1.

There exists a substitution φ such that φ(u) ⪯ Zm and φ(u) /≡ φ(v). Then
u is an unavoidable word and by Theorem 2.5.14 there exists a substitution ψ

such that ψ(u) ⪯ Zn. Since m > n + 1, we have that ψ(u) ≡ ψ(v) for every such
substitution ψ. Therefore cont(v) ⊆ cont(u) (indeed if a letter x is in cont(v) but
not in cont(u), we can choose a long enough word for ψ(x) so that ψ(u) /≡ ψ(v)).

Let us prove that φ(u)x1
≡ φ(v)x1

. Suppose, by contradiction, that u′ ≡
φ(u)x1

/≡ φ(v)x1
≡ v′. Notice that u′ ⪯ Z ′m−1. Let A = {x ∈ cont(u) ∣ φ(x) = x1}.

If A is empty, then u′ is a value of u under some substitution φ′ = φx1
, and

v′ ≡ φ′(v) (see Exercise 2.5.22). Then φ′(u) ⪯ Zm−1 and φ′(u) /≡ φ′(v) — a
contradiction with the minimality of m.

Thus A is not empty. By Lemma 2.5.23 A is a free set in u. The word u′ is a
value of the word uA under the substitution φ′ = φx1

, and v′ ≡ φ′(vA). Therefore
Zm−1 is not an isoterm for the identity uA = vA. Since ∣uAvA∣ < ∣uv∣, we can
conclude that Zn is not an isoterm for uA = vA. By Lemma 3.3.37 we conclude
that Zn+1 is not an isoterm for u = v, a contradiction.

Thus, indeed, φ(u)x1
≡ φ(v)x1

. Therefore either one of the words φ(u) and
φ(v) starts (ends) with x1 and another one does not, or φ(v) contains a subword
xpxq for p, q ≠ 1, or φ(v) contains x2

1 (see Exercise 3.3.21). It is clear that these
2-letter subwords cannot occur in φ(x) for any letter x, otherwise φ(u) would
contain such subwords also, which is impossible since φ(u) ⪯ Z ′m. Therefore these
subwords overlap with φ(x) and φ(y) for some letters x, y.

Let us define a substitution ψφ as follows. For every x ∈ cont(u) we have
φ(x) ≡ [φ(x)x1

, x1]δx
ǫx
. Then let ψφ(x) ≡ [ψ(x), a]δx

ǫx
.

Now it is easy to see that if φ(x) starts (ends) with x1 then ψφ(u) starts
(ends) with a, and the same holds for v. Therefore if φ(u) (resp. φ(v)) starts or
ends with x1, but φ(v) (resp. φ(u)) does not then ψφ(u) (resp. ψφ(v)) starts
or ends with a, but ψφ(v) (resp. ψφ(u)) does not, so that ψφ(u) /≡ ψφ(v).

Also it is easy to see that ψφ(u) cannot contain a2 and xixj for i, j > 1.
Therefore (again by Exercise 3.3.21)

ψφ(u) ≡ [ψφ(u)a, a]δǫ ≡ [ψ(u), a]δǫ
for some ǫ, δ, so ψφ(u) ≤ Zn+1.

On the other hand, if v contains a 2-letter subword xy such that φ(x)φ(y)
contains x2

1 or xixj for i, j > 1, and this word overlaps with φ(x) and φ(y), then

we can conclude that ψφ(v) > ψφ(xy) and so ψφ(v) contains either a2 or a
word xixj, i, j > 1

In all cases ψφ(u) ⪯ Zn+1 and ψφ(u) /≡ ψφ(v), which contradicts the mini-
mality of m. �
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Recall that in the proof of Theorem 2.5.19, the crucial role was played by
the quasi-integral words (see (2.5.4)). Now we need a more detailed analysis of
such words.

Lemma 3.3.39. Let

u ≡ P0Q1y1P1Q2y2P2 . . . QkykPkQk+1

be a quasi-integral word, v ≡ S1y1S2 . . . ykSk+1 where Si are words in the alphabetA. Let T ≡ y1y2 . . . yk be an unavoidable word and u /≡ v. Then Z∞ is not an
isoterm for u = v.

Proof. By contradiction, suppose that Z∞ is an isoterm for u = v.
Step 1. We can assume that u and v start and end with a letter from

Y = {y1, . . . , yk}. Otherwise we can multiply this identity by a new letter from
the left and by another new letter from the right, and then include these letters
in L. All conditions of the lemma will be preserved. Thus we can assume that
P0Q1, S1, PkQk+1, Sk+1 are empty words.

Step 2. Since u /≡ v, there exists a number ℓ such that Sℓ /≡ PℓQℓ+1.

Step 3. Let, as before, σi be the deletion of letters from Ai. We also denote
the deletion of the letter aij by σij and the deletion of all letters from Aj except
aij by σ′ij.

We know (Exercise 2.5.21) that the sequence σ2, σ3, . . . , σr, σ1 is a sequence
of free deletions in any quasi-integral word. As a result of these deletions we will
get the word T that is unavoidable. By Theorem 2.5.14 of Bean–Ehrenfeucht–
McNulty and Zimin we get that u is also unavoidable. Similarly every word that
we can get from u by a sequence of deletions σi1

, . . . , σis for s ≤ r is unavoidable.
Step 4. Take an arbitrary j, 1 ≤ j ≤ r. Let u1 = σ2σ3 . . . σr(u). In u1, the

deletion σ′j1 is a free deletion because a subset of a free set is free. Sets B1 = {aj1}
and C1 = {yt ∣ Qt contains aj1} form a fusion in σ′j1(u1) Therefore σj1 is a free

deletion in σ′j1(u1). If B1,C1 do not form a fusion in σ′j1(v1), then by Lemma
3.3.36 Z∞ is not an isoterm for u1 = v1, and by Lemma 3.3.37 Z∞ is not an
isoterm for u = v, a contradiction.

Thus B1 and C1 form a fusion in σ′j1(v1). This implies that Sℓ contains aj1

if and only if Qℓ+1 contains this letter, and that this letter appears in Sℓ only
once.

Step 5. Let now 1 ≤ i, j ≤ r. Let u2, v2 be words obtained from u and v

by the deletion of all letters that are not in Aj ∪A1 ∪ Y. We know that u2 is
obtained from u by a sequence of free deletions.

As above σ′ij is a free deletion in u2. In the word σ′ij(u2) sets

B2 = {aij} ∪ {yt ∣ Pt does not contain aij}
and

C2 = Ar1 ∪ {yt ∣ Qt either contains aij or empty}
form a fusion. Therefore they form a fusion in σ′ij(v2). This implies that Sℓ can
be represented in the form PQ where

● P contains the same letters as Pℓ,
● Q contains the same letters as Qℓ+1,
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● if Qℓ+1 is not empty, then Q and Qℓ+1 start with the same letter fromA1,
● each letter occurs in P (in Q) only once.

Therefore P is a permutation of the word Pℓ, Q is a permutation of the word
Qℓ+1.

Step 6. Let 1 ≤ j ≤ r. Let j′ equal j + 1 if j < r and 1 if j = r. In the word u

sets

B3 = Aj ∪ {yt ∣ Pt starts with a letter from Aj′}
and

C3 = Aj′ ∪ {yt ∣ Qt ends with a letter from Aj}
form a fusion. Since σj(u) is unavoidable, these sets form a fusion in v. There-
fore, in Sℓ after every letter of Aj there is a letter from Aj′. Since we have proved
in Step 5 that words P and Q are permutations of Pℓ and Qℓ+1, and that Q and
Qℓ+1 have a common first letter, we can conclude that P = Pℓ, Q = Qℓ+1, so that
Sℓ = PℓQℓ+1, which contradicts the assumption in Step 2. �

We will also need the following

Exercise 3.3.40. Let u be a word, and let φ be a substitution that takes
every letter x to a product of distinct letters x1x2 . . . xkx (xi are different for
different x). Then u can be obtained from φ(u) by a sequence of free deletions
and by renaming letters.

Now we are ready to finish the proof of our Lemma 3.3.34.
Fix some numbers n and r > 6n + 1. We assume that Lemma 3.3.34 is false

and that m is the smallest number such that γm(a11) is not an isoterm for an
identity u = v in n letters, but Zn+1 is an isoterm for u = v and v = u, and that
n is the minimal number of letters for which such an m exists.

Since Zn+1 is an isoterm for u = v and v = u, by Lemma 3.3.38 Z∞ is an
isoterm for u = v and v = u.

By assumption there exists a substitution φ such that φ(u) /≡ φ(v) and
φ(u) ≤ γm(a11). We have met this situation before, in the proof of Theorem
2.5.14 and we have shown that there exists a substitution ǫ and a substitution
φ1 such that

● ǫ takes every letter to a product of at most three different letters. These
letters are different for different letters of cont(u).
● φ1(x) is either a product of γ-blocks or a subword of a block.
● φ = φ1ǫ.

We also know (Section 2.5.3.4) that in each γ-block one can find a two-letter
subword p such that if p overlaps with one of φ1(x) then p is a subword of φ1(x).

Now we can define the following substitution η for every x in cont(u):
η(x) = { x if φ1(x) contains one of these two-letter subwords p

φ1(x) otherwise.

The word ū = ηǫ(u) is quasi-integral.
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The word v̄ = ηǫ(v) has the form S0x1S1 . . . SfxfSf+1 where xi ∈ cont(ǫ(u))
and cont(Si) ⊆ A.

Since ū is quasi-integral Tu = ūA is obtained from ū by a sequence of free
deletions (see Exercise 2.5.21). The word Tu is obtained from ǫ(u) by a deletion
of some letters. Therefore by Exercise 2.5.23 Tu can be obtained from ǫ(u) by
a sequence of free deletions. Therefore Tu ≡ ǫ1(u1) for some substitution ǫ1 and
some word u1 which is obtained from u by a sequence of free deletions. Notice
that for every letter x, ǫ1(x) is obtained from ǫ(x) by a deletion of some letters.

Let us denote the word obtained from v by deleting letters from cont(u) ∖
cont(u1) by v1. Then ǫ1(v1) ≡ Tv.

Now define a substitution δ by δ(xi) = QixiPi, xi ∈ cont(Tu). Then the word
φ′δ(xi) is a product of γ-blocks where φ′ is the substitution that takes every
xi to the two-letter word replaced by xi. Therefore we can consider γ−1φ′δ(x).
Since φ′(Tu) is a subword of γm(a11), we have that γ−1φ′δ(Tu) is a subword of
γm−1(a11). Since Tu ≡ ǫ1(u1) we have that γm−1(a11) contains a value of u1. By
Theorems 2.5.14 and 2.5.19 the word u1 is unavoidable. Since u1 is obtained
from u by a series of free deletions and Z∞ is an isoterm for u = v we can use
Lemma 3.3.37 and conclude that Z∞ is an isoterm for u1 = v1.

Suppose that Z∞ is not an isoterm for v1 = u1. Then Z∞ contains a value
of v1, which differs from the corresponding value of u1. In particular, since Z∞
contains a value of v1, this word is unavoidable. By Lemma 3.3.36 v1 is obtained
from v by a sequence of free deletions (the same sequence was used to get u1

from u). This contradicts Lemma 3.3.37. Thus Z∞ is an isoterm for u1 = v1 and
v1 = u1.

From the minimality of m we can deduce that γm−1(a11) is an isoterm for
u1 = v1 and v1 = u1. Since γm−1(a11) contains a value γ−1φ′δǫ1(u1) of u1, this
value of u1 must coincide with the corresponding value of v1. Therefore, in
particular, γm−1(a11) contains a value of v1.

As above, this implies that v1 is unavoidable. As we know v1 is obtained
from v by a series of free deletions. Since Z∞ is an isoterm for v = u, we can
conclude that it is an isoterm for v1 = u1.

We have already proved that

γ−1φ′δǫ1(u1) ≡ γ−1φ′δǫ1(v1).
Therefore

φ′δǫ1(u1) ≡ φ′δǫ1(v1).
Let us denote P0δǫ1(v1)Qf+1 by w. We have

φ′(w) ≡ P0φ
′δǫ1(v1)Qf+1 ≡ φ(u) /≡ φ(v) ≡ φ′(v̄).

Thus, in particular, w /≡ v̄. By definition, w is a quasi-integral word and Tv

is equal to wA. Recall that Tv is a value of an unavoidable word v1, and the
corresponding substitution ǫ1 takes every letter to a product of (at most 3)
different letters. By Exercise 3.3.40, Tv is unavoidable. Thus all conditions of
Lemma 3.3.39 hold and we can conclude that Z∞ is not an isoterm for w = v̄.

Therefore there exists a substitution θ such that θ(w) ⪯ Z∞ and θ(w) ≠ θ(v̄).
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We have proved that Z∞ is an isoterm for v1 = u1. Since

w ≡ P0δǫ1(v1)Qf+1

and
ū ≡ P0δǫ1(u1)Qf+1,

we have that Z∞ is an isoterm for w = ū. Hence

θ(ū) ≡ θ(w) /≡ θ(v̄).
This means that Z∞ is not an isoterm for ū = v̄. But

ū ≡ ηǫ(u), v̄ ≡ ηǫ(v).
Therefore Z∞ is not an isoterm for u = v, a contradiction.

Theorem 3.3.4 is proved.

3.4. Brown’s theorem and uniformly recurrent words

The following important and general result of T.C. Brown is much less trivial
than its group theoretic counterpart (and corollary): every extension of a locally
finite group by a locally finite group is locally finite. There are at least four
different proofs of this theorem. We present here our proof using uniformly
recurrent bi-infinite words.

Theorem 3.4.1 (T.C. Brown [56]). Let S be a semigroup and σ be a con-
gruence on S such that S/σ is localy finite and every equivalence class of σ that
is a subsemigroup is locally finite. Then S is locally finite.

Proof. We can assume that S is finitely generated, hence M = S/σ is finite.
Let X be a finite generating set of S, M = S/σ, φ be the natural map S →M.

Then φ(X) generates M. We shall use the induction on the pair of numbers(∣M ∣, ∣X ∣) ordered lexicographically. Thus assume that S is a counterexample,∣M ∣ is as small as possible (among all counterexamples), ∣X ∣ is the smallest
possible among all counterexamples with the same ∣M ∣. Then by Theorem 1.6.2
there exists a geodesic uniformly recurrent bi-infinite word α for S. By Lemma
3.3.12 there exists a number k such that every letter in α occurs in every subword
of α of length k. By the minimality assumption, we can assume that every
generator of S occurs in α.

For every generator x of S consider the set U of all subwords of the form
xu of α where u does not contain x (u may be empty). Since ∣u∣ < k, U is
finite. The set U generates a subsemigroup S′ of S and we can rewrite α into
a bi-infinite word β ≡ . . . xui1

xui2
. . . in the alphabet U. Note that then β is a

geodesic word for S′. Hence S′ is infinite. The images φ(xu), xu ∈ U are in
the subsemigroup φ(x)M of M. By the minimality of M , we can assume that
φ(x)M = M for every generator x. Similarly Mφ(x) = M for every generator
x of S. Therefore M is a group (prove that!). Now consider the following bi-
infinite word γ of elements of M. For every i ∈ Z, γ(i, i) is φ(α(0, i)) if i ≥ 0
and φ(α(i,0)) if i < 0. By Lemma 3.3.16 there exist an element x ∈ S/σ and
an integer k′ such that for any n there are integers i1 < i2 < . . . < in with x =
γ(ij , ij), j = 1, . . . , n and ij+1 − ij ≤ k′, j = 1, . . . , n− 1. Without loss of generality
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assume that all ij > 0. Therefore the elements φ(α(0, ij)) are all equal. Hence
φ(α(ij+1, ij+1)), j = 1, . . . , n−1 represent elements of φ−1(1). Since the number of
possible elements φ(α(ij+1, ij+1)) is finite and the subsemigroup φ−1(1) is locally
finite, the subsemigroup of S generated by these elements is finite. Thus for a
sufficiently large n, there must exist j′ > j such that α(i1 + 1, ij) = α(i1 + 1, ij′)
in S, which contradicts the assumption that α is geodesic. �

As an immediate corollary we get

Corollary 3.4.2 (Schmidt [285]). If G has a locally finite normal subgroup
N and G/N is locally finite, then G is locally finite.

Applying Theorem 3.4.1 and Part (3) of Exercise 3.1.3 we get

Corollary 3.4.3 (Shevrin [293]). Every semilattice of locally finite semi-
groups is locally finite. If a semigroup S has a locally finite ideal I and S/I is
locally finite, then S is locally finite.

This corollary will be used later in Section 3.6.2.

Remark 3.4.4. In fact we can deduce from Theorem 3.4.1 that every band
of locally finite semigroups is locally finite (which was proved in [293]). Indeed
every band is locally finite by Theorem 3.3.4 applied to Σ = {x = x2} (that was
first proved by Green and Rees [118]).

3.5. Burnside problems and the finite basis property

All varieties of semigroups that we met before were finitely based. Now we
will use Theorem 3.3.4 to construct non-finitely based varieties.

We can rewrite this theorem in the following way.

Theorem 3.5.1 (Sapir [277]). Let V be a variety of semigroups that satisfies
the following two properties:

(1) every finitely generated nil-semigroup in V is finite;
(2) V does not satisfy any nontrivial identity of the form Zn =W.
Then V cannot be defined by a finite set of identities.

Here is an easy way to construct a variety that satisfies both conditions 1
and 2.

Let us take all subwords of Z∞ and construct semigroup S(Z∞) using the
Dilworth construction.

Exercise 3.5.2. Using Theorem 1.4.31 prove that the variety generated by
S(Z∞) is locally finite. Estimate the function n(m) from Theorem 1.4.31 for
the semigroup S(Z∞).

Theorem 3.5.3. The variety varS(Z∞) is inherently non-finitely based.

Proof. By Exercise 3.5.2, the variety varS(Z∞) is locally finite. By The-
orem 3.5.1, it is enough to show that S(Z∞) does not satisfy any nontrivial
identity of the form Zn = W. By Lemma 3.3.32 it is enough to show that for
every n some subwords of Z∞ are not isoterms for Zn = W. But Zn itself is a
subword of Z∞, and Zn is, of course, not an isoterm for Zn =W. �
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3.6. Inherently non-finitely based finite semigroups

3.6.1. Some advanced semigroup theory.

3.6.1.1. Ideals and 0-simple semigroups.

Exercise 3.6.1. Let S be a semigroup.

(1) Show that the set of ideals of S is closed under any unions and finite
intersections.

(2) Show that for every element a of S the set S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}
is an ideal of S. This ideal is called the principal ideal generated by a.
Elements of S1aS1 are precisely the elements of S divisible by a.

A semigroup S is called 0-simple if it does not contain any ideals distinct
from zero and the whole S. Note that a 0-simple semigroup does not necessarily
contain a zero. If a 0-simple semigroup does not contain 0, it is called simple.

Example 3.6.2. Every group is obviously a simple semigroup. The 2-
element semigroup with zero product is 0-simple. This semigroup is an exception
and in some books on semigroup theory this semigroup is not included into the
class of 0-simple semigroups.

Exercise 3.6.3. If a semigroup S is 0-simple, then S0 is also 0-simple.

Exercise 3.6.4. Prove that every rectangular band of groups (see Definition
3.1.5) is simple.

Exercise 3.6.5. Prove that the Brandt semigroup B2 is 0-simple.

Exercise 3.6.6. Let a be an element of a semigroup S. Let M be the union
of all ideals of S contained in the principal ideal S1aS1 and not containing a.

Prove that S1aS1/M is 0-simple. This semigroup is called a principal factor of
S.

Exercise 3.6.7 (Rees–Sushkevich construction.). Let I, J be sets, G be a
group and P be a function P ∶ I × J → G0 (it is convenient to consider P as
a I × J-matrix over G0). Suppose that P is regular that is it does not contain
zero rows or zero columns. Consider the set M0(G,I,J,P ) = I ×G×J ∪{0} and
define an operation on this set by the following formula:

(i, a, j)(i′, a′, j′) = { (i, aP (i′, j)a′, j′) if P (i′, j) ≠ 0;
0 if P (i′, j) = 0.

Prove that M0(G,I,J,P ) is a 0-simple semigroup. Prove also that if P ∶ I ×
J → G then the set M(G,I,J,P ) = M0(G,I,J,P )/{0} is a subsemigroup of
M0(G,I,J,P ) that is simple. Prove that M0(G,I,J,P ) is periodic if and only
if G is periodic. The semigroups M0(G,I,J,P ) and M(G,I,J,P ) are called the
Rees–Sushkevich semigroups over the group G with the sandwich matrix P .

We shall always assume that sandwich matrices are regular.
Semigroups of the formM0(G,I,J,P ) (respectively, M(G,I,J,P )) are called

completely 0-simple (respectively, completely simple). The next three exer-
cises describe idempotents and maximal subgroups of completely 0-simple semi-
groups.
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Exercise 3.6.8. Let M =M0(G,I,J,P ). Prove that idempotents of M are
the elements of the form (i,P (i, j)−1 , j) where P (i, j) ≠ 0, and 0.

Exercise 3.6.9. Let M = M(G,I,J,P ). Prove that for every two idempo-
tents e, f ∈ M there exist idempotents x, y ∈ M such that ex = e = ye,xf = f =
fy,xe = x = fx, ey = y = yf.

Exercise 3.6.10. Let M =M0(G,I,J,P ). Prove that two elements (i, g, j)
and (i′, g′, j′) are L-related if and only if j = j′. Prove that these elements
are R-related if and only if i = i′. Prove that all maximal subgroups of M are
isomorphic to G and have the form {i}×G×{j} where i ∈ I, j ∈ J and P (i, j) ≠ 0.

Exercise 3.6.11. Prove that M = M(G,I,J,K) is a rectangular band of
groups. More precisely, for every i ∈ I, j ∈ J the set {i} ×G × {j} is a subgroup.
These subgroups cover M and form a partition of M. This partition is a con-
gruence, and the quotient semigroup is a rectangular band isomorphic to the set
I × J with operation (i, j)(i′, j′) = (i, j′) (see Exercise 3.1.4).

Exercise 3.6.12. If a and b belong to the same subgroup of the Rees–
Sushkevich semigroup S =M(G,I,J,K) and a ≠ b, then for any x in S we have
ax ≠ bx and xa ≠ xb.

We shall now show that every periodic 0-simple semigroup either is the 2-
element semigroup with zero product or is isomorphic to a Rees–Sushkevich
semigroup.

Lemma 3.6.13. Let S be a 0-simple periodic semigroup, a, p ∈ S, ap ≠ 0.
Then there exists an element q in S such that apq = a. Similarly if pa ≠ 0 then
there exists an element q ∈ S such that qpa = a.

Proof. It is enough to prove the first statement of the lemma. Since S1apS1

is an ideal of S containing ap and ap ≠ 0, S1apS1 = S. Therefore uapv = a for
some u, v ∈ S1. Multiplying by u, pv on the left and on the right n − 1 times,
we deduce una(pv)n = a for every n ≥ 1. Since S is periodic, there exists n such
that un = e is an idempotent (Exercise 3.1.12). Then ea(pv)n = a. Multiplying
by e on the left and using e = e2, we get ea = a. Hence a(pv)n = a. This means
ap[(vp)n−1v] = a. So we can take q = (vp)n−1v. �

Lemma 3.6.14. Let S be a 0-simple periodic semigroup, a ∈ S, a ≠ 0. Then ei-
ther S is a 2-element semigroup with zero product or S contains two idempotents
e, f such that ea = a, af = a.

Proof. If S is a 0-simple semigroup with zero product, then S cannot
contain more than two elements, because every subset of S containing zero is
an ideal of S. So we can assume that S is not a semigroup with zero product.
Therefore there exist two elements x, y ∈ S such that xy ≠ 0. The ideal S1xyS1

coincides with S. So a = uxyv for some u, v ∈ S1. Since S1aS1 = S, we can find
elements b, c ∈ S1 such that y = bac. Therefore a = uxyv = uxbacv. Notice that
uxb ∈ S. As in the proof of Lemma 3.6.13, multiplying by uxb on the left and by
cv on the right n − 1 times, we get a = (uxb)na(cv)n. Since S is periodic, there
exists an n such that (uxb)n = e is an idempotent in S. Multiplying by e on the
left, we get ea = a. Similarly we can find an idempotent f such that af = a. �
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Lemma 3.6.15. Let S be a 0-simple periodic semigroup. Then for every
idempotent e ∈ S, the set eSe is a group with zero formally added.

Proof. It is clear that eSe is a subsemigroup and that e is the identity
element of e. If e = 0 then eSe = {0} and there is nothing to prove. Let e ≠ 0 and
let eae be a non-zero element of S. By Lemma 3.6.13 there exists an element
p ∈ S such that eaep = e. Multiplying by e on the right gives us: eaepe = e. So(eae)(epe) = e. Similarly we can find an element q such that (eqe)(eae) = e.
Therefore every element of eSe has a left inverse and a right inverse elements,
so eSe is a group (see Exercise 1.8.1). �

Theorem 3.6.16. Every periodic 0-simple semigroup either is a 2-element
semigroup with zero product, or is isomorphic to a Rees–Sushkevich semigroup
with a regular sandwich matrix.

Proof. Assume that S is not isomorphic to the 2-element semigroup with
zero product. By Exercise 3.6.3 we can assume that S contains zero.

Then by Lemma 3.6.14 there exists a non-zero idempotent e ∈ S. By Lemma
3.6.15 the subset G0 = eSe is a subgroup of S with zero formally added.

Consider the set of all R-classes of the semigroup S. Choose one representa-
tive of the form ae from each class containing an element of this form. Let I be
the set of all such representatives.

Consider the set of all L-classes of S. Choose one representative of the form
ea from each class containing an element of this form. Let J be the set of all
such representatives.

It is clear that I and J are not empty because there exist an L-class and anR-class containing e = ee.
For every i = ae ∈ I and j = eb ∈ J the element ji = ebae is in G0. This gives

us the matrix P ∶ I × J → G0, P (i, j) = ji.
We will prove that S is isomorphic to M0(G,I,J,P ).
Consider the map φ∶M0(G,I,J,P ) → S that takes 0 to 0 and any triple(i, g, j) to the element igj ∈ S (recall that I, J,G are subsets of S). It is clear

that this map is well defined.
Since (igj)(i′g′j′) = i(gji′g′)j′ = i(gP (i′, j)g′)j′,

φ is a homomorphism.
Let us prove that φ is injective. Suppose that igj = i′g′j′ where i = ae, g =

ese, j = eb, i′ = a′e, g′ = es′e, j′ = b′e. Hence

ae ⋅ ese ⋅ eb = a′e ⋅ es′e ⋅ eb′
in S. Then by Lemma 3.6.13 there exist two elements q1 and q2 such that

ae = a′e ⋅ es′e ⋅ eb′q1, ae ⋅ es′e ⋅ ebq2 = a′e.
This implies that aeRa′e, so ae = a′e. Similarly eb = eb′. Now we can apply
Lemma 3.6.13 to e ⋅ eb and to ae ⋅ e and obtain that ese = es′e. Thus i = i′, j = j′
and g = g′. So φ is injective.

Finally we need to prove that φ is surjective. Let a ∈ S/{0}. We need to
show that a = igj for some i ∈ I, j ∈ J, g ∈ G. Since SeS is an ideal of S, we
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have SeS = S. Then a = xey = xe ⋅ ey for some x, y ∈ S. There exist an element
i = ue ∈ I and an element j = ev in J such that xeRue, eyLev. Then xe = ues,
ey = tev for some s, t ∈ S1. Since e = e2, we get

xe = ue ⋅ es, ey = te ⋅ ev.
Thus

a = xe ⋅ ey = ue ⋅ este ⋅ ev = igj
where g = este ∈ G = eSe/{0}. This proves that φ is surjective.

It remains to show that the matrix P is regular. Suppose P has a zero
column, that is P (i, j0) = 0 for some j0 ∈ J and every i ∈ I. Then take any i0 ∈ I
and g0 ∈ G. Let a = (i0, g0, j0). By the definition of M(G,I,J,P ) the product(i0, g0, j0)(i′, g′, j′) is 0 for every i′ ∈ I, g ∈ G,j′ ∈ J. Thus ax = 0 for every x ∈ S.
This contradicts Lemma 3.6.14. We get a similar contradiction if P has a zero
row. �

Exercise 3.6.17. Prove thatB2 =M0(1,2,2, I2) where 1 is the trivial group,
2 = {1,2}, and I2 is the 2 × 2-identity matrix.

Definition 3.6.18. Let G be any group, In be the identity n×n-matrix over
G0. Then the semigroup M0(G,n,n, In) is called the (n × n)-Brandt semigroup
over the group G (here and below n denotes the set {1, . . . , n}).

Exercise 3.6.19. Prove that M0(G,n,n, P ) is isomorphic to the n × n-
Brandt semigroup over G if and only if P has exactly one non-zero element in
every row and in every column.

Corollary 3.6.20. A periodic semigroup is simple if and only if it is a
rectangular band of groups.

Proof. This corollary immediately follows from Exercise 3.6.11 and Theo-
rem 3.6.16. �

The next exercise shows that the local finiteness question for completely
0-simple semigroups reduces to the question for groups.

Exercise 3.6.21. Prove that if all maximal subgroups of a completely 0-
simple semigroup S are locally finite, then S is locally finite.

3.6.1.2. Semigroups without divisors isomorphic to A2 and B2. A divisor of a
semigroup S is a quotient semigroup of a subsemigroup of S (it is a specialization
of the definition from Section 1.4.7).

Lemma 3.6.22. Let A2 be the 0-simple semigroup M0(1,2,2, P ) where

P = ( 0 1
1 1

) .
Then the Brandt semigroup B2 is a divisor of the semigroup A2 ×A2.

Proof. Let W be a subset of A2 ×A2 consisting of all pairs with one coor-
dinate equal 0. Then W is clearly an ideal of A2 ×A2. It is easy to check that
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S = (A2 ×A2)/W is isomorphic to M0(1,4,4, P ⊗ P ) where P ⊗P is the tensor
square of P ,

P ⊗P =
⎛⎜⎜⎜⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞⎟⎟⎟⎠
(check it!). Then the elements (2,1,2), (3,1, 2), (2, 1, 3), (3, 1,3), 0 from S form
a subsemigroup isomorphic to B2 (prove it!). �

We shall show that the Brandt semigroup B2 plays a very special role in the
theory of semigroups because a periodic semigroup without divisors isomorphic
to B2 and its close relative A2 has a very nice structure. We start with 0-simple
semigroups.

Lemma 3.6.23. Let S = M0(G,I,J,P ) be a 0-simple semigroup and the
sandwich-matrix P contains zero entries. Then S contains a copy of A2 or B2.

Proof. Let P (i, j) = 0. Since P is regular, there exist m ∈ I,n ∈ J such that
P (m,j) ≠ 0 and P (i, n) ≠ 0.

Case 1. Let P (m,n) ≠ 0. Then the elements

(i,P (i, n)−1P (m,n)P (m,j)−1, j), (i,P (i, n)−1n),
(m,P (m,j)−1, j), (m,P (m,n)−1 , n),

and 0 form a subsemigroup of S isomorphic to A2.

Case 2. Let P (m,n) = 0. Then the elements

(i,P (i, n)−1n), (i,1, j), (m,1, n), (m,P (m, j)−1 , j),
and 0 form a subsemigroup of S isomorphic to B2. �

The next theorem (due to Shevrin [294, 295]) describes the structure of
arbitrary periodic semigroups that do not have divisors isomorphic to A2 and
B2. The proof of this theorem shows how a combination of algebraic methods
and manipulation with words can elucidate the structure of a semigroup.

Theorem 3.6.24. Every periodic semigroup that does not have divisors iso-
morphic to A2 or B2 is a semilattice of semigroups each one of which is an
ideal extension of a Rees–Sushkevich semigroup of the form M(G,I,J,P ) by a
nil-semigroup.

Proof. Let S be a periodic semigroup without divisors isomorphic to A2

or B2.

For every element a in a periodic semigroup let a0 denote the idempotent in⟨a ⟩. Consider the following relation 0 on S:

a 0 b ⇐⇒ Sa0S = Sb0S.

We claim that 0 is a congruence, the quotient semigroup S/0 is a semilattice,
and each class of 0 is a subsemigroup that is an ideal extension of a simple
semigroup by a nil-semigroup.

The fact that 0 is an equivalence relation is obvious.
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Let us prove that 0 is a congruence. We shall divide the proof into a number
of steps.

Step 1. For every a, b ∈ S we have ab0ba. Indeed (ab)n = a(ba)n−1b. So(ab)0 and (ba)0 are divisible by each other.
Step 2. If a 0 b then a 0 ambn for every m,n ≥ 1 and there exist idempotents

x, y ∈ S such that a0x = a0 = ya0, xb0 = b0 = b0y,xa0 = x = b0x,a0y = y = yb0.

Indeed, we have that Sa0S = Sb0S. Consider the principal factor K = Sa0S/W
as in Exercise 3.6.6. We know that it is a 0-simple semigroup. By Theorem
3.6.16 K is isomorphic to M0(G,I,J,P ) for some G,I,J,P. By Lemma 3.6.23,
the matrix P does not have zero entries. By Exercise 3.6.7 K/{0} is a simple
semigroup. Notice that am and bn are in K/{0}. Therefore ambn and (ambn)0
are in K/{0} too. Since K/{0} is simple, a0 and (ambn)0 are divisible by each
other. So a 0 ambn. The second part of the statement follows from Exercise
3.6.9.

Step 3. For every a, c ∈ S, we have ac 0 a0c0. By Step 1, ac 0 ca. Using
Step 2 and Step 1 several times, we get:

ac 0 ac2a 0 a2c2
0 c2a2

0 a2c3a 0 a3c3 . . . 0 ancn

for every n. Since S is periodic, there exists an n such that an = a0 and cn = c0.

Therefore ac 0 a0c0.

Step 4. If a 0 b then for every c ∈ C we have ac 0 bc and ca 0 cb. Indeed, by
Step 2 there exists an idempotent x such that a0x = a0, xa0 = x = b0x,xb0 = b0.

By Step 3,

a0c0 = a0xc0
0 a0(xc0)0.

On the other hand xc0
0 xa0c0

0 x(a0c0)0. Therefore (xc0)0 and (a0c0)0 are
divisible by each other. Hence xc 0 xc0

0 a0c0
0 ac. Similarly one can prove

that cx 0 cb. By Step 1, we can conclude that ac 0 bc and ca 0 cb. Thus 0 is a
congruence.

Clearly a 0 a0 for every a ∈ S. So S/0 is a band (i.e., every element of S/0 is
an idempotent). Since by Step 1 ab 0 ba for every a, b ∈ S, S/0 is commutative.
Thus S/0 is a semilattice.

Finally let Sα be an equivalence class of 0. Let E be the set of idempotents
in Sα and let W = SαESα be the ideal generated by E. As we have seen on Step
2, for every two idempotents e, f ∈ Sα there exists an idempotent x ∈ Sα such
that e = ex = efx. This implies that any two idempotents in W are divisible by
each other inside W. Every element in W divides an idempotent because W is
periodic, and every element in W is divisible by an idempotent by the definition
of W. Therefore any two elements in W are divisible by each other. Thus W is
a simple semigroup. By Theorem 3.6.16 and Exercise 3.6.7, W is isomorphic to
a semigroup of the form M(G,I,J,P ).

The semigroup Sα/W has exactly one idempotent, 0. Therefore by Lemma
3.1.14, Sα/W is a nil-semigroup. �

The following exercise shows that a statement converse to Theorem 3.6.24
also holds.
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Exercise 3.6.25. Let S be a periodic semigroup that is a semilattice of ideal
extensions of simple semigroups by nil-semigroups. Prove that S satisfies the
following law:

((ab)0(ba)0)0(ab)0 = (ab)0
for every a, b ∈ S (here as in the proof of Theorem 3.6.24 a0 denotes the idem-
potent from ⟨a ⟩). Prove that A2 and B2 do not satisfy this law. Deduce from
it that S cannot have divisors isomorphic to A2 or B2.

Exercise 3.6.26. Prove that for a finite semigroup S the following conditions
are equivalent.

(1) S has no divisors isomorphic to the semigroups A2 and B2.

(2) For any idempotent e of S and any element a dividing e the element eae
belongs to the maximal subgroup of S with identity element e, denoted
by Se.

(3) For any idempotent e of S and any element a dividing e the element a2

divides e.
(4) S possesses a series of ideals I1 < I2 < . . . < In = S, with each quotient

Ik+1/Ik either a completely simple semigroup, or a completely simple semi-
group with an adjoined zero, or a semigroup with zero multiplication.

3.6.2. A description of inherently non-finitely based finite semi-

groups. First let us give an example of a finite inherently non-finitely based
semigroup.

Let B1
2 be the Brandt monoid from Exercise 1.8.4.

Lemma 3.6.27. B1
2 does not satisfy any nontrivial identity of the form Zn =

W.

Proof. By contradiction, suppose B1
2 satisfies a nontrivial identity Zn =W .

Since W differs from Zn, by Exercise 3.3.21, W satisfies one of four conditions
listed in this lemma. Suppose W contains x2

1 or xixj where i, j ≠ 1 or W starts
or ends not with x1. Consider the matrix representation of B1

2 from Exercise

1.8.4 and let x1 = ( 0 1
0 0

), xi = ( 0 0
1 0

) for all i ≠ 1. Then it is easy to see

that the value of W is not equal to the value of Zn (which is ( 0 1
0 0

) ). This

contradicts the assumption that Zn =W is an identity of B1
2 .

If W = [W1, x1]11, then W1 ≠ (Zn)x1
. Now let x1 = ( 0 1

0 0
) and all other

xi be arbitrary elements of B1
2 . Since B1

2 satisfies Zn = W , we will have that(Zn)x1
=W1 holds for an arbitrary choice of xi ∈ B1

2 . Therefore B1
2 satisfies the

nontrivial identity (Zn)x1
=W1. But this identity is of the form Z ′n−1 =W ′ and

we can finish the proof by induction on n. �

Now the following theorem can be deduced in the same way as Theorem
3.5.3.
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Theorem 3.6.28 (Sapir [277]). The semigroup B1
2 is inherently non-finitely

based.

Therefore every finite semigroup having B1
2 as a quotient is inherently non-

finitely based. In particular, by the definition ofB1
2 , the multiplicative semigroup

of all matrices of size > 1 over an arbitrary finite ring with unit contains B1
2 . Thus

it is inherently non-finitely based. So is the semigroup of all transformations of
a more than 2-element set.

It is interesting that if we consider the set of all matrices over a finite as-
sociative ring as a ring, then it generates a finitely based variety (as any finite
associative ring) — by a theorem of Kruse–L’vov [208] (see Theorem 1.4.33).

Remark 3.6.29. Note that if a group G satisfies the identity xd = 1, then in
every identity u = v or u = 1 we can replace every occurrence of a letter x−1 by
xd−1 and get an equivalent monoid identity (modulo xd = 1). Therefore every
periodic variety of groups can be defined by monoid identities. Note also that
every group identity u = 1 is equivalent to the conjunction of two semigroup
identities uy = y, yu = y where y is a letter that does not occur in u. Thus every
periodic variety of groups is a variety of semigroups.

In order to describe all finite inherently non-finitely based semigroups, we
will need the following two exercises.

Exercise 3.6.30. Prove that for every semigroup variety V satisfying the
identity xm = xm+d with d ≥ 1, the class of all groups in V is a semigroup varietyV0, which is equal to V ∩ var{xdy = yxd = y}. Hint: Use Remark 3.6.29.

Exercise 3.6.31. If S is a finite semigroup, V = varS, then V0 is generated
by the maximal subgroups of S. Hint: By (1.4.1) every group from V is a
homomophic image of a subsemigroup of a Cartesian product of copies of S.
Show that if a group G is a homomorphic image of a periodic semigroup U , then
G is a homomorphic image of a subgroup of U (what is the identity element of
that subgroup?) and that a subgroup of a Cartesian product of semigroups Ui

is a subgroup of a Cartesian product of subgroups of Ui.

The proof of the next lemma employs uniformly recurrent bi-infinite words
again.

Lemma 3.6.32. Let E be the set of all idempotents of a semigroup S. If each
subsemigroup eSe, e ∈ E, is locally finite, then the ideal SES is locally finite.

Proof. Suppose that the ideal SES is not locally finite, so there exists a
finite number of elements sieis

′
i, ei = e2

i , si, s
′
i ∈ S, i = 1, . . . , l, which generate

an infinite subsemigroup S1. Then there exists a bi-infinite uniformly recur-
rent geodesic word α in the letters sieis

′
i, i = 1, . . . , l for S1. Without loss of

generality we can assume that s1e1s
′
1 appear in α. Then α can be represented

as . . . s1e1s
′
1u1s1e1s

′
1u2 . . . where the words uj, j ∈ Z are of bounded length.

Hence the set of elements e1s
′
1ujs1e1 is finite. That set is contained in eSe, and

hence generates a finite subsemigroup of eSe. Hence there exists k such that(e1s
′
1u1s1e1)(e1s

′
1u2s1e1)⋯(e1s

′
1uks1e1) is equal to a shorter product of words

e1s
′
1ujs1e1, which contradicts the assumption that α is geodesic. �
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Lemma 3.6.33. Let V be a locally finite semigroup variety such that V0 (see
Exercise 3.6.30) is finitely based. Then V is inherently non-finitely based if and
only if it does not satisfy any nontrivial identity of the form Zn =W.

Proof. If V is a locally finite variety that does not satisfy nontrivial iden-
tities of the form Zn =W , then any bigger variety cannot satisfy such identities
either, and so by Theorem 3.5.1 V is not contained in a finitely based locally
finite variety, that is V is inherently non-finitely based.

Suppose that V satisfies a nontrivial identity of the form Zn = W. Since V
is locally finite, it does not contain the infinite cyclic semigroup, so it satisfies
some nontrivial identity of the form xm = xm+n (why?) Let v1(x1, . . . , xk) =
1, . . . , vℓ(x1, . . . , xk) = 1 be a basis of identities of V0. We may assume that
the words v1, . . . , vℓ are positive (not containing inverses of letters) because of
the identity x−1 = xn−1 that is true in every group from V. Consider the free
semigroup F of V on k generators x1, . . . , xk. Since F is a finite semigroup, it
has a minimal idempotent. Let v(x1, . . . , xk) be a minimal idempotent in F.

Then, vFv is a group by Exercise 3.1.11. Consequently, F satisfies the equal-
ities vi(vx1v, . . . , vxkv) = vi(vx1v, . . . , vxkv)2, i = 1, . . . ,m. These equalities are
identities in V by Exercise 1.4.26. Consider the variety V1 defined by these
identities, and the identities xm = xm+n and Zn = W. By construction V ⊆ V1.

By Theorem 3.3.4, all nil-semigroups in V1 are locally finite. The groups inV1 satisfy the identities vi = 1, i = 1, . . . ,m and therefore belong to V0 ⊂ V. It
follows that all groups in V1 are locally finite. Since A1

2 and B1
2 do not satisfy

the identity Zn = W by Lemmas 3.6.22 and 3.6.27, every semigroup Y of V1 is
a periodic semigroup without divisors isomorphic to A1

2 or B1
2 . Then for every

idempotent e ∈ Y , the monoid eY e does not have divisors isomorphic to A2 or
B2. By Theorem 3.6.24, eY e is a semilattice of semigroups Yα, α ∈ A each one
of which is an ideal extension of a semigroup of the form M(Gα, Iα, Jα, Pα) by
a nil-semigroup. All these groups Gα belong to V0 and are locally finite. By Ex-
ercise 3.6.21 all M(Gα, Iα, Jα, Pα) are locally finite. Since all nil-semigroups inV1 are locally finite, by Corollary 3.4.3 applied several times (to ideal extensions
and semilattices of semigroups), we conclude that each monoid eY e is locally
finite. By Lemma 3.6.32, Y EY is locally finite where E is the set of all idem-
potents of Y. Since Rees quotient Y /Y EY is a nil-semigroup by Lemma 3.1.14
(all idempotents of Y are identified in this Rees quotient semigroup with zero),
and belongs to V1, it is locally finite by Theorem 3.5.1. Applying Corollary 3.4.3
again, we conclude that Y is locally finite. Hence V1 is a finitely based locally
finite variety containing V, and V is not inherently non-finitely based. �

Now we are in a position to give an algorithmic description of finite inher-
ently non-finitely based semigroups. The following theorem gives in fact two
algorithmic descriptions (parts (1) and (2) give one description, and Part (3)
gives another one). The first one is easier to verify, the second one is easier to
formulate. Recall that the center Z(G) of a group G consists of all x ∈ G such
that xy = yx for every y ∈ G. The series of normal subgroups G1 ≤ G2 ≤ . . . of
G is called the upper central series if G1 = Z(G),Gi+1/Gi = Z(G/Gi), i ≥ 1. The
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upper hypercenter of G is the union of all Gi in the upper central series of G. A
group G is called nilpotent of class n if Gn = G.

Theorem 3.6.34 (Sapir [278]). Let S be a finite semigroup.

(1) If S is inherently non-finitely based, then it contains an inherently non-
finitely based subsemigroup of the form eSe, e2 = e.

(2) Suppose S is a finite monoid and d is the period of S (that is S satisfies
the identity xm = xm+d for some m). The semigroup S is inherently
non-finitely based if and only if the following property holds
(H) for some idempotent e of S and some element a dividing e the ele-

ments eae and ead+1e do not lie in the same coset of the maximal
subgroup Se with respect to the upper hypercenter Γ(Se).

(3) S is inherently non-finitely based if and only if S does not satisfy any
nontrivial identity of the form Zn =W with n ≤ ∣S∣3.

For each n > 3 we define a word

Tn(x, y,x2, . . . , xn)
by replacing in Zn(x,x2, . . . , xn) the occurrences number 2,3, . . . , n + 1 of x by
the letter y. For each identity A = B we denote by αn(A = B) the identity

Zn(A,x′2, . . . , x′n) = Tn(A,B,x′2, . . . , x′n),
(the variables x′i do not occur in A or B).

Lemma 3.6.35. Suppose S is a semigroup and I is an ideal of S.uppose that
I is a semigroup with zero multiplication. Suppose also that S/I satisfies an
identity A = B. Then S satisfies the identity αn(A = B) for any n > 3.

Proof. Consider an arbitrary substitution λ of elements of S for the letters
of the identity αn(A = B). Put a = λ(A) and b = λ(B). If a or b does not
belong to I, then a = b by the assumption that S/I satisfies the identity A = B.
Therefore, by definition of the word Tn, we have the equality λαn(A = B) (this
expression means that if we apply λ to the left and right sides of the identity
αn(A = B), we obtain a true equality). If, however, a, b ∈ I, then the equality
λαn(A = B) is true because I is a semigroup with zero multiplication (both sides
of this equality are equal to zero in I). �

We assume up to Lemma 3.6.41 that S is a finite semigroup and I is an ideal
of S that is a completely simple semigroup M(G,L,R,P ) for some G,L,R,P.

Lemma 3.6.36. If a, b ∈ S and eae = ebe for every idempotent e of I, then
xay = xby for every x, y ∈ I.

Proof. For every x in I we denote by x0 the identity element of a subgroup
containing x. Suppose xay ≠ xby for some x, y in I. Since x = xx0 and y = y0y, we
have x0ay0 ≠ x0by0. Using the representation of I as a set of triples L×G×R, by
Exercise 3.6.11, the elements x0ay0 and x0by0 lie in a subgroup of I of the form{l} ×G × {r} (l and r are some elements of L and R respectively). By Exercise
3.6.12, y0x0ay0x0 ≠ y0x0by0x0. Therefore (y0x0)0a(y0x0)0 ≠ (y0x0)0b(y0x0)0.
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Taking e = (y0x0)0, we obtain eae ≠ ebe, which contradicts an assumption of the
lemma. �

Lemma 3.6.37. Suppose that for some natural number p and any a ∈ S
and x, y ∈ I we have xay = xapy. Suppose also that S/I satisfies an identity
A(x1, . . . , xn) = B(x1, . . . , xn) and B is obtained from A by replacing some oc-
currences of x1 by xp

1. Then S satisfies the identity αk(A = B) for every k > 3.

Proof. Consider a substitution λ of elements of S for the letters of the
identity αk(A = B). We represent the right side of the identity αk(A = B)
arbitrarily in the form ux

p
1v, where u and v are words. Recall that the word Tk

is obtained from Zk(x,x2, . . . , xk) by replacing k occurrences of x, beginning with
the second one, by y. It follows that A is an initial segment of u and a terminal
segment of v. We may assume λ(A) ≠ λ(B); hence λ(A) ∈ I. Consequently,
λ(u), λ(v) ∈ I. Therefore, by hypothesis, λ(uxp

1v) = λ(ux1v). Continuing in this
way, we can replace all occurrences of λ(xp

1) in the right side of the equality
λαk(A = B) by λ(x1) so that each occurrence of λ(B) is replaced by λ(A). As
a result, the right side of this equality becomes graphically equal to the left. �

Lemma 3.6.38. Suppose N is the upper hypercenter of G, k is divisible by the
exponent of G (i.e., the minimal number ℓ such that xℓ = 1 for every x ∈ G), and
m is greater than the length of the upper central series of G. Then G satisfies
the implication

x = y (mod N)→ αm
k (x = y),

where αm
k (x = y) = αk(αk(. . . αk(x = y) . . .)).

Proof. Let C be the center of G. If C = 1, the lemma follows from the
definition of αk. Suppose C ≠ 1. Using induction on the length of the upper
central series of G, we may assume that in G satisfies the implication

(3.6.1) x = y (mod N)→ αm−1
k (x = y) (mod C)

Let us denote the left and right sides of the identity αm−1
k (x = y) by A and B. We

replace the letters of the identity αk(A = B) (or, what is the same, the letters
of the identity αm

k (x = y)) by elements of G by means of the substitution λ.

In view of (3.6.1) if λ(x) = λ(y) (mod N), then λ(A) = λ(B) (mod C). Then
λ(A) = λ(B)c for some c ∈ C, and

λ(Tk(A,B,x′2, . . . , x′k)) = Tk(λ(A), λ(B), . . .) = ckTk(λ(A), λ(A), . . .)
= Tk(λ(A), λ(A), . . .) = Zk(λ(A), λ(x′2), . . . , λ(x′k)) = λ(Zk(A,x′2, . . . , x′k)),

as desired. �

Up to Lemma 3.6.41 we fix a number k that is a multiple of the period of
the semigroup S, and a number m that is greater than the length of the upper
central series of G. Let N be a normal subgroup of G. We define a binary relation
σN on S by setting

(1) (x, y) ∈ σN ↔ x = y or x, y ∈ I and x = (l, g, r), y = (l, h, r) and g =
h (mod N).
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Exercise 3.6.39. Prove that σN is a congruence on S.

Lemma 3.6.40. Let N = Γ(G). If S/σN satisfies the identity A = B, then S

satisfies the identity αm
k (A = B).

Proof. We replace each letter t of the identity αm
k (A = B) by some element

λ(t) of S. Put a = λ(A) and b = λ(B). It suffices to consider the case where a ≠ b.
In this case a, b ∈ I and (a, b) ∈ σ. Consequently, a = (l, g, r) and b = (l, h, r) for
some l, r, g, h with g = h (mod N). We denote the idempotent (l, p−1

lr , r) by e (see
Exercise 3.6.8). It is an identity element for a and b. Consider the substitution λ1

that coincides with λ on the letters of the words A and B, and sends every other
letter t to eλ(t)e. Since in the words Zk the letter x1 appears in all odd positions
(Exercise 2.5.5) and since e is an identity element for a and b, the left (right)
side of the equality λ1α

m
k (A = B) is equal to the left (right) side of the equality

λαm
k (A = B). It is easy to see that λ1(t) ∈ Ie = {l} ×G × {r} for every letter t

(prove it!). Since the group Ie is isomorphic to G and g,h ∈ G, g = h (mod N),
we can use Lemma 3.6.38 to conclude that the equality λ1α

m
k (A = B) is true.

Consequently, the equality λαm
k (A = B) is also true. �

Lemma 3.6.41. Suppose S is a finite semigroup of period d, and suppose
that for every idempotent e of S and every element a dividing e the elements
eae and ead+1e lie in the same coset of the upper hypercenter Γ(Se) in the group
Se. Then there exists a number m0 ≤ ∣S∣2, such that for any m > m0 and any k
that is a multiple of d, k > 3, the identity αm

k (x = xd+1) is true in S.

Proof. By Exercise 3.6.26, S possesses a chain of ideals I1 < I2 < ⋯ < In = S,
such that each of the quotients Ij/Ij−1 is either a semigroup with zero multipli-
cation, or a completely simple semigroup, or a completely simple semigroup with
adjoined zero. Using induction on n, we may assume that we have already found
a number m1 ≤ ∣S/I1∣2 such that for any m >m1 and any k > 3 that is a multiple
of d, the identity αm

k (x = xd+1) is true in S/I1. If I1 is a semigroup with zero

multiplication, then, by Lemma 3.6.35, the identity αm+1
k (x = xd+1) is true in S

for any m > m1, and as the desired number m0 we can take, say, m1 + 1 ≤ ∣S∣2.
Suppose I1 is a completely simple semigroup. Then each element of S divides
each element of I1. Let N be the upper hypercenter of G. Consider the congru-
ence σ = σN defined before Exercise 3.6.39. Put S̄ = S/σ and Ī = I1/σ. It is clear
from the definition of σ that S̄/Ī ≅ S/I1. By hypothesis, for any idempotent
e ∈ Ī and any a ∈ S̄ we have eae = ead+1e. Then, by Lemma 3.6.36, xay = xad+1y

for every x, y ∈ I. Since the right side of the identity αm
k (x = xd+1) is obtained

from the left by replacing several occurrences of x by xd+1, we can apply Lemma
3.6.37. It implies that S̄ satisfies the identity αm

k (x = xd+1). Therefore, in view of

Lemma 3.6.40, S satisfies the identity αm+1+l
k (x = xd+1), where l is any number

greater than the length of the upper central series of a maximal subgroup of I1.

Thus, as the desired m0 we can take, say, m1 + ∣S∣ ≤ (∣S∣ − 1)2 + ∣S∣ ≤ ∣S∣2.
Now suppose that I1 is a simple semigroup with an adjoined zero. Take

e = e2 ∈ I1. Let J denote the set of elements of S not dividing e. It is clear that
J is an ideal of S and that I1 ∩J = {0}. Since S < S/I1 ×S/J (check it!), we may
assume that J = {0} (otherwise we use the induction assumption for S/I1 and
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S/J). We will prove that S contains no zero divisors, i.e., non-zero elements a, b
such that ab = 0. Suppose a, b ∈ S ∖ {0}. We have e = u1av1 = u2bv2 for some
u1, v1, u2, v2 in S1. Consequently e = u2bv2u1av1, and hence bv2u1a ≠ 0. By Part
(3) of Exercise 3.6.26, (bv2u1a)2 = bv2u1(ab)v2u1a ≠ 0 hence ab ≠ 0. Thus S∖{0}
is a subsemigroup. By the induction assumption, the identity αm

k (x = xd+1)
is true in S ∖ {0} for any m greater than some m0 ≤ (∣S∣ − 1)2. The left and
right sides of this identity consist of the same letters. Therefore it is true on S.

Consequently this m0 is as desired. �

Remark 3.6.42. Note that by definition, the left side of the identity αk(x =
xd+1) is equal to Zk(x,x′2, . . . , x′k). In view of Exercise 2.5.5, the left side of

the identity αm
k (x = xd+1) differs from some word Zn only in the names of the

variables. It is also obvious that this identity is nontrivial.

Exercise 3.6.43. Suppose that G is a group, a, b, c, d ∈ G, and axb = cxd for
all x ∈ G. Then ac−1, bd−1 belong to the center of G. Hint: Take x = 1 to show
that c−1a = db−1. Then for every x, c−1ax = xdb−1 = xc−1a. Hence c−1a = db−1 is
in the center of G. Finally since ac−1 is a conjugate of c−1a, we get ac−1 = c−1a.

Lemma 3.6.44. Suppose I =M(G,L,R,P ) is a finite completely simple semi-
group and the center of the group G is trivial. Suppose also that a, b, c, d ∈ I and
axb = cxd for every x ∈ I. Then ax = cx and xb = xd for every x ∈ I.

Proof. The equality axb = cxd and the definition of the Rees–Sushkevich
semigroup M(G,L,R,P ) imply that ax and cx belong to the same maximal
subgroup Ie of I, and xb and xd belong to another maximal subgroup, say If . Fix
x and z. Suppose ax = (i, g1, j), cx = (i, g2, j), zb = (s,h1, q), and zd = (s,h2, q).
Take any y = (n, t,m) ∈ I. We have axyzb = cxyzd, i.e., (i, g1pnjtpsmh1, q) =(i, g2pnjtpsmh2, q). Hence

g1pnjtpsmh1 = g2pnjtpsmh2.

Therefore by Exercise 3.6.43, g1g
−1
2 and h1h

−1
2 belong to the center of G. But,

by our assumption, the center of G is trivial; hence g1 = g2 and h1 = h2. Conse-
quently ax = cx, zb = zd, as required. �

Lemma 3.6.45. Suppose that S is a periodic semigroup, E = E(S) is the
set of all idempotents of S, and for every e in E the semigroup eSe satisfies
an identity A(xi, . . . , xn) = B(xi, . . . , xn). Then the semigroup SES satisfies the
identity

xA(x1x, . . . , xnx)x = xB(x1x, . . . , xnx).
Proof. Indeed

uevA(x1uev, . . . , xnuev) = uA(evx1ue, . . . , evxnue)v
= uB(evx1ue, . . . , evxnue)v = uevB(x1uev, . . . , xnuev)

for every e ∈ E,u, v, x1 , . . . , xn ∈ S. �

Proof of Theorem 3.6.34. We start with Part (2).
Let S be a finite monoid, d be the period of S. Suppose that S is not

inherently non-finitely based and ∣S∣ is the smallest among counterexamples to
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property (H) from Part (2) of the theorem. Then by Lemma 3.6.33 S satisfies a
nontrivial identity of the form

(3.6.2) Zk(x1, . . . , xk) =W (x1, . . . , xk).
Since S is a monoid, removing x1 from this identity gives another (shorter)

identity of S of this form. So we can assume that removing x1 from W produces
Zk−1(x2, . . . , xk).

By Lemmas 3.6.22 and 3.6.27 S does not have divisors of the form A2 or B2

(for if, say, B2 was a divisor of the monoid S, then B1
2 would be a divisor too -

check it!). By Exercise 3.6.26, S possesses a series of ideals I1 < I2 < . . . < Im = S
each of whose quotients Ij+1/Ij is either a semigroup with zero multiplication,
or a completely simple semigroup or a completely simple semigroup with zero
adjoined. Take an idempotent e ∈ S and an element a dividing e, that is e ∈ SaS,
but

(3.6.3) eae ≠ ead+1e (mod Γ(Se)).
By the minimality of ∣S∣, we may assume that e ∈ I1 and S does not contain
0: otherwise we take S/I1 or S ∖ {0} instead of S. We may also assume that
the center of Se is trivial: otherwise we pass from S to S/σN where N = Γ(Se)
(the congruence σN was defined before Exercise 3.6.39). Indeed, S/σN is not
inherently non-finitely based as a quotient of S, and eae is not equal to ead+1e

modulo Γ(G/N) = {1}, but the number of elements in S/σN would be smaller
than in S.

Take the smallest number k with the following property: there exists a word
U(x1, . . . , xk) different from Zk(x1, . . . , xk) and turning into Zk−1(x2, . . . , xk)
after deleting x1, such that

(3.6.4) pZk(x1, . . . , xk)q = pU(x1, . . . , xk)q
for all p, q ∈ I1 and x1, . . . , xk ∈ S. Such a k exists in view of (3.6.2) and our as-
sumptions about W (indeed, W satisfies all the needed conditions except having
the smallest number of distinct letters).

Assume that k > 1. Then xk occurs only once in U and U can be represented
as U1xkU2 where U1,U2 do not contain xk. By (3.6.4) we have

pZk−1xkZk−1q = pU1xkU2q

for all p, q, x1 ∈ I1 and x1, . . . , xk−1 ∈ S. By Lemma 3.6.44 we have

pZk−1q = pU1q, pZk−1q = pU2q.

Since U differs from Zk, one of U1,U2 differs from Zk−1, which contradicts the
minimality of k.

Hence k = 1. Thus for any p, q ∈ I1 and any x ∈ S we have pxq = pxlq where l
is some natural number greater than 1 and not depending on p, q, x. Since S is
finite of period d, it satisfies the identity xm = xm+d for some m. Hence

eae = eale = . . . = ealme = ealm+de = ealm(ade) = ea(ade) = ead+1e.
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Here we used the fact that if am = am+d, then am′ = am′+d for every m′ > m
(prove this property of finite cyclic semigroups!). We get a contradiction with
(3.6.3).

This proves that if S is inherently non-finitely based, then property (H)
holds.

Suppose that property (H) holds for a finite semigroup S (not necessarily a
monoid). Then by Lemma 3.6.41, S satisfies the identity αm

k (x = xd+1) for some
k,m. This identity is nontrivial and its left-hand side differs from some Zn only
by names of variables by Remark 3.6.42. Hence S is not inherently non-finitely
based by Lemma 3.6.33. This proves Part (2) of Theorem 3.6.34.

Now let us prove Part (1). Suppose that all subsemigroups of the form eSe

are not inherently non-finitely based. We must show that S itself is not inher-
ently non-finitely based. By the property (H), every submonoid eSe of S satisfies
the assumptions of Lemma 3.6.41. By Lemma 3.6.41, eSe satisfies αm

k (x = xd+1)
for some k,m. We can of course choose k,m (big enough) independent of e.
Therefore all submonoids eSe satisfy the same nontrivial identity of the form
Zn =W by Remark 3.6.42. Then by Lemma 3.6.45, the identity

xZn(x1x, . . . , xnx) = xW (x1x, . . . , xnx)
is true in SES where E is the set of idempotents of S. The left-hand side of
this identity is equal to Zn+1(x,x1, . . . , xn) by Exercise 2.5.5 and differs from
the right-hand side. Since S/SES is nilpotent by Lemma 3.1.16, it satisfies
the identity Zk = 0 for some k (say, k = ∣S∣ is enough). Therefore S satisfies a
nontrivial identity,

Zn+1(Zk, xk+1, . . . , xk+n) = ZkW (xk+1Zk, . . . , xk+nZk),
which completes the proof of Part (1).

Finally let us prove Part (3). If S satisfies a nontrivial identity of the form
Zk =W , then S is not inherently non-finitely based by Lemma 3.6.33. Suppose
that S is not inherently non-finitely based. Then all its submonoids eSe are not
inherently non-finitely based. By Lemma 3.6.41 each eSe satisfies αm

k (x = xd+1),
and we can take k,m ≤ ∣S∣. By Remark 3.6.42 the left-hand side of this identity
differs from some Zr, r ≤ ∣S∣2, only by the names of the letters. Hence eSe

satisfies a nontrivial identity of the form Z∣S∣2 = W (independent of e). By

Lemma 3.6.45 then SES satisfies the nontrivial identity Z∣S∣2+1 = W ′. Since
S/SES is nilpotent of class at most ∣S∣, we obtain that S satisfies a nontrivial
identity of the form Z∣S∣2+1+∣S∣ =W ′′. It remains to note that ∣S∣2 + 1 + ∣S∣ ≤ ∣S∣3
if ∣S∣ > 1. If ∣S∣ = 1, then S satisfies the identity x = x2, and the condition of Part
(1) holds also. �

Remark 3.6.46. Note that by using a little bit more care we could lower
the estimate in Property (3) of Theorem 3.6.34 from ∣S∣3 to ∣S∣2.

Remark 3.6.47. By Theorem 3.6.28 B1
2 is inherently non-finitely based, and

so every finite semigroup having B1
2 as a divisor is inherently non-finitely based.

Note, though, that not every inherently non-finitely based finite semigroup S

has B1
2 in varS, examples have been found in [278]. Jackson [159] described
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all minimal finite inherently non-finitely based semigroups T. In other words he
found a list of finite inherently non-finitely based semigroups so that for every
inherently non-finitely based finite semigroup S one of the semigroups from that
list is in varS. It turned out that any such list is infinite.

Nevertheless we have the following result, which we shall give here as an
exercise. It follows from Theorem 3.6.34.

Exercise 3.6.48 (Sapir [278]). If all subgroups of a finite semigroup S are
nilpotent, then S is inherently non-finitely based if and only if B1

2 ∈ varS (in
fact if and only if B1

2 is a divisor of S × S).

3.7. Growth functions of semigroups

3.7.1. The definition. Let S be a semigroup generated by a finite set
A, and let fA be the growth function of S with respect to A, that is fA(n)
is the number of elements of S represented by words in A of length at most
n (see Section 1.5). Clearly, fA(n) is bounded from above by the exponential
function ∣A∣n. We say that the growth of S is polynomial if fA(n) is bounded
from above by nk for some k < ∞. The infimum of all such k is called the
Gelfand–Kirillov dimension of S [109]. We say that growth is exponential if
fA is bounded from below by an exponential function eαn, α > 0. In this case

the number lim supn→∞
n
√
fA(n) is called the exponential growth rate of S with

respect to A. We say that the growth is intermediate if it is neither polynomial
nor exponential. Since the growth functions of a semigroup relative to two
different finite generating sets are equivalent (see Section 1.5), having polynomial
(exponential, intermediate) growth does not depend on the choice of a finite
generating set. Moreover in the case of polynomial growth, the Gelfand–Kirillov
dimension does not depend on the choice of a finite generating set.

Example 3.7.1. Let S be the free commutative monoid with free generating
set A = {a1, . . . , ak} (see Exercise 1.8.18). Then every element s of S is uniquely
represented by a word of the form

(3.7.1) ar1

1 . . . a
rk

k
,

ri ≥ 0. The sum r1 + r2 + . . . + rk is the minimal length of a word representing s
in S. Hence the number f(n,k) of elements of length n satisfies f(0, k) = 1 for
every k ≥ 1, f(n,1) = n + 1 and the relation

f(n,k) = f(n − 1, k) + f(n,k − 1)
for every n ≥ 1, k ≥ 2 (indeed, the first summand in the right-hand side counts
words (3.7.1) with r1 > 0 and the second summand counts words with r1 = 0).
These conditions completely determine the number f(n,k) for all n,k. Note

that the binomial coefficient (n+k
k
) satisfies the same conditions (prove it using

Exercise 1.1.4). Hence f(n,k) = (n+k
k
) for all n,k. The right-hand side of this

equality is a polynomial in n with the highest term nk

k!
(see Exercise 1.1.1), so

the growth function is polynomial and the Gelfand–Kirillov dimension of S is k.
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Example 3.7.2. Let S be the free k-generated monoid with free generating
set A, then all words of length ≤ n in A represent different elements of S, so

fA(n) = n

∑
m=0

km = k
n+1 − 1

k − 1
,

so the growth is exponential and the exponential growth rate is k.

There exists a natural partial order on growth functions, and in general on
all non-decreasing functions N→ N:

f1 ≺ f2 ⇐⇒ there exists C > 1 such that for all n f1(n) ≤ Cf2(Cn) +C.
So f1 and f2 are equivalent (in the sense of Section 1.5) if and only if f1 ≺ f2

and f2 ≺ f1 (prove it!).

Exercise 3.7.3. Prove that if a semigroup S1 is a subsemigroup (homomor-
phic image) of a semigroup S2 and both semigroups are finitely generated, then
the growth function of S1 does not exceed the growth function of S2. Hint:

If S1 = ⟨X1 ⟩ is a subsemigroup of S2 = ⟨X2 ⟩, show that the growth function
of S2 with respect to the generating set X1 ∪ X2 cannot be smaller than the
growth function of S1 with respect to X1, then use Exercise 1.5.1. If S1 is a
homomorphic image of S2 = ⟨X2 ⟩, then use the fact that the image X1 of X2

generates S1 and if an element s ∈ S2 is represented by a word of length ≤ n in
the alphabet X2, then the image of s in S1 is represented by a word of length
≤ n in X1. Moreover every element of S1 that is represented by a word of length
≤ n in X1 is a homomorphic image of an element of S2 that can be represented
by a word of length ≤ n in X2.

Hence every subsemigroup of a semigroup with polynomial growth has poly-
nomial growth (and the Gelfand–Kirillov dimension of a subsemigroup does not
exceed the Gelfand–Kirillov dimension of the ambient semigroup), and every
semigroup containing a subsemigroup of exponential growth has exponential
growth itself.

3.7.2. Chebyshev, Hardy–Ramanujan and semigroups of interme-

diate growth. Although it is not obvious that semigroups of intermediate
growth exist, here we present relatively easy constructions of such semigroups.
For this we need two classical results from outside of Combinatorial Algebra.

3.7.2.1. The Chebyshev theorem about primes. For every natural number n
let π(n) denotes the number of primes ≤ n. Say, π(1) = 0, π(2) = 1, π(10) = 4,
etc. The next theorem was proved by Chebyshev in 1850. We present a proof
based on some ideas of Erdös (he used these ideas to prove another Chebyshev
theorem that for every natural n there is a prime between n and 2n).

Theorem 3.7.4. There exists a constant c > 0 such that for every natural
number n we have

cn

lnn
≤ π(n) ≤ n − 1.
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Remark 3.7.5. In fact as was proved by Hadamard and de la Vallee-Poussin

in 1890 [147], the limit limn→∞
π(n)

n/ ln n
is equal to 1.

Proof of Theorem 3.7.4. The inequality π(n) ≤ n − 1 is obvious, so
we should only prove the inequality cn

ln n
≤ π(n). For every natural number

m consider the middle binomial coefficient (2m
m
) in the Newton expansion of(1 + 1)2m = 4m.

Exercise 3.7.6. Prove that (2m
m
) ≥ 4m

2m+1
. Hint: Use the Pascal triangle

formula (see Exercise 1.1.4) to prove that the middle binomial coefficient is the
biggest one. Then use the fact that the sum of the binomial coefficients is 4m

(by Exercise 1.1.1), and the number of them is 2m + 1.

For a prime p and a number m we define op(m) as the largest exponent of p
that divides m. Note that op(m1m2) = op(m1) + op(m2) and if m1 divides m2,
then op(m1

m2
) = op(m1) − op(m2) (why?).

Exercise 3.7.7. For every natural number m and prime p we have

op(m!) = r

∑
i=1
⌊m
pi
⌋

where r is such that pr ≤m ≤ pr+1. Hint: There are ⌊m
p
⌋ numbers ≤m that are

divisible by p, ⌊m
p2 ⌋ numbers ≤m that are divisible by p2, etc.

Lemma 3.7.8. If k = op((2m
m
)) > 0, i.e., p divides (2m

m
), then pk ≤ 2m.

Proof. Let r be the natural number such that pr ≤ 2m < pr+1. Then by

Exercise 3.7.7 k = op ((2m
m
)) = op((2m)!) − 2op(m!) = ∑r

i=1 ⌊2m
pi ⌋ − 2∑r

i=1 ⌊m
pi ⌋ =

∑r
i=1(⌊2m

pi ⌋ − 2 ⌊m
p
⌋) ≤ r because for every positive real number x we have ⌊2x⌋ −

2 ⌊x⌋ ≤ 1 (why?). Therefore pk ≤ pr ≤ 2m. �

Now let us deduce the theorem from this lemma. Since π(n + 1) ≤ π(n) + 1
for every n, we can assume that n = 2m is even. Let k = π(2m). Every prime

that divides (2m
m
) does not exceed 2m (why?). Therefore (2m

m
) = ∏ℓ

i=1 p
ai

i , where
all primes pi are different and pi ≤ 2m, so ℓ ≤ k. Hence

ln(2m
m
) = ∑ai ln pi.

By Lemma 3.7.8, each ai ln pi does not exceed ln 2m. Hence by Exercise 3.7.6

ℓ ≥
ln (2m

m
)

ln(2m) ≥
ln 4m

2m+1

ln(2m) ≥ c
2m

ln(2m)
for some c > 0. Thus π(2m) ≥ c 2m

ln(2m) . �
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3.7.2.2. The Hardy–Ramanujan theorem about partitions. Let n be a natural
number. A representation of n as a sum k1 + k2 + . . . + km where k1 ≥ k2 . . . ≥ km

is called a partition of n. The number p(n) of different partitions of n is the
Hardy–Ramanujan partition function [146]).

The famous Hardy–Ramanujan partition formula [308] gives that

p(n) ∼ 1

4n
√

3
e

π
√

2n
3 ,

i.e., the quotient of p(n) by the right-hand side of this formula tends to 1 as
n→∞. We shall use the following much easier inequality.

Theorem 3.7.9. For every natural n,

(3.7.2) p(n) ≤ 2n3
√

n.

Proof. First consider the partitions where every summand does not exceed√
n. The number of summands is at most n, so the number of such partitions

does not exceed n
√

n. Now consider the partitions with a summand >√n. The
number of possible maximal summans of such a partition does not exceed n. If
we remove a biggest summand a, we get a partition of n − a. Therefore

p(n) ≤ np(n − ⌊√n⌋) + n√n.

Exercise 3.7.10. Complete the proof of the theorem.

�

3.7.2.3. A semigroup of matrices. The semigroup from the next theorem was
found by Okniński, the proof is due to Nathanson [244].

Theorem 3.7.11. Let S be the semigroup of 2 × 2-matrices (under multipli-
cation) generated by the set A = {a, b} where

a = ( 1 1
0 1

) , b = ( 1 0
1 0

) .
Then S has intermediate growth.

Proof. Let us observe that S satisfies the following relations:

b2 = b, bakb = (k + 1)b.
Therefore for any positive integers k1, . . . , kr we have

bak1bak2b⋯bakrb =
r

∏
i=1
bakib = ( r

∏
i=1
(ki + 1)) b

Let p1, . . . , pr be distinct prime numbers not exceeding
√
n for some n ≥ 1.

Then

(3.7.3) bap1−1bap2−1b⋯bapr−1b = ( r

∏
i=1
pi) b.
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The length of that element does not exceed
r

∑
i=1
pi + 1 ≤ r

√
n + 1 ≤

√
nπ(√n) + 1

where π(m) is the number of primes not exceeding m. By Theorem 3.7.4
cn

lnn
≤ π(n) ≤ n − 1

for some constant c > 0. The length of the element in (3.7.3) does not exceed√
n(√n − 1) + 1 ≤ n

for every n ≥ 1. All the elements (3.7.3) are distinct since every integer uniquely
decomposes as a product of primes [147], and so every subset of primes not
exceeding

√
n gives a different element of S of length at most n. This gives the

superpolynomial lower bound for the growth function:

fA(n) ≥ 2π(√n) ≥ 2
2c
√

n

ln n .

To compute the upper bound let s ∈ S and the length of the shortest word in
a, b representing s be at most n. Since we are finding a super-polynomial upper
bound for the number of such elements, we can ignore a few (bounded number)
of sets with polynomial number of elements. Thus we can ignore elements of the
form ak, k = 1, . . . , n and aubav with u + v ≤ n − 1. Hence we can assume that s
has the form aus′av, where

s′ = bak1bak2⋯bakrb

where u+v ≤ n, r, k1, . . . , kr are positive integers such that k1+. . .+kr+r+1 ≤ n. By
(3.7.3), every permutation of ki’s gives the same element, hence we can assume
that k1 ≥ . . . ≥ kr ≥ 1. With every such element s′ we associate the following
partition of the natural number n:

n = (k1 + 1) + . . . + (kr + 1) + 1 + . . . + 1

where the number of 1’s at the end is

n −
r

∑
i=1
ki − r ≥ 0.

Thus we have a surjective map from the set of all partitions of n to the set of
elements s′ as above.

Theorem 3.7.9 gives n2e
√

n ln n as an upper bound for the growth function
up to the equivalence. Thus S has intermediate growth. �

Here is a syntactic representation of S. Consider the semigroup S′ defined
by the following presentation

sg⟨a, b ∣ b2 = b, bambanb = bamn+m+nb, m,n ∈ N ⟩.
The identity map a↦ a, b ↦ b extends to a homomorphism from S′ to S (since
the relations of S′ obviously hold in S). It is easy to see that the rewriting
system b2 → b, bambanb → bamn+m+nb, m,n ∈ N is Church–Rosser (prove it!).
The canonical words have one of the forms b, au (u ≥ 1), aubav (u + v ≥ 1),
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aubavbaw (v ≥ 1). It is easy to see that these words represent different elements
in S (prove it!). Hence the homomorphism S′ → S is an isomorphism.

Note that a similar semigroup

S′′ = sg⟨a, b ∣ b2 = b, bambanb = banbamb, m,n ∈ N ⟩
was considered by Belyaev, Sesekin and Trofimov in [41]. They proved that
S′′ has intermediate growth also. The semigroup S is clearly a quotient of S′′,
and the estimation of growth from the above for S′′ is similar to the estimation
from the proof of Theorem 3.7.11. An exact estimate (up to equivalence) of
the growth functions of S and S′′ was found in [199]. It turned out that the

growth function of S is equivalent to 2
√

n/ ln n and the growth function of S′′ is

equivalent to 2
√

n.

Okniński and others (see [253, 254], [65] and the references therein) studied
other finitely generated matrix semigroups over fields. In fact Okniński [253]
found the first matrix semigroup of intermediate growth. Cedó and Okniński
formulated the following

Conjecture 3.7.12. A finitely generated semigroup of matrices over a field
has exponential growth if and only if it contains a free subsemigroup of rank at
least 2.

The “if” part of the conjecture is obvious, but the “only if” part is still open.
They proved the conjecture in the case when the sizes of matrices are at most
4. Note that Okniński and Salwa proved the following related result:

Theorem 3.7.13 (Okniński, Salwa [255]). A (not necessarily finitely gen-
erated!) semigroup of matrices over a finitely generated field contains no free
subsemigroups of rank at least 2 if and only if S satisfies a nontrivial semigroup
identity.

3.7.2.4. A semigroup of automatic transformations. Another example of a
semigroup of intermediate growth was found in [24]. It seems quite different but
is in fact very similar.

Theorem 3.7.14 (Bartholdi, Reznykov, Sushchansky, [24]). The semigroup
of automatic transformations defined by the Mealy automaton on Figure 1.2 has

growth function equivalent to 2
√

n.

Proof. It turns out that the semigroup S defined by this Mealy automaton
has the following syntactic description (presentation):

P =mn⟨x, y ∣ x2 = 1, y(xy)p(yx)py2 = y(xy)p(yx)p, p ≥ 0 ⟩.
The proof is contained in the following four exercises.

Exercise 3.7.15. Prove that the semigroup S satisfies the relations from P
if we replace x by Mq0

and y by Mq1
.

Exercise 3.7.16. Prove that the presentation P is Church–Rosser.
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Exercise 3.7.17. Prove that the canonical words of the rewriting system P
(i.e., all words that do not contain the left-hand sides of the relations from P)
are the empty word, the word x, and all words of the form

(3.7.4) xǫ1y(xy)p1y(xy)p2y⋯(xy)pky(xy)pk+1xǫ2

where ǫ1, ǫ2 ∈ {0,1}, 0 ≤ p1 < p2 < ⋅ ⋅ ⋅ < pk, pk+1 ≥ 0. Deduce that for every word
w in x, y, its canonical form is not longer than w.

Exercise 3.7.18. If u, v are canonical words of the rewriting system P, and
Mu,Mv are the automatic transformations corresponding to these words (where
x is replaced by Mq0

, y is replaced by Mq1
), then Mu,Mv are different. Thus

there exists a word w such that Mu(w) ≠Mv(w).
Now we see (using the second part of Exercise 3.7.17) that elements of S of

length at most n > 1 are precisely the empty word, the word x, and the words
(3.7.4) with ǫ1 + ǫ2 + k + 2(p1 + ⋅ ⋅ ⋅ + pk+1) ≤ n. As in the proof of Theorem 3.7.11,
this gives the desired estimates of the growth function. �

3.8. Inverse semigroups

3.8.1. Basic facts about inverse semigroups. Recall that a semigroup
with unary operation −1 is called an inverse semigroup if it satisfies the identities(x−1)−1 = x, xx−1x = x, xx−1yy−1 = yy−1xx−1. The basic properties of inverse
semigroups are formulated below as an exercise.

Exercise 3.8.1 (Basic properties of inverse semigroups). Show that the
following properties of inverse semigroups hold.

(1) Every inverse semigroup contains an idempotent, idempotents form a
commutative subsemigroup (i.e., a semilattice).

(2) A semigroup is inverse if and only if for every x there exists y such that
xyx = x (i.e., the semigroup is regular) and its idempotents commute.

(3) The monoid B = mn⟨a, b ∣ ab = 1 ⟩ is an inverse semigroup (it is called
the bicyclic semigroup). The presentation of B is Church–Rosser. The
normal forms are bman, m,n ≥ 0. An element of B is an idempotent if
and only if it is equal to bnan for some n. Every homomorphic image of
B is isomorphic to either B itself or to a cyclic group. Show that B is
the syntactic monoid of the Dyck language (see Exercise 1.8.52).

(4) Every semilattice of groups (in particular, every semilattice) is an inverse
semigroup.

(5) A completely 0-simple semigroup M = M0(G,I,J,P ) is inverse if and
only if P is a matrix of 0’s and 1’s where every row and every column
contains exactly one 1, i.e., P is obtained from the identity matrix by
permuting the rows and permuting the columns (in this case M is called
a Brandt semigroup over the group G).

(6) If S1, S2, . . . are inverse semigroups with zero 0, so that Si ∩ Sj = {0} for
every i ≠ j, then define an operation on the union S = ⋃Si: a ⋅ b = ab,
if a, b are in one of the Si, and a ⋅ b = 0 otherwise. Then S is an inverse
semigroup (it is called the 0-direct sum of S1, S2, . . .).
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Here are three more advanced (but still not that difficult) exercises, see [269].
We say that an inverse semigroup S has height h if every chain of idempotents
e1 < e2 < . . . (in the natural partial order, see Section 3.1) has at most h elements.

Exercise 3.8.2. Prove that an inverse semigroup is of height 1 if and only
if it is a group. Show that an inverse semigroup of height > 1 has an ideal that
is of height 1.

Exercise 3.8.3. Prove that an inverse semigroup with zero has height 2
if and only if it is a zero-direct sum of Brandt semigroups. Prove that every
inverse semigroup S of height h ≥ 2 with zero has an ideal I, which is of height
2, and such that S/I has height h − 1.

Exercise 3.8.4. Prove that an inverse semigroup does not contain the bi-
cyclic semigroup as a subsemigroup if and only if every J -class is {0} or a Brandt
semigroup with zero removed (a semigroup where all J -classes are {0} or com-
pletely 0-simple semigroups with zeroes removed is called completely semisim-
ple).

3.8.2. Identities of finite inverse semigroups, Zimin words, and

subshifts. Here we shall prove

Theorem 3.8.5 (Sapir [280]). Every finite inverse semigroup belongs to a
locally finite finitely based variety of inverse semigroups, so it is not inherently
non-finitely based.

Lemma 3.8.6. The Brandt semigroup B2 considered as an inverse semigroup
satisfies the following identity

(3.8.1) xyx = xyxyy−1

Therefore every 0-direct sum of Brandt semigroups of arbitrary sizes over arbit-
rary groups satisfies this identity.

Exercise 3.8.7. Prove this lemma.

Let Ẑn be the Zimin word Zn without the last letter (which is x1).

Lemma 3.8.8. Every inverse semigroup S of height h satisfies the identity

(3.8.2) Ẑh+1 = Ẑh+1x1x
−1
1

Proof. Let us use induction on height h. Suppose first that S does not have
a zero. If h = 1, then S is a group by Exercise 3.8.3 and (3.8.2) clearly holds.
Thus we may assume that h ≥ 2. Then by Exercise 3.8.3 S has an ideal I of
height 1 that is a nontrivial group and S/I is of height at most h. Consider two
homomorphisms φ,ψ of S. The homomorphism φ is the natural homomorphism
S → S/I. The homomorphism ψ is from S to I, it takes every s ∈ S to ese where
e is the identity element of I (show that ψ is a homomorphism). Then the
homomorphism γ∶S → S/I × I that takes every s ∈ S to (φ(s), ψ(s) is injective
(prove that!). Therefore S is a subsemigroup of S/I × I. The group I satisfies
the identity (3.8.2). Thus it is enough to show that S/I satisfies this identity.
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Since S/I has a zero, it is suffices to assume that S has a zero and height
≥ 2.

Then by Exercise 3.8.3 S has an ideal I of height 2 such that S/I has height
at most h − 1.

By Exercise 3.8.3, I is a 0-direct sum of Brandt semigroups. By the induction
hypothesis S/I satisfies Ẑh = Ẑhx1x

−1
1 . Consider the word Ẑh+1. By the definition

of Zn abd the definition of an inverse semigroup we have

Ẑh+1 ≡ Zhxh+1Ẑh = Ẑhx1xh+1Ẑh = Ẑhx1(Ẑhx1)−1(Ẑhx1)xh+1Ẑh.

Let us take any homomorphism φ of the free inverse semigroup into S and let
a = φ(Ẑh), b = φ(x1), c = φ((Ẑhx1)−1(Ẑhx1)xh+1). We have to prove

abca = abcabb−1.

Suppose that a /∈ I. Since the identity Ẑh = Ẑhx1x
−1
1 holds in S/I, we have

a = abb−1 hence

abca = abcabb−1.

Suppose that a ∈ I. Then bc ∈ I since bc ∈ SaS. By Lemma 3.8.6, I satisfies
the identity xyx = xyxyy−1. Therefore we have

abca = abca(bc)(bc)−1 = abcabcc−1b−1 = abcabcc−1b−1(bb−1)
= abcabc(bc)−1(bb−1) = abcabb−1.

Thus in both cases we obtained the desired equality abca = abcabb−1. �

Now let us take a finitely generated inverse semigroup S with all subgroups
locally finite, which satisfies identity (3.8.2). Suppose that S is infinite. Then
there exists a geodesic uniformly recurrent bi-infinite word U. Let A = A(n,U)
be the number from Lemma 3.3.18.

Lemma 3.8.9. Let u, v,w be consecutive subwords of U such that ∣u∣ ≥ A, ∣v∣ ≥
A, w may be empty. Then (3.8.2) implies the identity uvwu = uvwuvv−1.

Proof. Let p be the longest prefix of v such that the identity uvwu =
uvwupp−1 follows from (3.8.2). If v = p we are done, so suppose that v ≠ p. Let
v = paq for some letter a and word q. We have uvwup = upaqwup. Since upa is
a subword in U and ∣upa∣ ≥ A by Lemma 3.3.18 there exists an endomorphism
φ of the free semigroup such that upa = u1φ(Zn) and φ(x1) = a. Therefore

up = u1φ(Ẑn). Thus identity (3.8.2) implies the identity up = upaa−1. Therefore
we have identities uvwu = uvwupp−1 = uvupaa−1p−1 = uvwupa(pa)−1, which
contradicts the maximality of the prefix p. �

Remark 3.8.10. Consider the (finite) set of all subwords of U of length 2A.
Since U is uniformly recurrent, there exists a number B such that every subword
of U of length B contains every subword in this set. Let u and v be any two
subwords of U of lengths ≥ 2B. Let a, b be the corresponding elements of S.

Lemma 3.8.11. The elements a and b are J -related, i.e., a = c1bd1, b = c2ad2

for some elements c1, c2, d1, d2 from S1.
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Proof. It is enough to prove that (3.8.2) implies an identity of the form
u = svt for some words s, t. We may assume that the length of v is a multiple
of A. Let us represent v as a product v1 . . . vk of words of length A. For every
i = 1, . . . , k let v(i) = v1 . . . vi. Since u contains every subword of U of length
2A, it may be represented as a product u1v1v2u2 and ∣u1∣ ≥ B. Let i ≥ 2 be
the biggest number such that the identity u = u1v(i)v(i)−1v1v2u2 follows from
(3.8.2). If i = k, then u = u1v(v−1v1v2u2) and we are done. Suppose i < k.

Since ∣u1∣ ≥ B, u1 contains the subword vivi+1. Therefore u1 = u3vivi+1u4 for
some u3, u4 and

u1v(i)v(i)−1v1v2u2 = u3vivi+1u4v(i)v(i)−1v1v2u2.

By Lemma 3.8.9 the identity (3.8.2) implies the identity

vivi+1u4v(i) = vivi+1u4v(i)vi+1v
−1
i+1.

Hence we can deduce identities

u = u3vivi+1u4v(i)vi+1v
−1
i+1v(i)−1v1v2u2 = u1v(i + 1)v(i + 1)−1v1v2u2,

which contradicts the maximality of i. �

Exercise 3.8.12. Prove that the identity (3.8.2) does not hold in the bicyclic
semigroup.

Lemma 3.8.13. Let S be an inverse semigroup with all subgroups locally
finite. If S satisfies identity (3.8.2), then S is locally finite.

Proof. By Exercise 3.8.12, S does not contain the bicyclic semigroup.
Therefore S is completely semisimple, so every J -class of S is a Brandt semi-
group with zero removed. Suppose S is infinite and U is an irreducible bi-infinite
uniformly recurrent word for S. Let number B be as in Remark 3.8.10. By
Lemma 3.8.11 all subwords of U of length ≥ 2B represent elements of the sameJ -class D of S. Let R ⊂ S be the set of these words, I be the ideal generated by
D, J be the (unique) maximal ideal in I that does not contain D. Then elements
represented by words in R are in I ∖ J. Then I/J is a Brandt semigroup whose
maximal subgroup is a maximal subgroup of S. Hence I/J is locally finite by
Exercise 3.6.21. Therefore words from R represent only finitely many elements
of I/J. Hence they represent only finitely many elements in S. This contradicts
the fact that U is irreducible. �

Now we are ready to prove Theorem 3.8.5.

Proof. Let T be a finite inverse semigroup. Then all groups in the variety
of inverse semigroups generated by S form a subvariety V generated by the
maximal subgroups of S (see Exercise 3.6.31), so V is locally finite and by the
Oates–Powell Theorem 1.4.33 is given by a finite number of identities v1 = 1, v2 =
1, . . . , vm = 1 in the class of all groups, where vi = vi(x1, . . . , xk) is a group word
(that is a word over the alphabet {x1, . . . , xk}±1). Consider the relatively free
semigroup F of rank k in varT. By Lemma 3.8.13, F is finite. So F has a
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minimal idempotent e (see Exercise 3.1.2). Let u be a word in the alphabet
x1, . . . , xk that represents e in F. Then T satisfies the identity

(3.8.3) u = u2.

By Exercise 3.1.11, eFe is a subgroup of F. Hence T satisfies the identities

(3.8.4) vi(ux1u, . . . , uxku) = u, i = 1, . . . ,m

Every group satisfying identities (3.8.3), (3.8.4) satisfies all identities vi = 1,
i = 1, . . . ,m, and so belongs to V and is locally finite. By Lemma 3.8.8, T
satisfies the identity (3.8.2). Thus T belongs to the variety W given by the
identities (3.8.2), (3.8.3), (3.8.4). Now by Lemma 3.8.13 W is locally finite and
Theorem 3.8.5 is proved. �

3.8.3. Inverse semigroups of bi-rooted inverse automata. Here are
some further nice examples of important inverse semigroups (see Margolis and
Meakin [220]).

Let G be a group generated by a finite set X, and let Γ be the corresponding
Cayley graph. We build an inverse monoid from Γ in the following way. Let
MX(G) be the set of all pairs (Ψ, g) where Ψ is a finite connected subgraph of
Γ, g ∈ G, and Ψ contains the vertices 1 and g. With every such Ψ and every
h ∈ G, we can define the translation of Ψ by h, the subgraph hΨ in the natural
way (just multiply all vertices by h, and use the fact that Γ is the right Cayley
graph, so if g → gx is an edge, then hg → hgx is also an edge). We can view each
pair (Ψ, g) from MX(G) as a rooted inverse automaton with input vertex 1 and
output vertex g. Since (Ψ, g) has just one input vertex and one output vertex,
it is called a bi-rooted automaton. We define the multiplication operation on
MX(G) as follows:

(Ψ1, g1) ⋅ (Ψ2, g2) = (Ψ1 ∪ g1 ⋅Ψ2, g1g2),
where Γ ∪ g ⋅∆ simply denotes the union of the corresponding subgraphs of Γ.

We also define the inverse by (Ψ, g)−1 = (g−1Ψ, g−1).
Exercise 3.8.14. Show that MX(G) with these operations is an inverse mo-

noid. Show that the idempotents of MX(G) are precisely all the pairs (Ψ,1),
i.e., the bi-rooted automata were input and output vertices coincide.

Exercise 3.8.15. Show that the map (Ψ, g) ↦ g is a homomorphism from
MX(G) onto G such that the preimage of 1 is the set of all idempotents of
MX(G). Thus MX(G) is an E-unitary cover of G.

Exercise 3.8.16 (Munn, [241]). Let F = gp⟨X ⟩ be a free group. Show
that then MX(F ) is the free inverse monoid whose free generators are the pairs(e,x), x ∈X, where e is an edge labeled by x with tail 1. Hint: First show that
MX(F ) is indeed generated by the pairs (e,x) as above, the inverse of (e,x)
is (e−1x). Let S be an inverse semigroup generated by the set X. For every
bi-rooted automaton (Ψ, g) let p be any path in Ψ that starts at 1, ends at g and
passes through every edge in at least one direction at least once. Let Lab(p) be
the label of that path and ψ(p) be the element of S represented by Lab(p) in S.
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Show (using the fact that the underlying graph of Ψ is a tree) that ψ(p) does
not depend on the choice of p, and depends only on (Ψ, g). Then show that ψ
coincides with φ on the bi-rooted automata (e,x), and is a homomorphism from
MX(F ) to S.

For more on E-unitary covers and semigroups of bi-rooted automata see the
survey by Margolis, Meakin, Sapir [221] and the references therein.

3.9. Subshifts and automata. The road coloring problem

We have seen that subshifts are useful for studying semigroups (Section
3.3.2). Here we show that semigroups (more precisely, semigroup acts) are useful
in studying subshifts.

3.9.1. Synchronizing automata. A complete automaton A = (Q,A),
from the algebraic viewpoint, is an algebra with ∣A∣ unary operations defined
on the set Q since we can view A as the Cayley graph of the free monoid A∗

acting on Q. This means that we may apply basic algebraic notions presented
in Section 1.4 to complete automata.

Let (Q,A) be the Cayley graph of a free semigroup A+ acting on a finite
set Q. Then every word w in A∗ corresponds to a function q ↦ q ⋅w from Q to
Q. The automaton (Q,A) is called synchronizing if there exists a word w ∈ A+
such that the corresponding function is constant, that is all paths labeled by w
in (Q,A) have the same terminal vertex. Any word w with this property is said
to be a reset word for the automaton.

0 1

23

a, b

b

b

b

a

aa

Figure 3.1. The automaton C

Exercise 3.9.1. Figure 3.1 shows a synchronizing automaton with 4 ver-
tices1 denoted by C. Prove that the word ab3ab3a resets the automaton, the
corresponding transformation takes every vertex to 1. Prove that ab3ab3a is the
shortest reset word for C.

1Here and below we adopt the convention that edges having multiple labels represent

bunches of parallel edges. In particular, the edge 0
a,b
Ð→ 1 in Figure 3.1 represents the two

parallel edges 0
a
Ð→ 1 and 0

b
Ð→ 1.
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The notion of a synchronizing automaton came from real life applications of
automata in E. Moore [236] and Ginsburg [113]. In these applications, finite
automata served as a mathematical model of discrete devices such as computers
or relay control systems. The problem they tried to solve was: how can we
return the device to an appropriate state if we do not know its current state and
cannot observe outputs produced by the device under various control actions
(think of a satellite that circles around the Moon and can be controlled from the
Earth, but the result of executing control commands cannot be observed while
the satellite is “behind” the Moon.)?

3.9.2. The road coloring problem. Recall that for every complete au-
tomaton (Q,A), in the underlying graph Γ, each vertex has the same out-degree
k = ∣A∣.

Given a graph Γ = (V,E) where all vertices have the same out-degree k,
one can ask whether there exists an action of mn⟨A ⟩ on V such that Γ is the
underlying graph of the corresponding complete automaton, and the automaton
satisfies some nice properties. The road coloring problem is certainly the most
famous question within this framework. It asks under which conditions on Γ,
one of the automata (Q,A) with underlying graph Γ admits a reset word.

The name of the problem suggested in [6] comes from the following inter-
pretation. Imagine a city with many streets and street intersections (exactly
two streets meet at every intersection). We would like to help a traveler who is
lost in the city find his/her way to a prescribed destination (the City Hall or a
hospital). For this, we color the blocks of the streets between intersections in
certain colors. The result is an automaton whose underlying graph is the map
of the city and the alphabet - the colors of the street blocks. Now if there was a
reset word, we could put it on the map, so that the traveler can follow the word
and arrive at a prescribed destination starting at any point in the city. More-
over, if there are several travelers at different street corners in the city and they
start following the reset word at the same time walking with the same speed,
then all of them will meet at the same time at the hospital (or City Hall). Of
course that problem is not very practical because, for example, the reset word
can be very long, and paths following the reset word could visit the same street
intersection many times before the traveler arrives at the hospital. The prob-
lem actually originated in a serious study of subshifts by Adler, Goodwyn and
Weiss [6]; in an implicit form it was present already in an earlier book by Adler
and Weiss [8]. As Adler, Goodwyn and Weiss, we shall consider only strongly
connected graphs (this is not a very restrictive assumption, see Volkov [327].)

Example 3.9.2. The graph in Figure 1.1 admits a synchronizing labeling—
in fact, each of the two of its labelings shown in Figure 1.1 is synchronizing.
Moreover, it can be shown that every complete automaton with that underlying
graph is synchronizing.

Exercise 3.9.3. In contrast to Example 3.9.2, the graph shown in Figure 3.2
admits both synchronizing and non-synchronizing labelings. Find such labelings,
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and for the synchronizing one, construct a reset word of minimum length that
leads to the vertex 0.

0

Figure 3.2. Graph admitting a synchronizing labeling

Exercise 3.9.4. (1) Find a synchronizing labeling of the Cayley graph of the
group of all permutations of {1,2,3} with respect to the generating set consisting
of permutations

1

1

1

1

2

2

2

2

3

3

3

3

.

,

(2) Do the same for the Cayley graph of the Dihedral group D2n for odd n

with respect to its generating set introduced in Exercise 1.8.21.
(3) Is there a synchronizing labeling for the Cayley graph of D2n (with

respect to the generating set from Exercise 1.8.21) if n is even?

The following necessary condition was found in [6]:

Proposition 3.9.5. If a strongly connected graph Γ = (V,E) admits a syn-
chronizing labeling, then the greatest common divisor of lengths of all cycles in
Γ is equal to 1.

Proof. By contradiction, let k > 1 be a common divisor of lengths of the
cycles in Γ. Take a vertex v0 ∈ V and, for i = 0,1, . . . , k − 1, let

Vi = {v ∈ V ∣ there exists a path from v0 to v of length i (mod k)}.
Clearly, V =

k−1

⋃
i=0

Vi. We claim that Vi ∩ Vj = ∅ if i ≠ j.
Let v ∈ Vi ∩ Vj where i ≠ j. This means that in Γ there are two paths from

v0 to v: of length ℓ ≡ i(mod k) and of length m ≡ j (mod k). Since Γ is strongly
connected, there exists also a path from v to v0. Let n be its length. Combining
that path with the two paths above we get a cycle of length ℓ+n and a cycle of
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length m+n. Since k divides the length of any cycle in Γ, we have ℓ+n ≡ i+n ≡ 0(mod k) and m + n ≡ j + n ≡ 0(mod k), hence i ≡ j (mod k), a contradiction.
Thus, V is a disjoint union of V0, V1, . . . , Vk−1, and by the definition each

edge in Γ leads from Vi to Vi+1(mod k). Then Γ definitely cannot be converted
into a synchronizing automaton by any labeling of its edges: no paths of the
same length ℓ originating in V0 and V1 can terminate in the same vertex because
they end in Vℓ(mod k) and in Vℓ+1(mod k) respectively. �

Graphs satisfying the conclusion of Proposition 3.9.5 are called primitive.
Adler, Goodwyn and Weiss [6] conjectured that primitivity not only is necessary
for a graph to have a synchronizing labeling but also is sufficient. In other word,
they suggested the following

Conjecture 3.9.6 (Road coloring conjecture). Every strongly connected
primitive graph with constant out-degree admits a synchronizing labeling.

The road coloring conjecture was finally proved by Trahtman [317]. But
the first step was done by Culik, Karhumäki and Kari [77]. They defined the
confluence relation ∼ on an automaton Q as follows:

q ∼ q′⇐⇒ for all u ∈ A∗ there exists v ∈ A∗ such that q ⋅ uv = q′ ⋅ uv.
Any pair of vertices (q, q′) such that q ≠ q′ and q ∼ q′ is called confluent.2

Exercise 3.9.7. Prove that the confluence relation on an automaton (Q,A)
is an equivalence relation, and a congruence relation on the automaton con-
sidered as an algebra with ∣A∣ unary operations corresponding to the labels of
edges.

Proposition 3.9.8 (Culik, Karhumäki and Kari [77]). If every strongly
connected primitive graph with constant out-degree and more than one vertex
has a labeling with a confluent pair of vertices, then the road cloring conjecture
is true.

Proof. Let Γ be a strongly connected primitive graph with constant out-
degree. We show that Γ has a synchronizing labeling by induction on the number
of vertices in Γ. If Γ has only one vertex, there is nothing to prove. If Γ has more
than one vertex, then, by the assumption, it admits a labeling with a confluent
pair of vertices by the letters of some alphabet A. Let A be the automaton
resulting from this labeling. By Exercise 3.9.7, the confluence relation is a
congruence of A. Since the congruence is nontrivial, the quotient automaton A/∼
has fewer vertices than A. Since the quotient graph of every strongly connected
graph is again strongly connected (check it!), the underlying graph Γ/∼ of A/∼ is
strongly connected. Moreover, since each cycle in Γ induces a cycle of the same
length in Γ/∼, the latter graph is primitive as well. Therefore, by the induction
assumption, the graph Γ/∼ admits a synchronizing labeling.

We lift this labeling to a labeling of Γ in the following natural way. If p Ð→ q

is an edge in Γ, let [p], [q] denote the ∼-congruence classes of p, q. If in the new
labeling of the quotient graph, the edge [p] Ð→ [q] has label a′, then we relabel

2It is somewhat similar to the notion of confluence for rewriting systems, see 1.7.2.
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p Ð→ q by a′ as well. An important feature of this relabeling procedure is that
it is consistent with the confluence relation ∼ in the following sense. Suppose

p
a
Ð→ q and p′

a
Ð→ q′ are two transitions with the same label in A such that

p ∼ p′ and q ∼ q′. Then [p] = [p′], [q] = [q′] and the two transitions induce the

same transition [p] a
Ð→ [q] in A/∼. If it is being recolored to [p] a′

Ð→ [q] for some
a′ ∈ A, then the two transitions are being changed in the same way such that the

resulting transitions p
a′

Ð→ q and p′
a′

Ð→ q′ still have a common label. This implies,
in particular, that if two vertices are in the same equivalence class of ∼ in the
old labeling, then they are in the same class of ∼ in the new labeling (why?).

Let A′ be the automaton resulting from the lifted labeling; we will show thatA′ is synchronizing.
Let w be a reset word for the synchronizing labeling of Γ/∼ . Then w maps

the set of all vertices to a set S that is contained in a single congruence class of∼ . Let us order the vertices in S arbitrarily: S = {x1, x2, . . . , xn}. Since x1 ∼ x2,
there exists a word v1 such that x1 ⋅ v1 = x2 ⋅ v1. Then S ⋅ v1 is again inside a
congruence class of ∼ and there exists a word v2 such that (x2 ⋅v1)⋅v2 = (x3 ⋅v1)⋅v2.

Then consider S ⋅ v1v2 and the pair of vertices x3 ⋅ v1v2, x4 ⋅ v1v2. Continuing in
that manner, we will find words v1, . . . , vn−1 such that S ⋅ v1v2...vn−1 consists of
one vertex (see Figure 3.3). Therefore the word wv1v2⋯vn−1 is a reset word for
A′.

x1 x2 x3 x4

v1 v1 v1 v1

v2 v2 v2

v3 v3

Figure 3.3. Synchronizing a ∼-class

�

Using Proposition 3.9.8, Kari proved [172] the road coloring conjecture for
complete automata with the same in-degree and out-degree of every vertex. For
Trahtman’s proof of the complete road coloring conjecture we need to concen-
trate on the action of the cyclic semigroup generated by a single letter. For this,
we need some auxiliary notions and results.
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Let A = (Q,A) be a complete automaton. A pair (p, q) of distinct vertices
is compressible if p ⋅w = q ⋅w for some w ∈ A∗; otherwise it is incompressible. A
subset P ⊆ Q is said to be compressible if P contains a compressible pair and to
be incompressible if every pair of distinct vertices in P is incompressible. Clearly,
if P is incompressible, then for every word u ∈ A∗, the set P ⋅ u = {p ⋅ u ∣ p ∈ P}
also is incompressible and ∣P ∣ = ∣P ⋅ u∣.

Lemma 3.9.9. Let P be an incompressible set of vertices of maximum size in
a complete automaton A = (Q,A). Suppose that there exist a word w ∈ A∗ and
a vertex q ∈ P such that q ⋅w ≠ q but p ⋅w = p for all p ∈ P ′ = P ∖ {q}. Then the
pair (q, q ⋅w) is confluent.

Proof. Let q′ = q ⋅ w. Take an arbitrary word u ∈ A∗; we have to show
that q ⋅ uv = q′ ⋅ uv for a suitable word v ∈ A∗. Clearly, we may assume that
q ⋅ u ≠ q′ ⋅ u. Since the set P ⋅ wu is incompressible, the vertex q′ ⋅ u = q ⋅ wu
forms an incompressible pair with every vertex in P ′ ⋅ u = P ′ ⋅ wu. Similarly,
since the set P ⋅u is incompressible, the vertex q ⋅u also forms an incompressible
pair with every vertex in P ′ ⋅ u, and of course every pair of distinct vertices in
P ′ ⋅u is incompressible too. Now P ′ ⋅u∪ {q ⋅u, q′ ⋅u} has more than ∣P ∣ elements
so it must be compressible, and the above analysis shows that the only pair in
P ′ ⋅u∪{q ⋅u, q′ ⋅u} that may be compressible is the pair (q ⋅u, q′ ⋅u). Thus, there
is a word v ∈ A∗ such that q ⋅ uv = q′ ⋅ uv. �

Suppose that A = (Q,A) is a complete automaton. Fix a letter a ∈ A and
remove all edges of A except those labeled by a (in other words, consider the act
induced by the cyclic monoid {a}∗ and its Cayley graph). The remaining graph
is called the underlying graph of a or simply the a-graph. Thus, in the a-graph
every vertex is the tail of exactly one edge. Since the function on Q induced by
the action of a generates a finite cyclic semigroup, we can apply Exercise 1.8.7
and conclude that for every vertex q ∈ Q there exists a nonnegative integer ℓ and
some integer m > ℓ with q ⋅ aℓ = q ⋅ am, so we have a path as on Figure 3.4. The

. . .

. . .

q q ⋅ a q ⋅ a2
q ⋅ al−1

q ⋅ al

q ⋅ al+1 q ⋅ al+2

q ⋅ al+3

q ⋅ al+4q ⋅ am−1

Figure 3.4. The orbit of a vertex in the underlying graph the
letter a

least nonnegative integer ℓ such that q ⋅ aℓ = q ⋅ am for some m > ℓ is called the
a-height of the vertex q and the vertex q ⋅ aℓ is called the bud of q. The cycles of
the a-graph are referred to as a-cycles.
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Lemma 3.9.10. Let A = (Q,A) be a complete strongly connected automaton.
Suppose that there is a letter a ∈ A such that all vertices of maximal a-height
L > 0 have the same bud. Then A has a confluent pair.

Proof. Let M be the set of all vertices of a-height L. Then q ⋅ aL = q′ ⋅ aL

for all q, q′ ∈ M hence no pair of vertices from M is incompressible. Thus,
any incompressible set in A has at most one common vertex with M. Take an
incompressible set S of maximum size in A and choose any vertex p ∈ S. Since
the automaton A is strongly connected, there is a path from p to a vertex in M.

If u ∈ A∗ is the word that labels this path, then S′ = S ⋅u is an incompressible set
of maximum size and it has exactly one common vertex with M (namely, p ⋅ u).
Then S′′ = S′ ⋅ aL−1 is an incompressible set of maximum size that has all its
vertices except one (namely, p ⋅uaL−1) in some a-cycles—the latter conclusion is
ensured by our choice of L. If m is the least common multiple of the lengths of
all simple a-cycles, then r ⋅am = r for every r in every a-cycle but (p ⋅uaL−1) ⋅a =
p ⋅uaL ≠ p ⋅uaL−1. We see that Lemma 3.9.9 applies (with S′′ playing the role P
and am playing the role of w). �

Now we are ready to start the proof of Trahtman’s road coloring theorem.
Let us first explicitly formulate the result.

Theorem 3.9.11. Every strongly connected primitive graph Γ with constant
out-degree admits a synchronizing labeling.

Proof. If Γ has just one vertex, there is nothing to prove. Thus, we assume
that Γ has more than one vertex and prove that it admits a labeling with a
confluent pair of vertices. The result will then follow from Proposition 3.9.8.

Fix an arbitrary labeling of Γ by letters from an alphabet A and take an
arbitrary letter a ∈ A. We induct on the number N of vertices that do not lie on
any a-cycle in the chosen labeling.

Suppose first that N = 0. This means that all vertices belong to a-cycles (i.e.,
the a-height of every vertex is 0).

We say that a vertex p of Γ is ramified if it is the tail for two edges with
different heads.

If we suppose that no vertex in Γ is ramified, then there is just one a-cycle
(since Γ is strongly connected) and all cycles in Γ have the same length. This
contradicts the assumption that Γ is primitive3.

Thus, let p be a vertex that is ramified. Then there exists a letter b ∈ A such
that the vertices q = p ⋅a and r = p ⋅b are not equal. We exchange the labels of the

edges p
a
→ q and p

b
→ r, see Figure 3.5. It is clear that in the new labeling there is

only one vertex of maximal a-height, namely, the vertex q. Thus, Lemma 3.9.10
applies and the induction basis is verified.

Now suppose that N > 0. We denote by L the maximum a-height of the
vertices in the chosen labeling. Observe that N > 0 implies L > 0.

Let p be a vertex of height L. Since Γ is strongly connected, there is an edge
p′ → p with p′ ≠ p, and by the choice of p, the label of this edge is some letter

3This is the only place in the whole proof where primitivity is used!
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a

a

ak

Figure 3.5. Relabeling in the basis of induction

b ≠ a. Let t = p′ ⋅ a. One has t ≠ p. Let r = p ⋅ aL be the bud of p and let C be the
a-cycle on which r lies.

The following considerations split in several cases. In each case except one
we can re-label Γ by swapping the labels of two edges so that the new labeling
either satisfies the condition of Lemma 3.9.10 (all vertices of maximal a-height
have the same bud) or has more vertices on the a-cycles (and the induction
assumption applies). In the remaining case finding a confluent pair will be easy.

Case 1: p′ is not in C.

p′

p

t

r
aL

ak

b

a
p′

p

t

r
aL

ak
a

b

Figure 3.6. Relabeling in Case 1

We swap the labels of p′
b
→ p and p′

a
→ t, see Figure 3.6. If p′ was on the a-

path from p to r, then the swapping creates a new a-cycle increasing the number
of vertices on the a-cycles. If p′ was not on the a-path from p to r, then the
a-height of p′ becomes L + 1 hence every vertex z of maximal a-height in the
new automaton is an aascendant of p′, that is p′ = z ⋅ak for some k ≥ 0, and thus
has r as the bud.

Case 2: p′ is in C. Let k1 be the least integer such that r ⋅ ak1 = p′. The
vertex t = p′ ⋅a is also in C. Let k2 be the least integer such that t ⋅ak2 = r. Then
the length of C is k1 + k2 + 1.

Subcase 2.1: k2 ≠ L. Again, we swap the labels of p′
b
→ p and p′

a
→ t, see

Figure 3.7.3 If k2 < L, then the swapping creates an a-cycle of length k1 +L+1 >
k1 + k2 + 1 increasing the number of vertices on the a-cycles. If k2 > L, then
the a-height of t becomes k2 hence all vertices of maximal a-height in the new
automaton are a-ascendants of t and thus have the same bud.

Let s be the vertex of C such that s ⋅ a = r.
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Figure 3.7. Relabeling in Subcase 2.1

Subcase 2.2: k2 = L and s is ramified. Since s is ramified, there is a
letter c such that s′ = s ⋅ c ≠ r.

p′ p

t

r

s s′

aL

ak1

ak2−1

a

c

b

a

p′ p

t

r

s s′

aL

ak1

ak2−1

c

a

b

a

Figure 3.8. Relabeling in Subcase 2.2

We swap the labels of s
c
→ s′ and s

a
→ r, see Figure 3.7. If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and the number of
vertices on the a-cycles increases. Otherwise, the a-height of r becomes at least
k1 + k2 + 1 > L hence all vertices of maximal a-height in the new automaton are
a-ascendants of r and have a common bud.

Let q be the vertex on the a-path from p to r such that q ⋅ a = r.
Subcase 2.3: k2 = L and q is ramified. Since q is ramified, there is a

letter c such that q′ = q ⋅ c ≠ r.

p′ p

t

rq

q′

aL−1

ak1

ak2

a

c

b

a

p′ p

t

rq

q′

aL−1

ak1

ak2

a

c

a

b

Figure 3.9. Relabeling reducing Subcase 2.3 to Subcase 2.2

If we swap the labels of p′
b
→ p and p′

a
→ t, then we find ourselves in the

conditions of Subcase 2.2 (with q and q′ playing the roles of s and s′ respectively),
see Figure 3.9.

Subcase 2.4: k2 = L and neither s nor q is ramified.

In this subcase it is clear that q and s form a confluent pair whichever
labeling of Γ is chosen, see Figure 3.10. This completes the proof. �
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Figure 3.10. Subcase 2.4

3.9.3. An application of the road coloring theorem to a classifica-

tion of subshifts of finite type. We have mentioned that the classification of
subshifts of finite type up to conjugacy is currently out of reach. We know that
the problem reduces to edge subshifts of finite graphs (Theorem 1.6.23). But
we do not know an algorithm that, given two finite graphs, decides whether the
corresponding edge shifts are conjugate. While the problem seems to be purely
syntactic like the word problem for semigroups, numerous attempts at solving it
or proving that it is undecidable failed to produce a result. Thus several other,
weaker, equivalences of subshifts have been studied. One of them was discussed
in [6] and is related to the road coloring conjecture. Let us call two subshifts(X,TX), (Y,TY ) almost conjugate if there exist subshifts X0 ⊆ X, Y0 ⊆ Y that
are conjugate up to an absolutely negligible error. A more precise definition is
given below. But first we need to review some measure theory.

3.9.3.1. Subshifts and measures. Let (X,T ) be a subshift.

Definition 3.9.12. A good measure on (X,T ) is a function taking some
subsets of X (called measurable subsets) to real numbers between 0 and 1. The
set of measurable subsets and the measure can be defined simultaneously as
follows.

(1) (Probability.) The whole set X is measurable and its measure is 1.
(2) The complement of every measurable subset of measure α is measurable,

and its measure is 1 − α.
(3) The union of countably many disjoint measurable subsets Ui is measur-

able and its measure is the sum of measures of Ui.

(4) Every open ball B(x, ǫ) = {y,dist(x, y) < ǫ} in X is measurable and has
a positive measure.

(5) For every measurable set U the set T (U) is measurable and has the same
measure as U.

(6) (Ergodicity.) Every measurable subset U with T (U) = U has measure 1
or 0.

If a set has measure 0, then we can call it negligible with respect to that
measure. Every subshift has many good measures (that is not a trivial statement
and we leave it unproved referring the reader to [203]). For example, consider
the full subshift (AZ , T ). Assign probability pa > 0 to every letter a ∈ A so that

∑pa = 1. For every word w let pw be the product of probabilities of its letters.
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Then for every open ball B = B(ω, 1
2k ) = {α ∣ dist(α,ω) < 1

2k } assign the measure

µ(B) = pω(−k,k).

Using parts (1)–(5) of Definition 3.9.12 one can extend the function µ (by in-
duction) to all measurable sets. The resulting measure on AZ is good (see [26]).
This measure is called a Bernoulli measure on AZ .

A subset that has measure 0 with respect to every good measure on (X,T )
will be called absolutely negligible. The empty set is clearly always absolutely
negligible. There are many other examples but we do not want to get too deep
into the theory of measures on subshifts and we need only one kind of absolutely
negligible sets that will be defined below in Section 3.9.3.2.

Given a measure µ on a subshift (X,T ), we can integrate every measurable
function f ∶X → R (i.e., such a function that the preimage of every interval in
R is measurable). Again we do not need the general definition of the integral

∫ fdµ, just two properties, which are familiar to everybody who has studied
calculus, and which can be found in any textbook on measure theory (see, for
example, [26]).

Lemma 3.9.13. (1) If X is a disjoint union of finitely many measurable
subsets Xi, and f is constant on each Xi, then

∫ fdµ =∑
i

µ(Xi)f(Xi).
(2) If f is nonnegative on the whole X and positive on some measurable

subset of positive measure, then ∫ fdµ > 0.

The ergodicity of a good measure allows one to also apply the following
famous ergodic theorem.

Theorem 3.9.14 (George Birkhoff, [268]). Let µ be a good measure on a
subshift (X,T ), f be a measurable function X → R. Then for all x ∈ X outside
a subset of measure 0 we have

lim
n→∞

1

n

n

∑
i=0
f(T i(x)) = ∫ fdµ.

3.9.3.2. An example of absolutely negligible subsets in a subshift.

Lemma 3.9.15. Let (X,T ) be a subshift, w be a (finite) subword of a bi-
infinite word from X. Let Y be the set of bi-infinite words ω one of whose infinite
prefixes ω(−∞, n), n ∈ Z does not contain w. Then Y is an absolutely negligible
subset of X.

Proof. Indeed, suppose, by contradiction, that there exists a good measure
µ on X such that µ(Y ) > 0. Consider the function f ∶X → R that is equal to 1
on all bi-infinite words α ∈ X with α(1, ∣w∣) ≡ w and 0 for all other α ∈ X. By
the assumption of the lemma, there exists ω ∈X that contains w as a subword.
Replacing ω by T s(ω) if necessary, we can assume that ω(1, ∣w∣) = w. Therefore
the function f is nonnegative onX and equal to 1 on the ball {α ∈X ∣ dist(α,ω) <
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2−∣w∣}. By Lemma 3.9.13 then ∫ fdµ > 0. On the other hand for every α ∈ Y ,
and all sufficiently large i we have f(T i(α)) = 0 (by the definition of Y ). Hence

lim
n→∞

1

n

n

∑
i=0
f(T i(x)) = 0,

which contradicts the Birkhoff ergodicity Theorem 3.9.14. �

3.9.3.3. The AGW-conjugacy of subshifts. Now we can define AGW-conju-
gacy of subshifts (after Adler, Goodwyn and Weiss [6]).

Definition 3.9.16. We say that two subshifts (X,TX), (Y,TY ) are AGW-
conjugate if there exists a third subshift (W,TW ) and two homomorphisms

φ∶ (W,TW )→ (X,TX)
and

ψ∶ (W,TW )→ (Y,TY )
such that

(1) Both φ and ψ are onto.
(2) Both φ and ψ are finite-to-one, that is the preimage of every point is

finite.
(3) Each homomorphism is injective on a complement of an absolutely neg-

ligible shift-invariant subset.

Thus AGW-conjugate subshifts are conjugate “up to an absolutely negligi-
ble error”. Clearly, conjugate subshifts are AGW-conjugate. Note that AGW-
conjugation is an equivalence relation on subshifts (it is not obvious, for the
proof see [6]).

Exercise 3.9.17 (Compare with Exercise 1.6.19). Show that any two AGW-
conjugate subshifts have the same entropy.

3.9.3.4. Classification of edge subshifts of primitive graphs of constant out-
degree. The road coloring theorem leads to the following nice result.

Theorem 3.9.18 (Adler, Goodwyn, Weiss [6]). Let Γ1 and Γ2 be finite pri-
mitive graphs of constant out-degrees k1 and k2. Then the edge subshifts of Γ1

and Γ2 are AGW-conjugate if and only if k1 = k2.

Before we start the proof of that theorem, let us make some preliminary
observations. Let Γ be a finite graph with out-degree of every vertex equal to k.
Let A = (Q,A) be any complete automaton with underlying graph Γ. Then there
exists a map φ from the edge subshift (XΓ, TΓ) of Γ to the subshift (AZ , T ).
It maps every bi-infinite path in Γ to its label. Then φ is a homomorphism of
subshifts.

The set Sn of all subwords of length n of bi-infinite words from XΓ coincides
with the set of paths of length n in Γ. Every such path is determined by its
label and its initial vertex. Since A is complete, for every vertex x in Γ and
every word u in the alphabet A there exists a path in A starting at x with label
u (why?).

Therefore the complexity function f(n) of XΓ satisfies
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kn ≤ f(n) ≤ ∣Q∣kn.

Thus the entropy of (XΓ, TΓ) is equal to ln k. Since every subshift is determined
by the set of (finite) subwords of its bi-infinite words (Exercise 1.6.6), we con-
clude also that φ is surjective, so φ(XΓ) = AZ .

Now we can use the following lemma from symbolic dynamics that we present
here without a proof.

Lemma 3.9.19 (See Corollary 8.1.20 from [203]). Suppose that Γ,Γ′ are
strongly connected finite graphs, and the edge subshifts (XΓ, TΓ), (XΓ′ , TΓ′)
have the same entropy. Let φ be a surjective homomorphism from (XΓ, TΓ)
to (XΓ′ , TΓ′). Then φ is finite-to-one.

By Lemma 3.9.19 our homomorphism φ is finite-to-one.

Proof of Theorem 3.9.18. By Exercise 3.9.17, if the edge-shifts of two
graphs Γ1, Γ2 with constant out-degrees k1, k2 are AGW-conjugate, then k1 = k2.

Let us prove that the converse statement is true for primitive graphs. So
suppose that k1 = k2. By the road coloring theorem (Theorem 3.9.11), there are
labelings of Γ1, Γ2 that turn these graphs into complete synchronized automataA1 = (Q1,A) and A2 = (Q2,A) (the same alphabet because the out-degrees of Γ1

and Γ2 are the same). Then as before we have maps φi from the edge subshifts(XΓi
, TΓi
) onto (AZ , T ), i = 1,2. By Lemma 3.9.19 these maps are finite-to-one.

Let w1,w2 be the reset words for A1,A2. Let Yi, i = 1,2, be the set of bi-
infinite words ω from AZ such that some prefix ω(−∞, n) does not contain wi.

By Lemma 3.9.15 each Yi is absolutely negligible. Let Ȳi be the complement of
Yi. We claim that φi(ω) in Ȳi uniquely determines ω. Indeed, suppose that there
are two bi-infinite paths ω,ω′ such that φi(ω) = φi(ω′) ∈ Ȳi. Since the bi-infinite
words φi(ω) and φi(ω′) have infinitely many occurrences of the reset word wi to
the left of the position 0, the infinite to the left paths ω(−∞,0), ω′(−∞,0) visit
the same vertex infinitely many times. Since the automaton Ai is deterministic,
and labels φi(ω(−∞,0)) and φi(ω′(−∞,0)) coincide, the paths ω(−∞,0) and
ω′(−∞,0)) coincide. But then the paths ω(0,∞) and ω′(0,∞) must coincide
because these paths start at the same vertex and have the same labels. This
implies that ω = ω′. Thus the map φi is one-to-one on φ−1

i (Ȳi). Note that the

complement of φ−1
i (Ȳi) in XΓi

is absolutely negligible as well (prove that!).

Thus we found two surjective finite-to-one maps φi from XΓi
to AZ , which

are one-to-one on complements of absolutely negligible sets φ−1
i (Ȳi), i = 1,2.

Now consider the equalizer of the maps φ1, φ2. Namely, consider the alphabet
of pairs E1 × E2 where Ei is the set of edges of the graph Γi (as we did in
Exercise 2.5.25). Then there exists a natural subshift homomorphism πi from(E1 × E2)Z to EZ

i which maps every letter from E1 × E2 to its ith coordinate.

Let (W,T ) ⊆ ((E1 ×E2)Z , T ) be a subshift consisting of all bi-infinite words ω
such that πi(ω) ∈XΓi

and

φ1(π1(ω)) = φ2(π2(ω)).
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The next exercise shows that (W,T ) and the homomorphisms πi from (W,T )
to (XΓi

, TΓi
) give us the AGW-conjugacy of the edge subshifts.

Exercise 3.9.20. Show that each πi is finite-to-one and is one-to-one on a
complement of an absolutely negligible set.

�

3.10. Further reading and open problems

3.10.1. Other applications of Burnside properties. There are quite a
number of applications of Theorem 3.3.4. Here we present two, more - in Section
3.10.6.

3.10.1.1. The restricted Burnside problem for semigroup varieties. What is
now called the restricted Burnside problem was first formulated by Magnus [216]
(see Kostrikin [185]):

Problem 3.10.1. Is there an upper bound for the size of a m-generated finite
group of exponent n ?

It is easy to see that this is equivalent to the following problem (see the
survey [177]).

Problem 3.10.2. Is it true that locally finite groups in the variety var{xn =
1} form a variety?

In this form, the question is interesting for any variety of universal algebras.

Problem 3.10.3. Let V be a variety of universal algebras. Is it true that the
locally finite algebras from V form a variety?

Of course the answer depends on the variety: for the variety of commutative
groups, for example, the answer is negative because there are arbitrary large
finite cyclic groups.

Thus it is natural to ask the question in the following algorithmic form.

Problem 3.10.4. Given a finite system of identities of universal algebras,
can we decide if the locally finite algebras from this variety form a subvariety,
i.e., for every m ≥ 1 there is an upper bound for the size of m-generated finite
algebras in the variety.

The history of attempts to solve Problems 3.10.1, 3.10.2 can be found in
[185]. These problems were first reduced to the case when n is a power of a
prime (modulo the classification of finite simple groups) in [145] and then solved
for all prime powers by Zel’manov [333, 334]. Since the classification of finite
simple groups is now complete [15], we have positive answers to Problems 3.10.1,
3.10.2.

For arbitrary universal algebras, Problem 3.10.4 is undecidable:

Theorem 3.10.5. There is no algorithm to decide, given a finite set of iden-
tities, whether all locally finite algebras satisfying these identities form a variety.
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Proof. Let S = sg⟨A ∣ u1 = v1, . . . , un = vn ⟩ be a finitely presented semi-
group. Consider the class C of universal algebras with ∣A∣ unary operations
labeled by the letters from A. Then S corresponds to a finitely based subvariety
S of C. Finitely generated algebras from S are just sets on which the semigroup
S acts with finitely many orbits i.e., subsets of the form x ⋅ S. Therefore locally
finite algebras in S form a variety if and only if there exist only finitely many
finite acts of the semigroup S generated by one element. This is equivalent to
the following property: S has only finitely many finite homomorphic images
(prove it!). Thus if there was an algorithm solving Problem 3.10.3, there would
be an algorithm that, given a finite semigroup presentation decided whether the
semigroup has only finitely many finite homomorphic images. But the latter
algorithm does not exist even in the case when S is a group which is proved by
Bridson and Wilton [53]. �

Nevertheless for varieties of semigroups, Problem 3.10.4 is decidable. That
follows from the next theorem and Theorem 3.3.4.

Theorem 3.10.6 (Sapir, [279]). The following properties of a finitely based
variety V of semigroups are equivalent (the last two properties are equivalent by
Theorem 3.3.4):

(1) the locally finite semigroups from V form a variety;
(2) V contains only a finite number of finite semigroups with a fixed number

of generators;
(3) there exists a recursive function f(k) giving an upper bound for the order

of the k-generated finite semigroups from V;
(4) the nilsemigroups from V are locally finite.
(5) Zn+1 is not an isoterm for the identities of V, where n is the number of

variables in a finite basis of identities of V.

The following problem is still open.

Problem 3.10.7. Is Problem 3.10.4 decidable for varieties of monoids?

3.10.2. Free semigroups in periodic varieties. The Brzozowski

problem. Every periodic variety of semigroups is contained in the variety given
by one identity xm = xm+n. Thus the varieties Bm,n = var{xm = xm+n} are of
special interest. Relatively free semigroups in these varieties are among periodic
semigroups admitting the easiest syntactic description. Quite surprisingly, there
are some natural problems concerning these semigroups that have been open for
more than 40 years in spite of a lot of attention.

The main problem about the relatively free semigroups Sm,n,k with k ≥ 2
generators in the variety Bm,n was formulated by Brzozowski in 1969 in the case
of m ≥ 2, n ≥ 1 [59].

Problem 3.10.8. Is the word problem decidable in Sm,n,k ? More precisely,
is it true that for every element of Sm,n,k the language of all words (in the
generating set of Sm,n,k) representing this element is regular?

In the case m = 1 the word problem for Sm,n,k reduces to the word problem
in the free Burnside group Bn,k, which is discussed below in Section 5.2.3 (this
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was observed by Green and Rees in [118]). In particular, if m = 1, n = 1,2,3,4,6,
then Sm,n,k is finite, if n ≥ 665 and odd, then the word problem is decidable, etc.
Thus the case m = 1 is not really a semigroup theoretic problem, hence we start
with m = 2.

The current status of Problem 3.10.8 is the following. It was proved for
every n ≥ 1, m ≥ 3 and every k by Guba [130], but the case m = 2 is still
open. Moreover, it is still open in the “simplest” case m = 2, n = 1. In that case,
Plyushchenko [270] recently reduced the problem to the case of 2 generators
(see do Lago and Simon [90] for a more complete history of the problem and
attempts to solve it). In the case m ≥ 3, do Lago [89] found a Church–Rosser
presentation of Sm,n,k with regular language of left-hand sides (it can also be
deduced from Guba’s proof although it is not explicitly mentioned in the proof,
this is explained in [134]). This not only solved Problem 3.10.8 in that case,
but also allowed do Lago to describe L- and R-classes of Sm,n,k.

3.10.3. The finite basis problem for semigroups. There are many pa-
pers devoted to the finite basis problems for semigroups (see detailed surveys
[296, 325, 326]). One of the goals is to find smallest in some sense infinitely
based varieties. For example, while the 6-element semigroup B1

2 is not finitely
based (Theorem 3.6.28), every 5-element semigroup (there are 1,915 of those)
is finitely based (Trahtman, [316], see also Lee [195]) and among 6-element
semigroups (there are 28,634 of those) exactly four are non-finitely based [196]
(including A1

2, B1
2 of course).

One of the most interesting results about “small” non-finitely based varieties
was obtained by Kaďourek [165]. He proved that the variety var{x2y = xy}
contains infinitely based subvarieties. This variety is remarkable because (a)
it does not contain nontrivial groups and (b) all nilpotent semigroups in it are
semigroups with zero product (prove (a) and (b)! ). All other examples of non-
finitely based varieties of semigroups had either nontrivial groups or nilpotent
semigroups of arbitrary large class or both.

Since inherently non-finitely based finite semigroups are completely described
(Theorem 3.6.34), it is interesting to study identities of non-inherently non-
finitely based finite semigroups.

Here are a few outstanding open problems.

Problem 3.10.9. Is the set of all finite finitely based semigroups recursive?

There are several classes of “comparatively easy” semigroups for which the
question is also open and is worth studying.

For example, let L be a finite language closed under taking subwords and
S(L) be the finite semigroup obtained from L by the Dilworth construction, i.e.,
the semigroup L ∪ {0} where the product u ⋅ v is uv if uv ∈ L or 0 otherwise.
The semigroup S(L) is finite and nilpotent, hence the variety generated by S(L)
is always finitely based (prove it!). On the other hand the monoid S(L)1 may
not be finitely based as was first proved by Perkins [266]. He proved that if L
consists of all subwords of the words from {abtba, atbab, abab, aat}, then S(L)1
is not finitely based. Since monoids S(L)1 are so easy to describe (and all of
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them are not inherently non-finitely based by Theorem 3.6.34), it would be very
interesting to describe finite languages L for which S(L)1 is finitely based. It
has been done when L consists of one word in a 2-letter alphabet and all its
subwords (it is proved that the semigroup is finitely based if and only if the
word is of the form xmyn or xmyxn, m,n ≥ 0), and in some more complicated
cases [283, 160, 284]. While classes of languages L get more complicated
the description gets more and more complicated also, which may indicate that
perhaps there is no general algorithm to check whether S(L)1 is finitely based.

Problem 3.10.10. Is there an algorithm to decide, given a finite collection
of words L, whether the monoid S(L)1 (i.e., the monoid consisting of all words
that do not contain subwords from L) is finitely based?

Remark 3.10.11. Note a similarity between Problems 3.10.10 and 1.6.16.
We do not know whether there is any deep connection between these problems.

Another class of finite semigroups for which Problem 3.10.9 has been studied
is the class of finite completely simple semigroups M(G,I,J,P ). Mashevitsky
[222] discovered that this problem is closely related to the finite basis problem
for finite groups with an additional 0-ary operation, i.e., pointed groups, con-
sidered earlier by R. Bryant [58]. He proved that if G is a non-finitely based
pointed finite group with 0-ary operation g, then the Rees–Sushkevich semigroup

M(G,L,R,P ) where L = R = {1,2}, P = ( 1 g

1 1
) is not finitely based.

3.10.4. The Burnside problem for varieties of monoids. The follow-
ing problem is still open (compare with Theorem 3.3.4).

Problem 3.10.12. Is there an algorithm to decide, given a finite set of iden-
tities of monoids, whether every nil-monoid satisfying these identities is locally
finite?

By a nil-monoid we mean a monoid with zero 0 where every non-identity
element x satisfies xn = 0 for some n (depending on x).

3.10.5. Identities of finite inverse semigroups. Identities of inverse
semigroups including identities of finite inverse semigroups are discussed, in
particular, in [269, Chapter VII]. It was discovered by E.I. Kleiman [178, 179]
that the Brandt monoid B1

2 plays a very important role. Namely every variety
of inverse semigroups that does not contain B1

2 is finitely based if and only if its
groups form a finitely based variety of groups. Moreover, the variety generated
by a finite inverse semigroup S contains B1

2 if and only if B1
2 is a divisor of S,

i.e., a factor-semigroup of one of the subsemigroups of S. The variety of groups
from varS is generated by the subgroups of S, hence it is always finitely based
by Theorem 1.4.33. Thus if B1

2 is not a divisor of S, then varS is finitely based.
E.I. Kleiman proved [179] that the Brandt monoid B1

2 is not finitely based. He
also formulated the following

Problem 3.10.13. Is it true that a finite inverse semigroup S is finitely
based (as an inverse semigroup) if and only if varS does not contain B1

2 ?
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That would follow if B1
2 was inherently non-finitely based as an inverse semi-

group. But we have seen (Theorem 3.8.5) that there are no inherently non-
finitely based finite inverse semigroups at all. This makes Problem 3.10.13 quite
difficult. Nevertheless, Kaďourek [166] made a breakthrough by proving that
the answer to Problem 3.10.13 is positive provided every subgroup G of S is
solvable, i.e., has a sequence of normal subgroups {1} = Gn < Gn−1 < ⋅ ⋅ ⋅ < G0 = G
where all factor-groups Gi/Gi+1 are commutative. For inverse semigroups S with
non-solvable subgroups, Problem 3.10.13 is still open.

3.10.6. Growth functions of semigroups.

3.10.6.1. The set of all growth functions of finitely generated semigroups. If
D = (X,T ) is a subshift, and S(D) is the corresponding semigroup, then the
growth function fS(n) of S(D) is related to the complexity function fD(n) by
the formula

fS(n) = n

∑
i=1
fD(i)

(prove it!) By Exercise 1.6.10, the complexity function fD(n) is either 0 (if the
subshift is empty), or bounded from above by a positive integer (if the subshift
is finite), or satisfies fD(n) ≥ n + 1. This implies the following result.

Lemma 3.10.14. The growth function fS(n) is either bounded from above
by cn for some constant c or is bounded from below by the quadratic function

2 + 3 + ⋅ ⋅ ⋅ + (n + 1) = (n+1)(n+2)
2

− 1.

It turns out that this statement is true for every finitely generated semigroup.
It was proved independently by several people, see, for example, [44, 184]. In
fact it can be proved in the same way as the statement from Exercise 1.6.10.

In [318], [319], Trofimov proved that finitely generated semigroups can have
very weird growth functions strictly between n2 and expn.

Here is the main result of [318] (in particular, it gives many more examples
of semigroups of intermediate growth).

Theorem 3.10.15. Let f1, f2 be two increasing functions N → N such that
n2 ≺ f1 and f2 ≺ 2n (the partial order ≺ on functions was defined in Section
3.7.1), f1 is not equivalent to n2 and f2 is not equivalent to 2n. Then there
exists a finitely generated semigroup S whose growth function fS(n) satisfies
fS(n) < f1(n) for infinitely many values of n and fS(n) > f2(n) for infinitely
many values of n.

For more information about growth functions of finitely generated semi-
groups one can look in Shneerson [302], Ufnarovsky [320, 321] and Belov-Kanel,
Borisenko and Latyshev [34] (where a strengthened version of Theorem 3.10.15
is proved, in particular).

Problem 3.10.16. What is (up to the equivalence) the set of growth func-
tions of finitely presented semigroups? Can these growth functions behave like
in Theorem 3.10.15?
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3.10.6.2. Relatively free semigroups. Zimin words and growth. A surprising
connection between Theorem 3.3.4 and growth functions in semigroups was dis-
covered by Shneerson. He started by exhibiting the first example of a relatively
free semigroup of intermediate growth.

Theorem 3.10.17 (Shneerson, [300]). Let Sk be the k-generated relatively
free semigroup in the variety xyzyx = yxzxy (this variety has appeared before
in a paper by B. H. Neumann and T. Taylor [245] describing subsemigroups of
nilpotent groups). Then the growth function of Sk is intermediate if k > 2.

Note that Z4 is not an isoterm for xyzyx = yxzxy, so all periodic semi-
groups in this variety are locally finite. It turned out that this is not a random
coincidence because of the following strong and general theorem.

Theorem 3.10.18 (Shneerson, [301]). Let V be a finitely based non-periodic
semigroup variety where all periodic semigroups are locally finite. Then the
growth function of every finitely generated semigroup in V is strictly subexpo-
nential.

Note that there are no associative rings and no known examples of groups,
which satisfy nontrivial identities and have intermediate growth. Every ring sat-
isfying a nontrivial identity has polynomial growth (Section 4.4.3). The Grig-
orchuk group of intermediate growth considered in Section 5.7.4 does not satisfy
nontrivial identities. It follows from Abért’s Theorem 5.4.1 (see [1]).

Non-periodic varieties where semigroups have polynomial growth were com-
pletely described in [303]. It turned out that these varieties must satisfy one
additional identity besides Zn = W. For every γ > 0 and s > 0 consider the
following word Vγ,s in the alphabet {x, y,u,w1,w2, ...,ws}:

Vγ,s = xγuyγw1x
γw2uy

γw3 . . . x
γuyγwsx

γuyγ

(that is Vγ,s is obtained by substituting xγuyγ for u in uw1uw2 . . . wsu).

Theorem 3.10.19 (Shneerson, [303]). The following conditions are equiva-
lent for every finitely based non-periodic semigroup variety V given by identities
in n variables.

(1) All finitely generated semigroups of V have polynomial growth.
(2) V does not contain finitely generated semigroups of intermediate growth.
(3) Zn+1 and Vγ,n (for some γ > 0) are not isoterms for V.

The proof is very nontrivial. In particular, it strengthens and makes much
more precise several parts of the proof of Theorem 3.3.4.

The following natural problem in this area still remains unsolved and seems
difficult.

Problem 3.10.20. Is it true that every finitely based non-periodic variety of
semigroups containing a non-locally finite periodic semigroup contains a finitely
generated semigroup of exponential growth?

The answer to Problem 3.10.20 is positive in the case when both sides of
every identity of V are avoidable. Indeed, in this case, using Exercise 2.5.25, we
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can find a bi-infinite uniformly recurrent word ω, in, say, k, letters avoiding both
sides of every identity of V. Each subword of ω is then an isoterm for V. Let
A be an alphabet with k letters, Sk be the relatively free semigroup of V with
generating set A. Take any letter a ∈ A and any letter x /∈ A. For every subword
w of ω we can produce exponentially many words by replacing some occurrences
of a in w by x. Each of these words is again an isoterm for V (prove it!), so these
words represent different elements in Sk+1, hence Sk+1 has exponential growth.
That argument does not work, unfortunately, if both sides of some identity of V
are unavoidable (say, for the Mal’cev identity from Exercise 3.3.8).

3.10.7. The road coloring and the Černý conjecture. The road col-
oring problem and related topics (including symbolic dynamics and coding) are
discussed, in particular, in [7] and also in the books [203, 176].

A very natural question to ask is the following: given a positive integer n, how
long can reset words be for synchronizing automata with n vertices? Černý [66]
found a lower bound by constructing, for each n > 1, a synchronizing automaton
Cn with n vertices and 2-letter alphabet whose shortest reset word has length(n − 1)2. The graph on Figure 3.1 is the graph C4 in the sequence.

The automaton Cn can be described as follows. Its vertex set is

Q = {0,1,2, . . . , n − 1},
the alphabet is {a, b}, and the action of {a, b}+ on Q is given by the following
formulas:

i ⋅ a =
⎧⎪⎪⎨⎪⎪⎩
i if i > 0,

1 if i = 0;
i ⋅ b = i + 1 (mod n).

Exercise 3.10.21. Prove that the word (abn−1)n−2a of length (n−1)2 resets
Cn.

Theorem 3.10.22 ([66, Lemma 1]). Any reset word for Cn has length at
least (n − 1)2.

If we define the Černý function C(n) as the maximum length of shortest
reset words for synchronizing automata with n vertices, the above property of
the series {Cn}, n = 2,3, . . . , yields the inequality C(n) ≥ (n − 1)2.

Conjecture 3.10.23 (The Černý conjecture). C(n) = (n− 1)2 for all n > 1.

The conjecture is proved by Kari [172] for complete automata where the
in-degree and out-degree of every vertex coincide (in fact in this case the bound
turned out to be (n − 1)(n − 2) + 1 < (n − 1)2). For more information, see the
survey by Volkov [327].

153





CHAPTER 4

Rings

In this chapter, all rings are assumed to be associative. We start with a
study of free associative algebras. This gives us the main syntactic tool to
study rings. The first major result proved in this chapter is Shirshov’s height
theorem, which is used to prove a theorem of Kaplansky. Then we prove the
Dubnov–Ivanov–Nagata–Higman theorem about associative algebras satisfying
the identity xn = 0. Unlike semigroups, associative rings satisfying this identity
are nilpotent. But there exist finitely generated non-nilpotent associative nil-
algebras, and we describe the classical example of such an algebra constructed
by Golod.

Another result showing a fundamental difference between rings and semi-
groups is the Kruse–L’vov theorem (proved in this chapter) that every finite
associative ring is finitely based. Finally we give an example of a non-finitely
based variety of associative rings due to Belov-Kanel (which was a solution of a
long-standing problem).

Theorems proved in this Chapter include.

● Theorem 4.3.1 of Bergman about centralizers of elements in the free
associative algebra.
● Theorem 4.4.6 of Kaplansky about finitely generated rings satisfying a

nontrivial identity.
● Shirshov’s height Theorem 4.4.7.
● Theorem 4.4.19 by Dubnov, Ivanov, Nagata and Higman about rings

satisfying nil-identities.
● Theorem 4.4.20 by Golod solving the Kurosh problem about nil-rings.
● Baer’s Theorem 4.5.3 about the structure of rings.
● The ring part of Theorem 1.4.33 by Kruse and L’vov.
● Theorem 4.5.17 by Belov-Kanel giving an example of a non-finitely

based variety of rings.

4.1. The basic notions

We briefly recall some basic notions about rings. A subgroup I of the additive
group of a ring R is called a left (resp. right) ideal if for every x ∈ I, y ∈ R we
have yx ∈ I (resp. xy ∈ I). If I is both a left ideal and a right ideal, we call I
a two-sided ideal or just an ideal. By Exercise 1.4.19, ideals are precisely the
kernels of ring homomorphisms. If X ⊆ R, the least ideal of R containing X is
called the ideal generated by X.
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Exercise 4.1.1. Prove that the ideal generated by a nonempty subset X of
a ring R consists of all sums of the form

∑
i

xi +∑
j

pjxj +∑
k

xkqk +∑
ℓ

pℓxℓqℓ,

where xi, xj , xk, xℓ ∈ X ∪ −X and pj, pℓ, qk, qℓ ∈ R.

Given a finite sequence of ideals I1, . . . , Ik of a ring R, one can form their
sum

I1 + ⋅ ⋅ ⋅ + Ik = {x1 + ⋅ ⋅ ⋅ + xk ∣ xj ∈ Ij, j = 1, . . . , k}
and their product

I1⋯Ik = {∑
s

x1,s⋯xk,s ∣ xj,s ∈ Ij, j = 1, . . . , k}.
In particular, we can define the power Ik for evey k ≥ 1.

Exercise 4.1.2. Verify that the sum and the product of any finite sequence
of ideals of a ring R are ideals of R.

The sum I1 + ⋅ ⋅ ⋅ + Ik of the ideals I1, . . . , Ik is said to be direct if for each
x ∈ I1 + ⋅ ⋅ ⋅ + Ik, its presentation in the form x = x1 + ⋅ ⋅ ⋅ + xk where xj ∈ Ij for
j = 1, . . . , k is unique.

Exercise 4.1.3. Prove that the sum I1 + ⋅ ⋅ ⋅ + Ik is direct if and only if
Ij ∩ (I1 + ⋅ ⋅ ⋅ + Ij−1 + Ij+1 + ⋅ ⋅ ⋅ + Ik) = {0} for each j = 1, . . . , k.

In particular, the sum of two ideals is direct if and only if their intersection
is {0}.

For a ring R and a positive integer n, we let Mn(R) denote the ring of all
n × n matrices with entries in R. The operation in Mn(R) are the usual matrix
addition (entry-wise) and matrix multiplication (“row-by-column”) familiar from
Linear Algebra. The ring Mn(R) has many nice properties. In particular, if R
has an identity element, then the ideals of Mn(R) can be easily described in
terms of the ideals of R.

Exercise 4.1.4. Let R be a ring with identity element. Prove that for each
ideal I of R, the set of all n ×n matrices with entries in I is an ideal of Mn(R),
and if R has an identity element, then each ideal of Mn(R) arises in this way.
Hint: Let I be an ideal of Mn(R), I(R) be the ideal of R generated by all
entries of all matrices of I. You need to show that I =Mn(I(R)). Let A be any
matrix in I and r be the (i, j)-entry of A. Multiplying the matrix A by matrix
units ei,j, that is matrices with (i, j)-entry 1 and all other entries 0, on the left
and on the right show that the matrix re1,1 is in I. Deduce that the whole set
I(R)e1,1 is contained in I. Again multiplying by matrix units, deduce that for
every i, j, I(R)ei,j is contained in I. Therefore every matrix from Mn(I(R)) is
in I.

A ring R is called nilpotent if Rk = {0} for some k i.e., its multiplicative
semigroup is nilpotent. A ring R is simple if R2 ≠ {0} and R has no ideals
except R and {0}. Exercise 4.1.4 implies that if R is a simple ring with an
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identity element, then so is the matrix ring Mn(R). In particular, since every
field is a simple ring (prove it!), we see that the ring of all n × n matrices with
entries in any given field is simple.

Let K be a field. Recall that a ring R is a K-algebra if each α ∈ K defines
a unary operation α⋅ on R and these unary operation are consistent with the
multiplication and the addition in both K and R in the following sense: (a)
α(x + y) = αx + αy, (b) (α + β)x = αx + βx, (c) (αβ)x = α(βx), (d)1 ⋅ u = u, and
(e) x(αy) = (αx)y = α(xy) for every α,β ∈ K and every x, y ∈ R (see Section
1.4). When we speak about an ideal (one-sided or two-sided) I of a K-algebra
R, we always assume that I is closed also under the unary operations α⋅ for each
α ∈K.

4.2. Free associative algebras

Let K be a commutative ring with an identity element. The absolutely
free associative K-algebra over an alphabet X is the set KX+ of all (finite)
linear combinations of words from X+ with natural addition and distributive
multiplication. Note that this is a subalgebra of K⟪X⟫ defined in Section 1.8.8
(in the case when K is a field).

Exercise 4.2.1. Prove that KX+ is indeed a free algebra in the variety of
all associative algebras over K. Prove that if X consists of one element, KX+

is isomorphic to the (commutative) algebra of all polynomials over K with one
variable.

We call linear combinations of words (non-commutative) polynomials. Ac-
cordingly words are sometimes called monomials. The degree of a polynomial is
the biggest length of its monomial (with non-zero coefficient).

We call any map X → KX+ a substitution. As for every free universal
algebra, every substitution can be extended to an endomorphism of KX+ (see
Section 1.4.2).

We say that polynomial p does not avoid polynomial q if p = rφ(q)s for some
substitution φ and some polynomials r and s.

If we take any set of polynomials W ⊆KX+ and consider the set KI(W ) of
all linear combinations of polynomials that do not avoid W , then KI(W ) is an
ideal of KX+ that is called the verbal ideal defined by W (it is also called the
T -ideal defined by W ). The following theorem is similar to the Theorem 3.2.1.

Theorem 4.2.2. The quotient algebra KX+/I is relatively free if and only
if I =KI(W ) for some set W of polynomials from KX+. An ideal I is verbal if
and only if it is stable under all endomorphisms of KX+.

4.3. Commuting elements in free associative algebras over a field

Free associative algebras are similar to free semigroups but more compli-
cated. To illustrate the similarity and the difference let us consider the problem
of describing commuting elements. Recall that by Theorem 1.2.9 two words
in a free semigroup X+ commute if and only if both are powers of the same
word. Therefore the set of all words commuting with a given word u, i.e., the
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centralizer C(u), is just a cyclic subsemigroup (prove it using Theorem 1.2.16!).
On the other hand if u is a polynomial from the free algebra KX+ then every
linear combination of powers of u commutes with u. Therefore the centralizer of
u contains a subalgebra isomorphic to the algebra of polynomials in one variable
(denoted, as usual, K[x]), which is precisely the free associative algebra gener-
ated by one element, i.e., an analog of the cyclic semigroup of natural numbers
N under addition. It turned out that the description of centralizers in the free
associative algebra is very similar to Theorem 1.2.9.

Theorem 4.3.1 (Bergman, [43]). Let K be a field. The centralizer of any
non-zero element u in KX+ is a subalgebra generated by one element v ∈KX+.

The proof from [43] is not easy (see also a somewhat different but still
complicated proof in Cohn [73]). We shall present only a small particular case
of it — when v is a homogeneous polynomial, i.e., the degrees (i.e., lengths) of
all monomials in v are the same. Below we are following the outline of the proof
sent to us by George Bergman.

Lemma 4.3.2. Let a,u, v, c be homogeneous polynomials such that, a ≠ 0, c ≠
0, au = vc and the degree of u is not smaller than the degree of c. Then there
exists a homogeneous polynomial b such that u = bc, v = ab (that is both au and
vc become abc).

Proof. Let X be the finite set of letters that appear in monomials of
a,u, v, c. Denote the degrees of polynomials a, c, u by da, dc, dc +db, where db ≥ 0.
For every d ≥ 0 let Pd be the vector space of homogeneous polynomials of degree
d in X (if d = 0, then Pd is the field K). The dimension of Pd is ∣X ∣d (prove
it!). Consider three vector spaces A = Pda , B = Pdb

,C = Pdc . Consider bases A,
B,C in A, B, C respectively, such that a ∈ A, c ∈ C (recall that a, c ≠ 0 and every
non-zero element of a vector space belongs to a basis by Exercise 1.4.13). Let
A = {a1, . . . , ap}, B = {b1, . . . , bq}, C = {c1, . . . , cr} where a1 = a, c1 = c. Then the
set ABC = {aibjck,1 ≤ i ≤ p,1 ≤ j ≤ q,1 ≤ k ≤ r} is a basis of the vector space
Pda+db+dc .

Exercise 4.3.3. Prove the last statement. Hint: Show that the elements
in ABC are linearly independent, and the dimension of the space Pda+db+dc , i.e.,∣X ∣da+db+dc , coincides with the number of elements in ABC, then apply Exercise
1.4.13.

Similarly, the sets AB = {aibj,1 ≤ i ≤ p,1 ≤ j ≤ q} and BC = {bjck,1 ≤ j ≤
q,1 ≤ k ≤ r} are bases of the spaces Pda+db

and Pdb+dc respectively.
Note that u ∈ Pdb+dc , v ∈ Pda+db

. Represent u and v as linear combinations
of elements of the corresponding bases: u = ∑αj,kbjck, v = ∑βi,jaibj. Then the
equality au = vb becomes

∑αj,ka1bjck =∑βi,jaibjc1

(recall that a = a1, c = c1).
Since elements of ABC are linearly independent, we have αj,k = 0 for every

k > 1, βi,j = 0 for every i > 1 and αj,1 = β1,j for every j. Denote b = ∑αj,1bj =
∑β1,jbj . Then u = bc and v = ab as required. �
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Let us order all words (monomials) in the alphabet X using the ShortLex
order. The biggest monomial of a polynomial p is called the leading term of p,
and the coefficient from K of this monomial, the leading coefficient. A poly-
nomial p is called monic if its leading coefficient is 1. Clearly if we divide any
polynomial by its leading coefficient, we get a monic polynomial.

Exercise 4.3.4. Show that a product of two monic homogeneous polyno-
mials is again a monic homogeneous polynomial.

Therefore the set of all monic homogeneous polynomials is a subsemigroup
of the multiplicative semigroup of the free associative algebra KX+.

Lemma 4.3.5. The semigroup M of monic homogeneous polynomials from
KX+ is free with free generating set consisting of all its irreducible elements.

Proof. Let us apply Theorem 1.8.6. The semigroup M is cancellative and
generated by its indecomposable elements (prove it!). Let a,u, v, c be four monic
homogeneous polynomials such that au = vc in M. Let d1, d3, d3 + d2 be degrees
of a,u, c. If d2 > 0, then by Lemma 4.3.2 there exists a homogeneous polynomial
b of degree d2 such that u = bc. If d2 < 0, then, again by Lemma 4.3.2, there exists
a homogeneous polynomial b of degree d2 such that c = bu. Finally if d2 = 0, then
applying Lemma 4.3.2, we obtain a homogeneous polynomial β of degree 0, i.e.,
a constant from K, such that u = βc, but since both u and c are monic, we get
β = 1 (why?). Hence c = u. Thus all conditions of Theorem 1.8.6 hold and we
can conclude that S is indeed a free semigroup freely generated by the set of
indecomposable elements. �

Now let u be a homogeneous polynomial in KX+, α be its leading coefficient.
Then u′ = 1

α
u is a monic polynomial from S. The set of all elements from S

commuting with u′ is a cyclic semigroup C generated by a monic polynomial v
(by Lemma 1.2.9 applied to the free semigroup S). Let p be any polynomial of
KX+ commuting with u. Then p commutes with u′ as well (check it!). There
exists a unique representation of p as a sum of homogeneous polynomials p1+p2+
⋅ ⋅ ⋅ + pm (group monomials of the same length in one homogeneous polynomial)
called the homogeneous components. Let αi be the leading coefficient of pi.

Exercise 4.3.6. Prove that p commutes with u if and only if each monic
homogeneous polynomial 1

αi
pi commutes with u′.

By Exercise 4.3.6 then p is a linear combination of powers of the homogeneous
polynomial v. Therefore the centralizer C(u) coincides with K⟨v ⟩, i.e., the
subring of all linear combinations of powers of v.

This completes the proof of Theorem 4.3.1 in the case when u is homoge-
neous.

Remark 4.3.7. An analog of Theorem 4.3.1 is true for the algebra Q⟪A⟫
of formal infinite linear combinations of words from A+ defined in Section 1.8.8:
the centralizer of any non-constant element u ∈ Q⟪A⟫ is equal to the subring
Q⟪v⟫ for some v ∈ Q⟪A⟫, see [73].
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4.4. Burnside-type problems for associative algebras

4.4.1. Preliminaries. The Burnside type problem for associative algebras
was formulated by Kurosh in the 30s:

Question Suppose all 1-generated subalgebras of a finitely generated associa-
tive algebra A are finite dimensional (i.e. is spanned by a finite set of
elements). Is A finite dimensional?

The answer is negative (Golod [114]) but not as easy as in the case of
semigroups. For example, in the semigroup case we saw that there exists a
3-generated infinite semigroup satisfying the identity x2 = 0. In the case of
associative algebras over a field of characteristic ≠ 2 this is impossible. Indeed,
the following theorem holds.

Theorem 4.4.1. Every algebra over a field of characteristic ≠ 2 that satisfies
the identity x2 = 0 is nilpotent of class 3, that is every product of 3 elements in
this algebra is 0. Every nilpotent finitely generated algebra is finite dimensional.

Proof. Indeed, let A satisfy the identity x2 = 0. Then for every x and y in
A we have (x + y)2 = 0 or x2 + y2 + xy + yx = 0. We know that x2 = y2 = 0, so
xy+yx = 0. Let us multiply the last identity by x on the right: xyx+yx2 = 0. Since
yx2 = 0, we have xyx = 0. Now take x = z+t where z and t are arbitrary elements
of A. We get (z + t)y(z + t) = 0. Expanding again yields: zyz + tyt+ zyt+ tyz = 0.
Since we already know that zyz = tyt = 0, we have zyt+tyz = 0. Now the identity
xy+yx = 0, which has been established above, implies zyt = −yzt = −(yz)t = tyz,
so tyz + tyz = 2tyz = 0. Since the characteristic is > 2 or 0 we deduce tyz = 0.
Recall that t, y, z were arbitrary elements of A. Thus A is nilpotent of class 3.

Let A = ⟨X⟩ be a finitely generated nilpotent of class k algebra. Then every
element of A is a linear combination of products of no more than k − 1 elements
from X. Since X is finite there are finitely many products of length < k of
elements of X. Thus A is spanned as a vector space by a finite set of elements,
so A is finite dimensional. �

Just as an acorn “contains” a huge oak tree, the preceding proof “contains”
all the other proofs of results related to Kurosh’s question. We will see later
that in Theorem 4.4.1 one can replace 2 by any other natural number n. This is
the so-called Dubnov–Ivanov–Nagata–Higman theorem (Theorem 4.4.19).

Our next goal is to prove that the answer to Kurosh’s question is positive
if the algebra satisfies any nontrivial identity1. This result was obtained by
Kaplansky [167] and Shirshov [297, 298, 299].

4.4.1.1. What is a nontrivial ring identity? Usually we call an identity u = v
nontrivial if u is not identically equal to v in the absolutely free algebra of
a given type. That definition is just fine for associative algebras over a field.
But in the case of rings and, more generally, algebras over commutative rings
with identity element, we need to be more careful. Indeed, suppose that u is a

1Note that every ring identity f = g is equivalent to the identity f − g = 0, so it is enough
to consider only identities of the form f = 0
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polynomial from the absolutely free algebra ZX+ (for simplicity we consider the
case K = Z, the general case is similar), such that the greatest common divisor
d of the coefficients of u is not 1. Let p be a prime number dividing d. Then the
identity u = 0 follows from the identity px = 0. But that identity holds in every
associative (and not only associative) algebra over any field of characteristic p
(why?). So there is no hope to deduce any substantially nontrivial algebraic
property of a ring satisfying such an identity. Therefore Shirshov suggested to
call an identity u = 0 of rings nontrivial if one of the coefficients of a monomial of
highest degree (length) of the identity is 1. Notice that this is not a restriction
if K is a field: in that case we can always divide u by the non-zero coefficient of
a monomial of highest degree.

4.4.1.2. What does it mean that every 1-generated subalgebra of an algebra
A is finite dimensional?

Lemma 4.4.2. Let A be an associative K-algebra, a ∈ A. The subalgebra
generated by a is finite dimensional if and only if f(a) = 0 where f(x) is a
polynomial with coefficients from the commutative ring K and with the leading
coefficient 1.

Proof. Indeed, if a is a root of such a polynomial f of degree n, then every
power of a is a linear combination of powers am with m < n. Since the subalgebra
generated by a is spanned by the powers of a, it is spanned by finitely many
powers of a, and so it is finite dimensional.

Conversely, if ⟨a⟩ is finite dimensional, then it is spanned by finitely many
powers of a, so there exists a natural number m such that am is a linear com-
bination of smaller powers of a. Thus a satisfies the equality am +∑i<mαia

i = 0
for some αi ∈K. Thus a is a root of the polynomial xm +∑i<m αix

i. �

An algebra where every element is a root of a polynomial with the leading
coefficient 1 is called algebraic.

4.4.1.3. The standard identity. Now let us turn to identities of associative
algebras.

Let σ be a permutation of a finite set {1, . . . , n}. Then σ is a product of
transpositions (i, j), i.e., permutations that switch i and j and leave all other
numbers fixed (why?). A permutation is called even (resp. odd) if it is a product
of even (respectively, odd) number of transpositions. The following exercise is
in every Abstract Algebra book.

Exercise 4.4.3. Prove that being even or odd does not depend on the way
a permutation is represented as a product of transpositions.

Let us call an associative algebra over a commutative ring n-dimensional if
it is spanned by n elements.

Lemma 4.4.4. Every n-dimensional algebra over a commutative ring K sat-
isfies the following standard identity Sn+1 = 0 of degree n + 1 where Sn+1 is the
following polynomial:

(4.4.1) ∑
σ∈Sn+1

(−1)σxσ(1)xσ(2) . . . xσ(n+1) = 0.
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Here Sn+1 is the group of permutations of numbers {1, . . . , n + 1}, (−1)σ is
the oddness of σ: it is 1 if σ is even and −1 if σ is odd.

In particular every 2-dimensional algebra satisfies the identity xyz − xzy −
yxz + yzx + zxy − zyx = 0.

Proof. First of all notice that Sn+1 is a multilinear polynomial, that is
every letter occurs in every monomial in Sn+1 exactly once. Therefore

Sn+1(x1, . . . , xi−1, αx + βy,xi+1, . . . , xn+1) =
αSn+1(x1, . . . , xi−1, x, xi+1, . . . , xn+1)+
βSn+1(x1, . . . , xi−1, y, xi+1, . . . , xn+1)

for arbitrary i.
Now let us take an n-dimensional algebra A spanned by a set X. Every

element of A is a linear combination of elements from X. Therefore if we want
to prove that Sn+1 is identically equal to 0 in A, we have to substitute linear
combinations of elements of X for xi and prove that the result of this substitution
is 0. The fact that our identity is multilinear allows us to take elements of X
instead of these linear combinations (indeed, the sum of zeroes is zero).

Now let us take t1, . . . , tn+1 ∈X. We have to prove that

Sn+1(t1, . . . , tn+1) = 0.

Since ∣X ∣ = n at least two of the elements ti are equal. Suppose that ti = tj, i ≠ j.
Let us divide all permutations from Sn+1 into pairs. Two permutations belong
to the same pair if one of them can be obtained from another one by switching
i and j. One of the permutations in each pair is even and another one is odd,
so the terms of Sn+1 corresponding to these permutations have opposite signs.
The “absolute values” of these terms are equal since ti = tj. Thus these terms
cancel. Since every term belongs to one of these pairs, all terms will cancel, and
the sum will be equal to 0. �

In particular the algebra of all m×m−matrices satisfies the identity Sn+1 = 0
where n =m2. Indeed this algebra is spanned by m2 matrix units.

Remark 4.4.5. In fact by a theorem of Amitsur and Levitzki [13], for every
m ≥ 1 the algebra of all m ×m−matrices over a commutative ring K satisfies
the identity S2m = 0. Moreover if K is a field of characteristic 0, then 2m is the
minimal degree of a nontrivial identity satisfied by the algebra.

Thus every finite dimensional algebra is finitely generated, algebraic, and
satisfies a nontrivial identity.

The following theorem states that the converse statement also holds.

Theorem 4.4.6 (Kaplansky [167]). Every finitely generated algebraic alge-
bra over a commutative ring that satisfies a nontrivial identity is finite dimen-
sional.

This will follow from Shirshov’s height theorem which is stated and proved
in the next section.
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4.4.2. Shirshov’s height theorem.

Theorem 4.4.7 (Shirshov, [297, 298]). Let A = ⟨X⟩ be a finitely generated
associative algebra over a commutative ring K and suppose that A satisfies a
nontrivial identity of degree n. Then there exists a number H depending only
on ∣X ∣ and n such that every element a ∈ A can be represented as a linear
combination of words of the form vn1

1 ⋅ ⋅ ⋅ ⋅ ⋅ vnh

h
where h ≤ H and each word vi is

of length less than n.

Exercise 4.4.8. Show that Theorem 4.4.7 implies Theorem 4.4.6.

Let us prove Shirshov’s theorem. First of all let us show that instead of
arbitrary identities we can consider only multilinear identities (we have seen
that multilinear identities are very convenient).

Lemma 4.4.9. Every nontrivial identity of rings implies a multilinear identity
of the same or smaller degree.

Proof. The idea of the proof is similar to the one used in the proof of The-
orem 4.4.1. There we proceeded from a nonlinear identity x2 = 0 to a multilinear
identity xy + yx = 0.

Let f(x1, . . . , xn) = 0 be a non-multilinear identity. We can represent f
as a sum of normal components fi such that all terms (monomials) in fi have
the same content and different fi have different contents. Then we can take a
component fi with a minimal (under the inclusion) content. Substitute 0 for
variables, which are not in the content of fi. This makes all other components
0 (we used a similar trick in the proof of Theorem 1.4.39). Thus if an algebra
satisfies the identity f = 0, then it satisfies the identity fi = 0. Subtracting fi

from f , we can proceed as before and prove that f = 0 implies fj = 0 for every
component fj. One of these components must have a monomial of highest degree
with coefficient 1, so one of the identities fj = 0 is nontrivial.

Therefore we can assume that f is normal. For every variable xi in f let
xi-degree of f be the largest number of occurrences of xi in a highest degree
monomial of f . For example, if f = x5

1x
3
2x1 + x4

1x
4
2x1 + x7

1x2 + x6
2x1, then the

x1-degree is 6 and the x2-degree is 4.
Since f is normal, if every monomial of highest degree in f is multilinear,

then the whole f is multilinear (prove it!). So suppose that for some i the xi-
degree di of f is at least 2. We can assume that di is the maximal possible.
To simplify notation, let us assume that i = 1. Consider the polynomial f ′ =
f(x′1 + x′′1 , x2, . . . , xn) − f(x′1, x2, . . . , xn) − f(x′′1 , x2, . . . , xn). This polynomial is
identically 0 in every algebra that satisfies the identity f = 0, it has the same
degree and the same coefficients of monomials of highest degree as f (prove it!),
i.e., f ′ = 0 is also a nontrivial identity. Moreover the x′1-degree and the x′′1 -degree
of f ′ are smaller than d1. Thus the number of variables x with x-degree d1 in
f ′ is smaller than the similar number for f. Continuing this process (which is
called the process of linearization) we shall finally get a multilinear polynomial
identity. �

Thus we can consider only multilinear identities. Let f = 0 be a nontrivial
multilinear identity. Then every monomial of f is a product of variables in some
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order (each variable occurs exactly once in each monomial). Hence all mono-
mials are permutations of the monomial x1x2⋯xn. Therefore every nontrivial
multilinear identity has the following form:

∑
σ∈Sn

ασxσ(1)⋯xσ(n) = 0

where Sn is the group of all permutations of the set {1, . . . , n} and one of the
coefficients ασ is 1. This identity can be then transformed into the form

(4.4.2) x1x2⋯xn = ∑
σ∈Sn/{1}

βσxσ(1)⋯xσ(n)

by moving a monomial with coefficient 1 to the left and renaming the variables.
Now if we have a word u that is represented as pv1 . . . vnq, then we can apply
the identity (4.4.2) to it and obtain the polynomial p(∑σ∈Sn/{1} βσvσ(1)⋯xσ(n))q.
Notice that all monomials in this polynomial have the same length as u.

Thus if an algebra A over a field satisfies the identity (4.4.2), then every
product u1u2⋯un of elements of A is a linear combination of permutations of this
product. Theorem 4.4.7 claims that every element of A is a linear combination
of words of a special kind.

Our strategy in proving that all words are linear combinations of “good”
words modulo (4.4.2) would be the following: if u is not “good enough”, then all
the monomials in the polynomial p(∑σ∈Sn/{1} βσvσ(1)⋯xσ(n))q should be smaller
than u. Thus we could use an induction if

(1) we had a partial order on the words in X+, and
(2) every word in X+ that is not equal in the algebra A to a linear combina-

tion of short products of powers of short words, is equal in A to a linear
combination of smaller words of the same length.

Now we will make this idea work. Let A = ⟨X⟩ be a finitely generated algebra
over a commutative ring K satisfying an identity (4.4.2). We will use the Lex
partial order ≤ℓ introduced in Section 1.2.3.

Definition 4.4.10. We call a word u n-divisible if one of its subwords can
be represented as a product of n words u1 . . . un and u1 >ℓ u2 >ℓ ⋅ ⋅ ⋅ >ℓ un.

In this case the word u1 . . . un is greater in the Lex order than any product

uσ(1)⋯uσ(n)

where σ ∈ Sn/{1}.
Therefore if a word is n-divisible and we can apply a multilinear identity of

degree n, then this word is a linear combination of Lex smaller words of the same
length. Thus it would be enough to show that if a word over X is not n-divisible
then it is a product of a bounded number of powers of words of bounded lengths.

We present here a short and elegant proof of this fact due to Belov-Kanel
[29].

Let us call words of lengths ≤ n basic words.
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Lemma 4.4.11. Suppose that a word v is represented in the form v0tv1t . . . vn

and the word t contains n subwords such that any two of these subwords are Lex
comparable. Then v is n-divisible.

Proof. Indeed let us represent t = pitiqi, i = 1, . . . , n, where t1 >ℓ t2 >ℓ ⋅ ⋅ ⋅ >ℓ

tn. Then
v = v0p1(t1q1v1p2)(t2q2v2p3) . . . (tnqnvn)

and (t1q1v1p2) >ℓ (t2q2v2p3) >ℓ ⋅ ⋅ ⋅ >ℓ tnqnvn.

So v is n-divisible. �

For every word v let vp(i), i = 0, . . . , ∣v∣−1, be the prefix of v of length i, and
vs(i) be the corresponding suffix, so that v ≡ vp(i)vs(i).

Lemma 4.4.12. Suppose that ∣v∣ ≥ n. Then either vs(0),. . . , vs(n − 1) are
pairwise Lex comparable or v ≡ abkc, where c is a prefix of b, ∣a∣ + ∣b∣ < n, k is a
natural number.

Proof. Suppose that vs(i) is not comparable with vs(j) for some i and j,
i < j. Then vs(j) is a prefix of vs(i) ≡ bvs(j). Notice that ∣b∣ + i does not exceed
n − 1.

For every natural ℓ we have that bℓvs(j) is a prefix of bℓ+1v(j). Therefore
vs(i) is a prefix of bℓ for some ℓ. Therefore vs(i) ≡ brc for some r, where c is a
prefix of b. Hence

v ≡ vp(i)vs(i) ≡ vp(i)brc.

The proof is complete since ∣vp(i)∣ + ∣b∣ = i + ∣b∣ < n. �

Lemmas 4.4.11 and 4.4.12 imply the following statement.

Lemma 4.4.13. If ∣v∣ ≥ n2(k + 1)∣X ∣n(k+1) and v is not n-divisible then v

contains the k-th power of a basic word.

Proof. Represent v as a product of n∣X ∣n(k+1) words of length ≥ n(k + 1).
Suppose that v does not contain k-th powers of basic words. Then by Lemma
4.4.12, each of the parts contains n pairwise comparable subwords. There are at
most ∣X ∣n(k+1) different words in X+ of length n(k + 1). Therefore v contains at
least n equal disjoint subwords each of which contains n pairwise Lex comparable
subwords. By Lemma 4.4.11, v is n-divisible. �

From Lemma 4.4.13, one can deduce by induction that if an algebra A = ⟨X⟩
satisfies a multilinear identity of degree n then every sufficiently long word w

over X is equal in this algebra to a linear combination of words containing big
powers of basic words. Indeed otherwise, applying the multilinear identity as
above, we represent the word as a linear combination of smaller words of the
same length. Then we can apply the identity to each of these words, etc. Since
there are only finite number of words of any given length, this process must
eventually stop. This is not exactly what we need because we do not have a
bound for the number of powers of a given base u in w. This bound is provided
by the following lemma.
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If w is very long, not n-divisible and cannot be expressed as a short product
of powers of basic words, then w contains many subwords of the form unv where
v is different from u, ∣u∣ = ∣v∣ ≤ n. There are fewer than 2∣X ∣2n such words, so if a
word w is very long, it must contain n non-overlapping occurrences of the same
word unv of this form. The following lemma states that this is impossible.

Lemma 4.4.14. Let w be a word containing n non-overlapping occurrences
of a word unv where ∣v∣ = ∣u∣ and v ≠ u. Then w contains an n-divisible subword.

Proof. Indeed, by the condition of the lemma w = punvp1u
nvp2⋯unvpn.

Since v has the same length as u, we can compare u and v. Suppose u >ℓ v.

Then consider the following subword of w:

(unvp1u)(un−1vp2u
2)(un−2vp3u

3)⋯(vpn)
It is easy to see that uivpn−i+1u

n+1−i >ℓ u
jvpn+1−ju

n+1−j for every i > j. Therefore
this word is n-divisible.

Suppose u <ℓ v. Then we can apply a similar argument to the following
subword of w: (vp1u

n−1)(uvp2u
n−2)(u2vp3u

n−3)⋯(unv).
�

Now we know that every word w that is not n-divisible, can be represented
in the following form: p0u

k1

1 p1u
k2

2 p2 . . . u
km
m pm where ki ≥ n, the number m is

bounded by 2∣X ∣2n, the lengths of ui do not exceed n, and the lengths of pi

are bounded by n2(n + 1)∣X ∣n(n+1). This immediately implies Shirshov’s height
theorem.

Exercise 4.4.15. Under the assumptions of Theorem 4.4.7 prove that if an
element a can be represented by a polynomial of degree s in X, then a is a
linear combination of words in X of the form vn1

1 ⋅ ⋅ ⋅ ⋅ ⋅ vnh

h
(as in Theorem 4.4.7)

of length at most s.

Exercise 4.4.16. Based on the proof of the height theorem, give an estimate
for H in this theorem.

For better estimates see Belov-Kanel and Rowen [36]. For even better,
subexponential, estimates see Belov-Kanel and Kharitonov [35] (that result
answered a question of Zel’manov from [88]). Existence of polynomial upper
bounds is an outstanding open problem. Finally note that a (non-constructive)
proof of a stronger version of Theorem 4.4.7 was found by de Luca and Varricchio
[84] . The proof employs uniformly recurrent words.

4.4.3. Growth function of a ring satisfying a nontrivial identity.

Shirshov hight theorem has the following important corollary (which first ap-
peared in [42]):

Theorem 4.4.17. If a finitely generated associative algebra A over a commu-
tative ring satisfies a nontrivial identity, then A has polynomial growth function.
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Proof. Indeed, suppose that A is generated by k-element set X, and let H,
n be the numbers from Theorem 4.4.7. Then the number of words of length ℓ in
X of the form vn1

1 ⋅ ⋅ ⋅ ⋅ ⋅ vnh

h
where h ≤ H and each word vi is of length less than

n does not exceed CℓH where C = knH (prove it!). Hence by Exercise 4.4.15
the dimension of the subspace spanned by all elements that are represented by
words in X of length at most ℓ does not exceed CℓH . �

4.4.4. Inherently non-finitely based varieties of rings. Kaplansky’s
theorem 4.4.6 immediately implies

Theorem 4.4.18. There are no locally finite inherently non-finitely based
varieties of rings.

Proof. Indeed, every locally finite variety of rings satisfies an identity xm =
xm+n for some m,n ≥ 1 (since the free ring with one generator of that variety
is finite). On the other hand, by Kaplansky’s theorem, every ring satisfying the
identity xm = xm+n, m,n ≥ 1, is locally finite. Hence every locally finite variety
of rings is contained in a finitely based locally finite variety var{xm = xm+n} for
some m,n. �

4.4.5. The Dubnov–Ivanov–Nagata–Higman theorem.

Theorem 4.4.19 (See [94], [152]). Every (not necessarily finitely generated)
algebra over a field of characteristic > n that satisfies the identity xn = 0 is
nilpotent of class 2n − 1.

Proof. We have proved this theorem in the case n = 2 (Theorem 4.4.1).
Notice that the restriction on the characteristic is important. For example, one
can consider the algebra Fp[X] of polynomials in infinitely many variables over
the field Fp of integers modulo p (p is a prime number), and factorize this algebra
by the ideal generated by all polynomials xp where x ∈ X. The factor algebra
satisfies the identity zp = 0 because of Exercise 1.1.3.

But it is not nilpotent: the product x1 . . . xn is not equal to 0 for any n

(xi ∈X).
We will need one nice observation concerning identities. Suppose an algebra

A satisfies an identity f(x1, . . . , xn) = 0. We can represent this identity in the
form f0 + f1 + . . . + fm = 0 where every monomial from fi contains exactly i

occurrences of x1 (note that fi is not a normal component of f any more). Sup-
pose our field has at least m+ 1 different elements α0, . . . , αm. Let us substitute
x1 → αix1 for i = 1,2, . . . ,m. Then we get:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α0
0f0 + α1

0f1 + . . . + αm
0 fm = 0

α0
1f0 + α1

1f1 + . . . + αm
1 fm = 0

. . . . . .

α0
mf0 + α1

mf1 + . . . +αm
mfm = 0

This is a system of linear equations with coefficients αj
i and unknowns fi. The

matrix of that system is the Vandermonde matrix and its determinant is well-
known: ∏i<j(αi−αj) ≠ 0. Therefore every fi is identically equal to 0 on A. Hence
the identity f = 0 implies all identities fi = 0, i = 0, . . . ,m.
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Our identity xn = 0 implies the identity (x1 + x2)n = 0. Let f(x1, x2) =(x1 + x2)n. Then the identity

f1(x1, x2) = n−1

∑
i=0

xi
2x1x

n−1−i
2 = 0

also follows from xn = 0. Here we used the fact that the characteristic of the field
is p > n, and so our field contains at least n + 1 elements.

Now consider the following sum:

n−1

∑
i,j=1

xn−1−izyjxiyn−1−j =

n−1

∑
j=1
(n−1

∑
i=1

xn−1−i(zyj)xi)yn−1−j =

−
n−1

∑
j=1

xn−1zyjyn−1−j = −(n − 1)xn−1zyn−1.

On the other hand

n−1

∑
i,j=1

xn−1−izyjxiyn−1−j =

n−1

∑
i=1

xn−1−iz(n−1

∑
j=1

yjxiyn−1−j) =
−

n−1

∑
i=1
(xn−1−izxi)yn−1 = xn−1zyn−1.

Thus nxn−1zyn−1 = 0. Since the characteristic is greater than n we have that
xn−1zyn−1 = 0.

Now let us consider an algebra A over the field K satisfying xn = 0. Suppose
(by induction) that an arbitrary associative algebra over K that satisfies the
identity xn−1 = 0 is nilpotent of class 2n−1−1. Consider the ideal I of A generated
by all powers xn−1. This ideal is a vector space spanned by all products of the
form pxn−1q for some p, q ∈ A. Since we have the identity xn−1zyn−1 = 0 we have
that IAI = {0} (the product of every three elements a, b, c where a, c ∈ I, b ∈ A is
0). By the induction hypothesis we have that A/I is nilpotent of class 2n−1 − 1.
Therefore the product of every 2n−1 − 1 elements of A belongs to I. Hence the
product of every (2n−1−1)+1+(2n−1−1) = 2n−1 elements of Amay be represented
as a product of three elements a, b, c where a, c ∈ I, b ∈ A. We have proved that
this product is 0, so A is nilpotent of class 2n − 1. This completes the proof of
the Dubnov–Ivanov–Nagata–Higman theorem. �

Notice that the estimate 2n −1 is not optimal. Razmyslov [272] proved that

the upper bound is n2 while Kuzmin [190] proved that the lower bound is
n(n−1)

2
(and conjectured that this is an upper bound as well). More precise estimates
can be found in a recent paper by Lopatin [205] (where one also can find a
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much more detailed history of the attempts to prove Kuzmin’s conjecture) and
by Belov-Kanel and Kharitonov [35].

4.4.6. Golod counterexamples to the Kurosh problem. Kaplansky’s
Theorem 4.4.6 shows that every finitely generated algebra over a commutative
ring satisfying the identity xn = 0 is finite dimensional. It turns out, however,
that if we allow the exponent n to depend on x, then the situation is quite
different.

Recall that an algebra A is called a nil-algebra if for every x ∈ A there exists
a number nx such that xnx = 0. Specializing to nil-algebras, the Kurosh problem
asks if all finitely generated nil-algebras are nilpotent. In 1964 Golod [114],
using a method of Golod and Shafarevich [116], constructed a counterexample.
The method of Golod and Shafarevich came from a study of Galois groups of
algebraic extensions of the field of rational numbers.

Theorem 4.4.20. For an arbitrary finite or countable field K there exists a
finitely generated infinite dimensional nil-algebra over K.

Let K be a finite or countable field and X a finite set. Consider the free
algebra F =KX+.

Every algebra A is a quotient algebra of F over some ideal I. Thus we have
to construct an ideal I of F such that

(1) F /I is a nil-algebra,
(2) F /I is not finite dimensional.

In order to achieve the first goal we have to have the following: for every
element p ∈ F there must be a number np such that pnp ∈ I. In order to achieve
the second goal we want I to be as small as possible (the smaller I we take, the
bigger F /I we get). Thus we may suppose that I is generated by all these pnp .

Therefore our problem may be rewritten in the following form.

(1) List all elements from F (recall that K is finite or countable, X+ is also
countable, so F =KX+ is countable):

p1, p2, . . . .

For every i = 1,2, . . . choose a natural number ni. Let I be the ideal
generated by pni

i . The question is how to make a choice of ni in order
to obtain an infinite dimensional quotient algebra F /I.

To solve this problem we first of all will make it a bit harder. Recall that
every polynomial p in F is a sum of homogeneous components h1+. . .+hm where
for every i all monomials in hi have the same length i (which is the degree of
hi).

Let ∣X ∣ = d ≥ 2. Then there exist exactly dn words over X of length n. Thus
for every n the space Fn of homogeneous polynomials of degree n from F has
dimension dn (it is spanned by the words of length n in the alphabet X).

If an ideal I is generated by a set R of homogeneous polynomials, then it is
spanned by homogeneous polynomials. Indeed by the definition I is spanned by
X∗RX∗. Each polynomial in X∗RX∗ is homogeneous. Therefore in this case
I = (I ∩ F1) ⊕ (I ∩ F2) ⊕ . . . . Thus I has a nice decomposition into a sum of
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finite dimensional subspaces (a subspace of a finite dimensional space is finite
dimensional). This shows that ideals generated by homogeneous polynomials
are easier to study than arbitrary ideals.

Unfortunately the ideal I generated by pni

i won’t be generated by homoge-
neous polynomials. Hence we shall make a sacrifice. Let us generate I not by
pni

i but by all homogeneous components of pni

i . For example if pi = x+y2 and we

choose ni = 2 then p2
i = x2 + y4 +xy2 + yx2, the homogeneous components will be

x2 (degree 2), xy2 + y2x (degree 3), y4 (degree 4). We will put all these compo-
nents into I. It is clear that the ideal generated by these components is bigger
than the ideal generated by pni

i , so the quotient algebra will be a nil-algebra
also.

Let R be the subspace spanned by the homogeneous components of pni

i ,i =
1,2, . . . , I be the ideal generated by R, X ′ be the subspace spanned by X.

Now let us introduce the key concept of the proof of Golod’s theorem.
With every subspace S of F spanned by homogeneous polynomials we asso-

ciate the following Hilbert series:

HS =
∞
∑
i=1
hnt

n

where hn is the dimension of S ∩ Fn and t is the unknown (compare with the
growth series from Section 1.5). So HS is a formal series in one unknown. For
example

(4.4.3) HX′ = dt, HF =∑
n

dntn = dt

1 − dt .
It turns out that the algebraic properties of F /I are closely related to the

properties of the Hilbert series of R.
Since I = (I ∩F1)⊕ (I ∩F2)⊕ . . ., F /I is isomorphic as a vector space to the

sum of complements Ic = (I ∩F1)c⊕(I ∩F2)c⊕ . . . where (I ∩Fj)c⊕(I ∩Fj) = Fj

(every proper subspace has many complements, we choose one of them).The
algebra F /I is finite dimensional if and only if Ic is finite dimensional, which
happens if and only if hi = dim(Ic ∩ Fi) is zero for all sufficiently large i. In
other words, F /I is finite dimensional if and only if the Hilbert series HIc is
a polynomial. Therefore by a clever choice of ni we have to make HIc not a
polynomial.

Notice that we can choose ni as we want. We can, for example, suppose that
R does not have elements of degree ≤ 9 (it is enough to take all ni ≥ 10). We
also can choose ni in such a way that all coefficients in HR are either 0 or 1: just
choose ni big enough so that all homogeneous components of pni

i have greater

degrees than homogeneous components of p
nj

j for j < i. It is possible because we
choose n1, n2 . . . one by one.

Now we need some elementary properties of the Hilbert series. We say that
HS ≤HT if every coefficient of HS does not exceed the corresponding coefficient
of HT (i.e., the series HT −HS has nonnegative coefficients).

(GS1) If S = T + U (a sum of two subspaces) then HS ≤ HT +HU . If this
is a direct sum, then HS = HT + HU . This follows from the fact that
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the dimension of the sum of two subspaces does not exceed the sum of
dimensions of these subspaces and the dimension of a direct sum is equal
to the sum of dimensions of the summands.

(GS2) If S = TU (recall that TU consists of linear combinations of products
tu where t ∈ T, u ∈ U), then HS ≤ HTHU . This follows from the fact
that if V,V ′ are finite dimensional spaces of F with bases v1, . . . , vm and
v′1, . . . , vn, then viv

′
j ,1 ≤ i ≤m,j ≤ j ≤ n spans V V ′.

(GS3) If H,H ′,H ′′ are formal power series with nonnegative coefficients and
H ≤H ′ then HH ′′ ≤H ′H ′′.

Exercise 4.4.21. Prove properties (GS1),(GS2), (GS3).

Let us use these properties. Since I is generated by R, we have (by Exercise
4.1.1) that

I = R + FR +RF +FRF.
Since I ⊕ Ic = F we have that

I = R + IcR + IR +RIc +RI +FRF.
Since FR ⊆ I,RIc ⊆ IF,RI ⊆ IF, IR ⊆ IF we have

I = R + IcR + IF.
Now since I is an ideal, for every word w ∈ X+ we have Iw ⊆ Ix where x is the
last letter of w. Therefore IF = IX ′, so

(4.4.4) I = R + IcR + IX ′.
The equality F = I ⊕ Ic and property (GS1) imply HI =HF −HIc . Applying

(GS1) and (GS2) to (4.4.4) we obtain:

HF −HIc ≤HR +HIcHR + (HF −HIc)HX′ .

Expand and move everything to the right:

0 ≤HIc +HIcHR −HIcHX′ +HR −HF +HFHX′ .

Therefore

0 ≤HIc(1 +HR −HX′) +HR −HF +HFHX′.

Recall that HX′ = dt, HF = dt
1−dt

(see (4.4.3)). Therefore HFHX′ −HF = −dt.
Hence we have:

0 ≤HIc(1 +HR − dt) +HR − dt.
Add 1 to both sides of this equality:

1 ≤ (HIc + 1)(1 − dt +HR).
Let P = HIc + 1. We can conclude that 1 ≤ P (1 − dt + HR). The function

GSR(t) = 1 − dt +HR is called the Golod–Shafarevich function of R. Suppose
that P is a polynomial. Then the function P (t) is defined on the whole real line.
Take a real number t > 0 small enough so that the series GSR(t) converges. Then
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1 < P (t)GSR(t) where < is the usual order on real numbers (why?). Since all
coefficients of P are not negative, P (t) ≥ 0. Thus we would get a contradiction
if we find a t > 0 such that GSR(t) < 0.

Since all coefficients of HR are 0 or 1 and the first 9 coefficients are 0, we
have

GSR(t) ≤ 1 − dt +
∞
∑

i=10

ti = 1 − dt + t10

1 − t .
Now take t = 1.5

d
. Then GSR(t) converges (why?) and

1 − dt + t10

1 − t = −.5 +
1.510

d10 − 1.5d9
< 0

since d ≥ 2.
This completes the proof of Theorem 4.4.20.

Exercise 4.4.22. Prove that the algebra F /I has infinite Gelfand–Kirillov
dimension. Hint: Prove that the radius of convergence of HIc cannot exceed
1.5
d

, which implies that dim(Ic
n) grow exponentially.

Golod’s construction was essentially the only known construction of coun-
terexamples to Kurosh’s problem untill 2007 when a new (syntactic!) method
was developed by Lenagan and Smoktunowicz in [200]. In fact they managed to
construct a finitely generated nil-algebra over any countable field given by ho-
mogeneous polynomial relations such that the algebra has polynomial growth,
i.e., its Gelfand–Kirillov dimension is finite.

4.4.7. Zimin words and the Baer radical. Here we present some classic
results about the so-called Baer radical (or lower nil-radical) of an associative
ring. Roughly speaking, the idea of a radical in the structure theory of rings is the
following. One assigns to every ring R its ideal r(R) such that r(R/r(R)) = {0}.
So if the elements of r(R) are “bad” in some sense, then taking the quotient
over r(R) allows one to get rid of all bad elements and to pass to a ring that is
“good” (for instance, the quotient may have a nice decomposition as a direct sum
of ideals, see Theorem 4.5.3 below). The Baer radical is one of several successful
implementations of this idea (others are the Köthe radical, the Levitzki radi-
cal, the Jacobson radical, etc.). Restricted to finite rings (and even to finitely
generated associative rings satisfying a nontrivial identity), all these standard
radicals coincide (see Theorem 4.6.2), so considering only one of them is well
sufficient for our purposes. We will need the Baer radical in the next section.
Also it is interesting for us because of the role of Zimin words. Actually, it is
the description of the Baer radical where Zimin words seem to appear for the
very first time.

An ideal P of a ring R is called prime if for any two ideals I and J of R,
the inclusion IJ ⊆ P implies that either I ⊆ P or J ⊆ P. As the terminology
suggests, this notion is inspired by the notion of a prime number.

Exercise 4.4.23. Prove that an ideal I ⊂ Z is prime if and only if either
I = {0} or I = pZ where p is a prime number.
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The intersection of all prime ideals of a ring R is called the Baer radical
of R. In the literature, this radical is often referred to as the lower nil-radical.
The above definition is due to McCoy [224]; the fact that the radical defined by
McCoy coincides with the one defined by Baer [16] was proved by Levitzki [201].
We denote the Baer radical of R by B(R).

Our goal is to characterize the elements of B(R). First, we characterize
prime ideals in terms of elements.

Lemma 4.4.24. An ideal P of a ring R is prime if and only if for every
a, b ∉ P there exists x ∈ R such that axb ∉ P.

Proof. Assume that P is prime and let axb ∈ P for all x ∈ R, that is
aRb ⊆ P. Then (RaR)(RbR) ⊆ P hence either RaR ⊆ P or RbR ⊆ P. Suppose
that RaR ⊆ P and let I = a + aR + Ra + RaR. Then I is the smallest ideal
containing a and I3 ⊆ P. This implies that I ⊆ P hence a ∈ P. Similarly, if
RbR ⊆ P , then b ∈ P.

Conversely, assume that P is an ideal satisfying the condition of the lemma.
If I and J are ideals not contained in P , take elements a ∈ I ∖ P and b ∈ J ∖ P.
Then axb ∉ P for some x ∈ R while axb ∈ IJ. Hence IJ ⊈ P and the ideal P is
prime. �

Suppose that P is a prime ideal of a ring R and a1 ∉ P. By Lemma 4.4.24
there exists x2 ∈ R such that a1x2a1 ∉ P. If we denote a1x2a1 by a2, then by the
same argument applied to a2 there exists x3 ∈ R such that a2x3a2 ∉ P. We can
iterate the process, finding an infinite sequence x2, x3, . . . , xn, . . . such that no
element in the sequence a1, a2, . . . , an, . . . defined by an = an−1xnan−1 belongs to
P. Observe that the sequence a1, a2, . . . , an, . . . consists of values of Zimin words
Zi: indeed,

(4.4.5) a1 = Z1(a1), a2 = Z2(a1, x2), . . . , an = Zn(a1, x2, . . . , xn), . . .
(where Zi(u1, . . . , ui) is the result of substitution x1 ↦ u1, . . . , xi ↦ ui into Zn).
This observation suggests the following definition: for every sequence

a1, x2, x3, . . . , xn, . . .

of elements of a ring R, we say that the sequence (4.4.5) is a Z-sequence starting
with a1. Z-sequences were introduced by Levitzki [201] (under the name “m-
sequences”). We say that a Z-sequence a1, a2, . . . , an, . . . vanishes if ak = 0 for
some k—then of course aℓ = 0 for all ℓ ≥ k. We are ready to present Levitzki’s
characterization of the elements contained in the Baer radical.

Proposition 4.4.25. Let R be a ring. An element a ∈ R belongs to the Baer
radical B(R) if and only if every Z-sequence starting with a vanishes.

Proof. If a ∉ B(R), then there is a prime ideal P of R such that a ∉ P. The
argument preceding the definition of a Z-sequence shows that then there exists
a Z-sequence starting with a all of whose elements do not belong to P. Clearly,
this sequence does not vanish.

Conversely, let a1(= a), a2, . . . , an, . . . be a Z-sequence starting with a that
does not vanish. Consider the set of all ideals of R that contain no element of
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the Z-sequence. The set is nonempty (since it contains {0}) and is easily seen to
satisfy the conditions of Zorn’s Lemma 1.1.7. Let P be a maximal ideal in this
set; we will show that P is prime. If I and J are ideals not contained in P , then
both I+P and J+P contain some elements of the Z-sequence a1, a2, . . . , a0n, . . . .

Clearly, if ak belongs to I + P , then so does aℓ for all ℓ ≥ k. Therefore we may
assume that I + P and J + P contain ak for some k. Since ak+1 = akxk+1ak for
some xk+1, we have ak+1 ∈ IJ + P. On the other hand, ak+1 ∉ P by the choice of
P hence IJ ⊈ P. Thus, P is prime and a ∉ B(R) since a ∉ P. �

With the above characterization in hand, we can easily deduce three basic
properties of the Baer radical.

Corollary 4.4.26. Let R be a ring.

(1) B(R) is a nil-ring.
(2) B(R) contains every nilpotent right or left ideal.
(3) B(R/B(R)) = {0}; in particular, the ring R/B(R) has no non-zero nilpo-

tent right (left) ideals.

Proof. (1) Take an element a ∈ B(R) and consider the Z-sequence a =
Z1(a), a3 = Z2(a, a), . . . , a2n−1 = Zn(a, a, . . . , a), . . . . Since the sequence van-
ishes, some power of a is equal to 0.

(2) If I is a right ideal of R (for left ideals the proof is similar) and a Z-

sequence a1, a2, . . . , an, . . . starts with a1 ∈ I, then ak ∈ I2k−1

for all k = 1,2, . . . .
Therefore if I is a nilpotent right ideal, then every Z-sequence starting with an
arbitrary element of I vanishes hence I ⊆ B(R).

(3) Take an arbitrary a ∈ B(R/B(R)) and let a ∈ R be a preimage of a.
If a1(= a), a2, . . . , an, . . . is a Z-sequence starting with a, then the sequence of
images a1, a2, . . . , an, . . . is a Z-sequence in R/B(R) starting with a so it van-
ishes. This means that ak ∈ B(R) for some k. It is clear that ak, ak+1, . . . , an, . . .

is a Z-sequence starting with ak so it vanishes. Therefore the sequence a1(=
a), a2, . . . , an, . . . vanishes and a ∈ B(R), that is, a = 0. The “in particular”
statement follows now from Part (2). �

4.5. The finite basis problem

Here we discuss the finite basis problem for identities of associative rings.
It is worth comparing this discussion with a similar discussion for the group
case in the next chapter. One can observe that in a sense associative rings tend
to be “more finitely based” than groups: even though methods applied to the
study of the finite basis problem in rings and groups are quite similar, as a rule,
“positive” results are easier to prove in the ring case while “negative” examples
are easier for groups.

4.5.1. Basic facts about finite associative rings. An associative ring
R is called a division ring if R ∖ {0} is a group under multiplication (called the
multiplicative group of R).

Lemma 4.5.1 (Wedderburn [214]). Every finite division ring R is a field
(i.e., it is commutative) and R ∖ {0} is a cyclic group (under multiplication).
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There are very many short proofs of this important result including [11, 151]
and the proof published by the future unabomber Ted Kaczynski [164], so we
do not include the proof here.

Lemma 4.5.1 can be used to show that for every n, the ring of all n × n-
matrices over a finite field is generated by two elements. A concrete 2-element
generating set is presented in the following exercise where ei,j stands for the
usual matrix unit.

Exercise 4.5.2. If α is a generator of the multiplicative group F ∖ {0},
then the ring of all n×n-matrices over F is generated by the matrices αe12 and
e12 +e23 + ⋅ ⋅ ⋅ +en−1 n +en 1. Hint: Prove that every n×n-matrix unit ei,j belongs
to the ring generated by these two matrices.

The following theorem contains facts which clarify the structure of finite
rings.

Theorem 4.5.3. The Baer radical B(R) of every finite ring R is a nilpotent
ideal. If R ≠ B(R), then the quotient R/B(R) decomposes as a direct sum of
ideals R/B(R) = S1 + ⋅ ⋅ ⋅ + Sm where each Si is isomorphic to the ring of all
ni × ni-matrices over a finite field Fi. In particular, R/B(R) has no non-zero
nilpotent quotients.

Proof. By Corollary 4.4.26, Part (1), B(R) is a nil-ideal. Hence, B(R) is
nilpotent by Lemma 3.1.16.

Let I be a minimal right ideal of R = R/B(R). By Part (3) of Corollary
4.4.26, I is not nilpotent. Then by Lemmas 3.1.14 and 3.1.16, I contains a non-
zero idempotent e. Then the right ideal generated by e, i.e., eR, is a non-zero
right ideal of R contained in I, hence I = eR, that is I is generated as a right
ideal by an idempotent. Recall that there is a natural partial order on the set
of idempotents: e ≤ f if ef = fe = e.

Exercise 4.5.4. Prove that if I is a minimal right ideal of R, then the
idempotent e is minimal in the multiplicative semigroup R.

The same statement of course is true for minimal left ideals. Let us prove the
converse statement of Exercise 4.5.4. Suppose that e is a minimal idempotent
in the multiplicative semigroup R but eR is not a minimal right ideal. Then
there exists an idempotent f ≠ 0 such that fR ⊊ eR, and fR is a minimal right
ideal of R. Then ex = f for some x or ef = f. Hence fefe = fe. If fe = 0, then
f2 = efef = 0, a contradiction. So fe is a non-zero idempotent in fR. But
efe = fe, fee = fe, so fe ≤ e. Hence fe = e, and fR = eR, a contradiction. Thus
minimal idempotents in R are precisely the idempotents generating minimal
right (and, of course, minimal left) ideals.

A set of idempotents e1, . . . , en is called orthogonal if eiej = ejei = 0 whenever
i ≠ j. Note that the sum of an orthogonal set of idempotents is an idempotent
(prove it!).

We claim that an arbitrary non-zero right ideal J of R is generated (as a
right ideal) by an idempotent that is the sum of an orthogonal set of minimal
idempotents. If J is minimal, then J is generated by a minimal idempotent as
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shown above. Suppose that J is not minimal. Inducting on ∣J ∣, we may assume
that the claim holds for all non-zero right ideals that are strictly contained in J.
Now take a minimal non-zero right ideal I0 ⊊ J and let e0 be an idempotent such
that I0 = e0R. Consider the set I = {x − e0x,x ∈ J} which is clearly a right ideal
in R. Note that e0I = {0} and J = I+I0. If I = {0}, then x = e0x for all x ∈ J , that
is, J = I0, a contradiction. Thus, I ≠ 0; on the other hand, I ⊊ J since e0 ∉ I.
Therefore, the induction assumption applies to I. Let f be an idempotent that
generates I as a right ideal and can be represented as the sum of an orthogonal
set of minimal idempotents f1, . . . , fn. It is easy to see that each gi = fi − fie0,
i = 1, . . . , n is an idempotent generating the same right ideal as fi since gifi = fi,
hence gi generates a minimal right ideal. Also the set gi, i = 1, . . . , n is clearly
orthogonal, e0gi = gie0 = 0, and g = g1 + . . . + gn = f − fe0 generates I as a right
ideal of R. Therefore e = e0 + g = e0 + g1 + ⋅ ⋅ ⋅ + gn is the sum of an orthogonal set
of minimal idempotents, and e generates J = I0 + I as a right ideal since ee0 = e0

and eg = g. This proves our claim.
Now suppose that S is a non-zero two-sided ideal in R. Since S is a right

ideal, S = eR for some idempotent e as in the previous paragraph. Then s = es
for all s ∈ S. We claim that s = se as well. Indeed, the set L = {s− se ∣ s ∈ S} is a
left ideal in R and L2 ⊆ LS = LeS = {0}. Since R has no non-zero nilpotent left
ideals by Corollary 4.4.26, Part (3), we conclude that L = {0} and s = se for all

s ∈ S. Thus, e is a two-sided identity element of S. Moreover, for each x ∈ R, we
have ex,xe ∈ S hence ex = exe and xe = exe. This means that e commutes with
an arbitrary x ∈ R, that is, e is a central idempotent of R.

For S = R the above argument shows that R has a two-sided identity element
which we denote by 1. This immediately implies the “in particular” statement
of the theorem (because nilpotent rings cannot have identity elements).

Now let M be a minimal non-zero two-sided ideal of R. The following exercise
is similar to Exercise 3.6.6.

Exercise 4.5.5. Prove that if I is a minimal non-zero two-sided ideal of a
ring, then either I2 = {0} or I is a simple ring.

Since R has no no-zero nilpotent ideals, Exercise 4.5.5 implies that M is a
simple ring. Further, M = eR = Re for some idempotent e = e1 + . . . + en where
e1, . . . , en is an orthogonal set of minimal idempotents. Since ei is a minimal
idempotent, Gi = eiRei is a group with zero element adjoined. It is also a subring
of R. By Lemma 4.5.1 Gi is a finite field. Consider the set N = ⋃n

i,j=1 eiRej. It is

easy to see that N is a subsemigroup of the multiplicative semigroup R. Suppose
that for some i, j, we have eiRej = {0}. Then ReiRRejR = {0}. But M as a
simple ring is generated as a two-sided ideal by any of its non-zero elements, in
particular, by ei and by ej . Thus, if x, y ∈M , we can write x as a sum of elements

from ReiR and write y as a sum of elements from RejR hence multiplying x by

y yields 0. Hence M2 = {0}, a contradiction. Thus eiRej ≠ 0. Let x = eipej be
a non-zero element of N. Since ei is a minimal idempotent, we have xt = ei for
some t. For every ℓ = 1, . . . , n there exists y ∈ R such that eiyeℓ ≠ 0. Since eℓ is a
minimal idempotent, then zeiyeℓ = eℓ for some z. Therefore the ideal generated
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by every non-zero element of N is N. Therefore N is a completely 0-simple
semigroup by Theorem 3.6.16. Clearly an element eixej ∈ N is an idempotent if
and only if it is equal to ei. Since the product of every two different idempotents
of N is 0, we conclude, using Theorem 3.6.16 and Exercise 3.6.19, that N is the
Brandt semigroup over the group G = e1Re1 ∖ {0}. We can represent elements
of N as triples (i, g, j), i, j = 1, . . . , n, g ∈ G, as in Theorem 3.6.16.

Every element of M is a sum of triples (i, gi,j , j). With every sum t like that,
we associate the n×n-matrix mt = (gi,j) where gk,ℓ = 0 if the summand (k, gk,ℓ, ℓ)
is missing. It is easy to see that the map φ∶ t ↦ mt is a well-defined, that is if
t = t′ in R then mt =mt′ . Indeed, if

t =∑
i,j

(i, gi,j , j) =∑
i,j

(i, g′i,j , j) = t′,
then multiply both sums from the left by (i,1, i) and from the right by (j,1, j).
We get (i, gi,j , j) = (i, g′i,j , j) for every i, j, hence mt = mt′ . Also clearly φ is a
surjective homomorphism. Since M is a simple ring by Exercise 4.5.5, φ must
be injective, and M is isomorphic to a matrix ring over the field G ∪ {0}. Since
R =M + (1 − e)M (a direct sum), we conclude by induction on ∣R∣ that R is a
direct sum of rings of matrices over finite fields. �

4.5.2. Positive result. Identities of finite rings. In this subsection we
prove the Kruse–L’vov parts of Theorems 1.4.33, 1.4.36: every finite associative
ring generates a finitely based and even Cross variety. The proof presented
here follows the original proof by L’vov with a neat simplification suggested by
Latyshev [192].

Remark 4.5.6. Note that for rings the condition (c) in the definition of
a Cross variety (see Section 1.4.7) can be substituted by a formally weaker
condition

(c’) there exists a positive integer N such that every critical ring in V can be
generated by N elements.

Indeed, in a locally finite variety of rings there are only finitely many N -
generated rings (prove it!).

Thus, to prove Theorem 1.4.36 for finite rings, it is sufficient to construct,
given a finite ring A, a finite set Σ of identities holding in A such that the variety
var Σ is locally finite and satisfies (c’). Then var Σ is a Cross variety and so is
varA by Proposition 1.4.35.

4.5.2.1. The number of generators of critical rings. The following observa-
tion by Latyshev [192] serves as the main tool for bounding the number of
generators for critical rings.

Lemma 4.5.7. Let R be a finite ring and R1, . . . ,Rm be proper subrings of
R such that each element r ∈ R can be represented as a sum r = ∑m

i=1 ri with
ri ∈ Ri (so R = R1 + . . . + Rm). Suppose that for each nonempty subset Λ ⊆{1, . . . ,m} either the subrings Rj with j ∈ Λ do not generate R or Ri1

Ri2
⋯Rip ={0} whenever {i1, . . . , ip} = Λ. Then the ring R is not critical.
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Proof. By the definition of critical algebras, we need to show that R is in
the variety generated by its proper subrings. Thus we must prove that if an
identity f(x1, . . . , xn) = 0 holds in every proper subring of R, then it holds in R.
Let a1, . . . , an be elements of R. Since every element of R is a sum of elements
from Ri, each ai can be represented as ∑m

j=1 ai,j where ai,j ∈ Rj . Our goal is to
show that f(a1, . . . , an) = 0. Note that f(a1, . . . , an) is a sum of words in ai,j

and we can write
f(a1, . . . , an) = ∑

∅≠Λ⊆{1,...,m}
fΛ,

where each fΛ is a sum of words involving precisely the letters ai,j with j ∈ Λ
(i.e., fΛ is a normal component of f(∑a1,j,∑a2,j, . . . ,∑an,j)).

It is enough to prove that each fΛ is equal to 0 in R. We induct on ∣Λ∣.
If ∣Λ∣ = 1, Λ = {k}, then fΛ = f(a1,k, . . . , an,k). Hence fΛ = 0 since Rk satisfies
the identity f(x1, . . . , xn) = 0 being a proper subring of R. Now suppose that∣Λ∣ > 1 and let R′ be the subring generated by Rj , j ∈ Λ. If R′ = R, then by
the assumption of the lemma, Ri1

Ri2
⋯Rip = {0} whenever {i1, . . . , ip} = Λ. Thus

every summand in fΛ is 0 and so is fΛ. If R′ is a proper subring, for each
i = 1, . . . , n let a′i be obtained from ai by deleting the summands whose second
indices are not in Λ. Then a′i ∈ R′ and f(a′1, . . . , a′n) = 0 (since R′ satisfies the
identity f(x1, . . . , xn) = 0). However, it is easy to see that

f(a′1, . . . , a′n) = fΛ + ∑
∅≠Θ⫋Λ

fΘ

(check it!). We can apply the induction assumption to each fΘ, where ∅ ≠ Θ ⫋ Λ
since ∣Θ∣ < ∣Λ∣. So ∑∅≠Θ⫋Λ fΘ = 0. Hence fΛ = 0. �

As a first application of Lemma 4.5.7, we have the following reduction.

Proposition 4.5.8. Let R be a critical ring and I ⫋ R be a nilpotent of class
k ideal in R. If the quotient ring R/I can be generated by s elements, then the
ring R can be generated by k + s − 1 elements.

Proof. We may assume that k > 1 as otherwise the result is obvious. Take a
generating set a1, . . . , as of R/I and fix a preimage ai ∈ R for each ai, i = 1, . . . , s.
IfR0 is the subring in R generated by a1, . . . , as, then for each element r ∈ R there
is an element q ∈ R0 such that r−q ∈ I. Clearly, the set (I ∖I2)∪R0 generates R.
Let {b1, . . . , bm} be the smallest subset of I ∖ I2 such that {b1, . . . , bm} together
with R0 generates R. If m < k, the desired conclusion holds so we may assume
that m ≥ k. Let Rj = bj + R0bj + bjR0 + R0bjR0 + I2 for each j = 1, . . . ,m.
Then R0,R1, . . . ,Rm are proper subrings of R and each element r ∈ R can be
represented as r = ∑m

j=0 rj with rj ∈ Rj . By minimality of {b1, . . . , bm}, for any

. . . subset Λ ⫋ {0,1, . . . ,m} the rings Rj with j ∈ Λ do not generate R, and the
products of all the rings R0,R1, . . . ,Rm (in any fixed order) are contained in Im.

The assumption that m ≥ k implies that Im = {0} but then Lemma 4.5.7 applies
showing that the ring R is not critical, a contradiction. �

In a similar way one can bound the number of generators of a nilpotent
critical ring in terms of its nilpotency class.
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Proposition 4.5.9. Every nilpotent critical ring of class k can be generated
by k − 1 elements.

Proof. We shall use the following simple property of nilpotent rings:

Exercise 4.5.10. Prove that every nilpotent ring R is generated by the set
R ∖R2.

Now let R be a nilpotent critical ring of class k and let {b1, . . . , bm} be the
smallest subset of R ∖R2 that generates R.

Suppose that m ≥ k. Let Rj = {nbj ∣ n ∈ Z} +R2 for each j = 1, . . . ,m. Then
R1, . . . ,Rm are proper subrings of R and each element r ∈ R can be represented
as r = ∑m

j=0 rj with rj ∈ Rj. By minimality of {b1, . . . , bm}, for any . . . subset

Λ ⫋ {1, . . . ,m} the rings Rj with j ∈ Λ do not generate R. The product of the
rings R1, . . . ,Rm in any order is contained in Rm (by the definition of Rm). Since
m ≥ k, we have Rm = {0}, so every product of R1, . . . ,Rm is {0} . Lemma 4.5.7
implies that R is not critical, a contradiction. Hence m < k. �

Proposition 4.5.11. Let R be a non-nilpotent critical ring whose Baer rad-
ical B(R) is nilpotent of class k. Then the number of summands in the decom-
position R/B(R) = S1 + ⋅ ⋅ ⋅ + Sm from Theorem 4.5.3 does not exceed 2k − 1.

Proof. Suppose that m ≥ 2k. Let Ri be the preimage of Si inR, i = 1, . . . ,m,
and R0 = B(R). Then R0,R1, . . . ,Rm are proper subrings of R and each element
r ∈ R can be represented as r = ∑m

j=0 rj with rj ∈ Rj (why?) For any . . . subset

Λ ⫋ {0,1, . . . ,m} the rings Rj with j ∈ Λ do not generate R because their images
do not generate R/B(R). Now consider a product of all the rings R0,R1, . . . ,Rm

(in any fixed order). Since RiRj ⊆ R0 for all i ≠ j, i, j = 1, . . . ,m, and m ≥ 2k,

the product is contained in Rk
0 = (B(R))k = {0}. Lemma 4.5.7 then implies that

the ring R is not critical, a contradiction. �

Now we can collect all the above information in order to bound the number
of generators of an arbitrary critical ring in terms of the nilpotency class of its
Baer radical.

Proposition 4.5.12. A critical ring whose Baer radical is nilpotent of class
k can be generated by at most 5k − 3 elements.

Proof. Let R be a critical ring whose Baer radical B(R) is nilpotent of class
k. If R = B(R), the number of generators of R does not exceed k − 1 < 5k − 3
by Proposition 4.5.9. If R ≠ B(R), Proposition 4.5.11 and Exercise 4.5.2 imply
that the quotient R/B(R) can be generated by at most 4k −2 elements, and the
result follows from Proposition 4.5.8. �

4.5.2.2. Using identities to bound the nilpotency class of nilpotent rings. Re-
call that we aim to construct, given a finite associative ring A, a finite set Σ of
identities satisfied by A such that the variety var Σ is locally finite and, for every
critical ring in var Σ, the number of generators can be bounded by some con-
stant depending only on Σ. Proposition 4.5.12 implies that the second property
is granted as soon as the nilpotency class of every nilpotent ring is bounded by
some constant, and this can be easily expressed in the language of identities:
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Lemma 4.5.13. Let V be a ring variety, k a positive integer. The following
are equivalent:

(1) Every nilpotent ring in V is nilpotent of class ≤ k,
(2) Every k-generated nilpotent ring in V is nilpotent of class k,
(3) V satisfies an identity of the form

(4.5.1) x1x2⋯xk = f(x1, x2, . . . , xk),
where the length of each monomial of the polynomial f(x1, x2, . . . , xk) is
at least k + 1.

Proof. (1) → (2) is obvious.

(2) → (3). Let Fk be the relatively free ring of V with free generators
x1, x2, . . . , xk. The quotient ring Fk/F k+1

k is k-generated and nilpotent of class

k. In particular, the product of the images of the free generators in Fk/F k+1
k

is equal to 0. Therefore the product x1x2⋯xk of the generators themselves be-
longs to F k+1

k . Elements of F k+1
k are representable as polynomials in x1, x2, . . . , xk

whose monomials have length at least k + 1. Thus, x1x2⋯xk = f(x1, x2, . . . , xk)
where f(x1, x2, . . . , xk) is such a polynomial. By Exercise 1.4.26 x1x2⋯xk =
f(x1, x2, . . . , xk) is an identity in V.

(3) → (1). In any ring R we have a decreasing sequence of ideals

R ⊇ R2 ⊇ R3 ⊇ . . . .

If R satisfies an identity of the form (4.5.1), then Rk ⊆ Rℓ where ℓ > k is the
minimum length of monomials of the polynomial f(x1, x2, . . . , xk). Hence the
above sequence stabilizes at Rk, that is, Rk = Rk+1 = . . . . If R is nilpotent, this
implies that Rk = {0}. �

Now we observe that every variety generated by a finite ring has the above
property for a suitable k.

Lemma 4.5.14. Let A be a finite ring and let k be the maximum nilpotency
class of nilpotent subrings of A. Then the nilpotency class of every nilpotent ring
R ∈ varA does not exceed k.

Proof. By Lemma 4.5.13 we may assume that R is k-generated. Let Fk be
the relatively free ring of rank k in varA. There is a surjective homomorphism
ϕ ∶ Fk → R. Let I be the kernel of ϕ. If B = B(Fk) is the Baer radical of Fk, then
ϕ(B) is an ideal inR andR/ϕ(B) ≅ Fk/(B+I) is a quotient of the ring Fk/B.The
ring Fk is finite (since varA is locally finite) and the quotient of a finite ring over
its Baer radical has no non-zero nilpotent quotients by Proposition 4.5.3. On
the other hand, the ring R/ϕ(B) is nilpotent. We conclude that R/ϕ(B) = {0},
that is R = ϕ(B). Since Fk embeds into a Cartesian product of several copies of
the ring A, the ideal B embeds into a Cartesian product of nilpotent subrings of
A hence the nilpotency class of B does not exceed k. Therefore the nilpotency
class of R = ϕ(B) does not exceed k as well. �
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4.5.2.3. The conclusion of the proof of Kruse–L’vov theorem. Now let us
conclude the proof of the ring part of Theorem 1.4.33.

Proof. Let A be a finite ring. By Lemmas 4.5.13 and 4.5.14, A satisfies an
identity of the form (4.5.1) for some k. By Exercise 1.8.10 applied to the additive
group A, the ring A satisfies an identity nx = 0 for n = ∣A∣. Let V be the variety
defined by (4.5.1) and nx = 0; we claim that V is a Cross variety. Indeed, V
is finitely based and Lemma 4.5.13 and Proposition 4.5.12 imply that for every
critical ring in V, the number of generators is bounded by 5k − 3. It remains to
verify that V is locally finite. We take a finitely generated ring R ∈ V and prove
that it is finite by induction on n.

The claim is obvious if n = 1. If n > 1, decompose it as n =mp for some prime
number p. Then the ring R is an extension of the ideal pR by the quotient R/pR.
The ring R/pR satisfies px = 0 and can be considered as an algebra over the p-
element field Fp of integers modulo p. Identifying all variables in (4.5.1), we get

that R/pR satisfies the identity xk = xk+1g(x) for some polynomial g(x) hence
R/pR is algebraic. By Theorem 4.4.6 (Kaplansky’s theorem) R/pR is a finite
dimensional algebra over Fp and hence finite. We may now use the following
general statement.

Lemma 4.5.15 (Lewin [202]). If I is an ideal of a finitely generated ring R
such that the quotient R/I is finite, then I is finitely generated as a ring.

Proof. Let r = ∣R/I ∣. Choose a finite set u1, . . . , uℓ ∈ R which includes a
finite set of generators of R and representatives of all cosets of I (the set will
contain at least one representative from each coset). Note that by Exercise1.8.10,
rui ∈ I for every i = 1, . . . , ℓ. For all i, j = 1, . . . , ℓ represent uiuj as uiuj = ut + sij

for some t ∈ {1, . . . , ℓ} and sij ∈ I. Thus all elements

(4.5.2) sij, umsij, sijum, umsijun (i, j,m,n = 1, . . . , ℓ)
belong to I.

Exercise 4.5.16. Prove that I is generated as a ring by the elements (4.5.2)

together with elements rui, i = 1, . . . , ℓ, and those integer combinations ∑ℓ
1 kiui

with 0 ≤ ki < r which belong to I. Hint: Consider any element t from I. Then
t is a linear combination with integer coefficients of products of u′is. Each of
the products can be represented as an integer multiple of one of the uj plus a
product of elements from (4.5.2). Finally any linear combination of u1, . . . , uℓ

with integer coefficients is a sum of several elements of the form rui and a linear
combination ∑ℓ

1 kiui with 0 ≤ ki < r.

�

Lemma 4.5.15 implies that pR is a finitely generated ring. Since pR satisfies
(4.5.1) and mx = 0, m = n/p < n, it is finite by the induction assumption. Thus,
the ring R is finite too.

We have verified that V is a Cross variety. By Proposition 1.4.35, the variety
varA is also a Cross variety. �
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4.5.3. Negative result. The existence of a non-finitely based variety of
associative rings was a long-standing open problem. In 1950 Specht [306] sug-
gested this problem for the special case of associative algebras over a field of
characteristic 0 while the general case have been studied since the 1960s. Ke-
mer [173], see also [174], proved that every variety of associative algebras over
a field of characteristic 0 is finitely based thus solving Specht’s problem. This
made the general case of the finite basis problem for associative rings even more
intriguing. First examples of non-finitely based varieties of associative rings
were found by three people almost simultaneously: Belov-Kanel [30, 31], Gr-
ishin [126, 127] and Shchigolev [291, 292]. The example presented here is a
simplified version (due to Gupta and Krasilnikov [142]) of Belov-Kanel’s exam-
ple from [30]. Note that it uses ideas employed earlier by Vaughan-Lee, Bryant
and Yu. Kleiman in the case of varieties of groups (see Sections 5.3.1, 5.3.2).

Recall that (x, y) denotes the ring commutator xy−yx. Consider the follow-
ing sequence of ring polynomials:

(4.5.3) wn = (x, y2)x2
1⋯x2

n(x, y2)3, n = 0,1,2, . . . .

Theorem 4.5.17. The variety V of associative rings defined by the system
of identities {wn = 0 ∣ n = 0,1,2, . . . } is not finitely based.

Proof. If the variety V were finitely based, it would be defined by a finite
subsystem of the system {wn = 0 ∣ n = 0,1,2, . . . } (prove that!). In order to show
that this is impossible, we construct a sequence of finite associative algebras Bn

over F2, n = 1,2, . . . , such that for each n, the algebra Bn satisfies the identities
wk = 0 for all k < n but does not satisfy the identity wn+1 = 0.

We fix an integer n ≥ 1. The algebra Bn is constructed in two steps. In the
first step, we construct Bn assuming the existence of an associative algebra R

over F2 with 1 satisfying the following two properties:

(R1) the identities (x, y2) = ((x, y), z) = 0 hold in R.2

(R2) for every n ≥ 1, there exist s1, . . . , sn+1 ∈ R such that the product
s2

1⋯s2
n+1 does not lie in the subspaceMn spanned by the set of all products

of at most n squares in R;

In the second step, we construct an algebra R that satisfies (R1) and (R2). This
step is postponed till Section 5.3.2.

Thus let us fix an algebra R with 1 satisfying properties (R1) and (R2), and
consider the subalgebra T of the algebra of 5 × 5-matrices over R consisting of
the following matrices

⎛⎜⎜⎜⎜⎜⎝

0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
where ∗ indicates an arbitrary element of R.

2Recall that an associative ring with the derived operation (x, y) is a Lie ring. The identity
((x, y), z) = 0 then means that the Lie ring is nilpotent of class 2.
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Exercise 4.5.18. Show that T is indeed a subalgebra in the algebra of 5×5-
matrices over R.

The structure of matrices in T ensures that e15T = Te15 = {0} hence the set
Cn of matrices

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 m

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
where m ∈Mn forms an ideal in T. It is convenient to think of the quotient of T
over the ideal Cn as of the ring of 5 × 5-matrices of the form

⎛⎜⎜⎜⎜⎜⎝

0 ∗ ∗ ∗ ◇
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where ∗ ∈ R, and ◇ ∈ R/Mn, the quotient vector space of the vector space R over
the subspace Mn.

We define Bn to be the subalgebra of T /Cn generated by the matrix

d =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
and all the matrices

(4.5.4) r =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 r 0 0 0
0 0 0 0 0
0 0 0 r 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where r runs over R. Recall that our goal is to show thatBn satisfies the identities
wk = 0 for all k < n but does not satisfy the identity wn+1 = 0.

Clearly, the set of all elements (4.5.4) is a subalgebra R isomorphic to R. By
the property (R1) the algebra R satisfies the identity (x, y2) = 0. Now let I be
the ideal of Bn generated by d. We have Bn = R + I hence for every b1, b2 ∈ Bn

we have (b1, b
2
2) ∈ I (why?).

Every element of I can be represented as αd + v1d + du1 + v2du2 + t, where
α ∈ F, ui,vi are of the form (4.5.4) for some ui, vi ∈ R and t ∈ I2. It is easy to

183



calculate that v2du2 = 0 and that t is of the form

t =

⎛⎜⎜⎜⎜⎜⎝

0 0 ∗ ∗ ◇
0 0 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

hence every element of I is of the form

(4.5.5)

⎛⎜⎜⎜⎜⎜⎝

0 u ∗ ∗ ◇
0 0 v ∗ ∗
0 0 0 u ∗
0 0 0 0 v

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
for some u, v ∈ R. In particular, for every b1, b2 ∈ Bn, the element (b1, b

2
2) is of

the form (4.5.5). It is easy to calculate that the cube of a matrix of the form
(4.5.5) is of the form

⎛⎜⎜⎜⎜⎜⎝

0 0 0 uvu ◇
0 0 0 0 vuv

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

Now let k be a positive integer. Take arbitrary ci ∈ Bn (i = 1,2, . . . , k) and
represent it as ci = ri + di, where ri ∈R and di ∈ I. Then the product

(b1, b
2
2)c2

1c
2
2⋯c2

k(b1, b
2
2)3

is of the form

(4.5.6)

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 f +M
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where f = ur2
1r

2
2⋯r2

kvuv (check it!). By the property (R1) (u, r2
i ) = 0, so u

commutes with r2
i and we can rewrite f as the product of k + 1 squares: f =

r2
1r

2
2⋯r2

k(uv)2. Recall that Mn is the linear span of the set of all products of at
most n squares in R hence f ∈Mn whenever k < n. Thus, we have

(b1, b
2
2)c2

1c
2
2⋯c2

k(b1, b
2
2)3 = 0

for all b1, b2, c1, . . . , ck ∈ Bn. This means that the algebra Bn satisfies the identi-
ties wk = 0 for all k < n.

Now take s1, . . . , sn+1 ∈ R with s2
1⋯s2

n+1 ∉ M (such s1, . . . , sn+1 exist by
property (R2)) and consider the element

h = (d,12)s2
1 . . . s

2
n+1(d,12)3,

where 1, si are the matrices of the form (4.5.4) corresponding to 1 and to si

respectively. Then (d,12) = d (check it! Hint: use the fact that our algebras
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are over a field of characteristic 2). Therefore h is of the form (4.5.6) with
f = s2

1⋯s2
n+1. By the choice of the elements s1, . . . , sn+1, we have f ∉ M hence

h ≠ 0 and Bn does not satisfy the identity wn+1 = 0. This completes the first step
of the proof. �

As we have mentioned, the construction of algebra R is postponed till Sec-
tion 5.3.2.

4.6. Further reading

In this chapter, we only touched the surface of the large area related to
the Burnside properties and identities of rings. Fortunately, there are numer-
ous surveys and books devoted to these topics, both classical and very recent:
Jacobson [161], Rowen [274], Ufnarovskii [320, 321], Belov-Kanel and Rowen
[36], Belov-Kanel, Borisenko and Latyshev [34], Krause and Lenagan [186],
Zel’manov [336], etc.

4.6.1. The Kurosh problem. During the last 10-15 years we have learned
quite a bit about the Kurosh problem and nil-rings in general. In particular,
thanks to Agata Smoktunowicz [305], we now know that there exists a nil-
ring which is simple, and a nil-ring R such that its ring of polynomials R[x] ={a0 + a1x + ⋅ ⋅ ⋅ + anx

n ∣ ai ∈ R} (with natural addition and multiplication) is not
nil.

Still there are some outstanding simple to formulate open problems in this
area. For example, the following problem has been open for more than 80 years.

Problem 4.6.1 (Köthe’s problem [183]). Let A,B be left ideals of a ring R.
Suppose A and B are nil-rings. Is it true that the sum A+B is also a nil-subring
of R ?

4.6.2. Identities of rings. While arbitrary rings can be arbitrarily “bad”,
rings satisfying nontrivial identities are nice [274, 36]. For example, the various
radicals of any such ring are quite manageable. The most important radical of
a ring is the Jacobson radical [161]: the intersection of all maximal left ideals.
A more syntactic definition of a Jacobson radical is this: it is the maximal right
ideal consisting of elements x such that for some y, xy + x + y = 03. Note that
Jacobson’s radical of a ring always contains the Baer radical (prove it! Hint:
Use the fact that x(−x + x2 − x3 + . . . ) = −x2 + x3 − . . . and if x is a nil-element,
then the sums are finite).

Theorem 4.6.2 (Braun, [51]). The Jacobson radical of every finitely gen-
erated ring satisfying a nontrivial identity is nilpotent, hence coincides with the
Baer radical (and all the other radicals mentioned above).

The original proof of Theorem 4.6.2 involved a lot of nontrivial ring theory.
A more syntactic (but still nontrivial) proof was found by Belov-Kanel [32].
Thus for finitely generated rings satisfying nontrivial identities, the Jacobson
radical (= Baer radical) can be defined as the largest nilpotent ideal.

3If the ring contains 1, then this condition is equivalent to invertibility of 1 + x.
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The current status of the finite basis problem for (associative) rings is well
presented in the introduction of Belov-Kanel’s paper [33]. That paper also con-
tains the strongest, as of today, results in the area (see also a more detailed
presentation of these results including an interesting connection between identi-
ties of rings and the theory of quivers in [37, 38, 39, 40]). Still some natural
problems about identities of rings are unsolved. For example,

Problem 4.6.3. Are identities of every finitely generated ring finitely based?

Amazingly (especially compared with the situation in semigroups or groups),
one would expect a positive answer to this question.
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CHAPTER 5

Groups

In this chapter we introduce a new tool - van Kampen diagrams (although
these are sibling of diagrams introduced in Section 1.7.4). We start with defining
van Kampen diagrams and explaining basic methods of using them: the bands,
the Swiss cheese method and the small cancelation theory. Then we explain
Golod’s solution of the unbounded Burnside problem and a road map of Ol-
shanskii’s proof of the Novikov–Adian theorem solving the bounded Burnside
problem: there exists an infinite finitely generated group satisfying the identity
xn = 1 for all odd n ≥ 665. The theorem was one of the main achievements in
group theory of the 20th century. Its initial proof occupied more than 300 pages
and was extremely complicated. Olshanskii managed to find a much simpler
proof (for much bigger n). Our road map explains the main ideas and “points
of interest” of Olshanskii’s proof.

Then we discuss the free groups. We show how to use inverse automata
to describe subgroups of free groups and to prove the main properties of these
subgroups (due to Schreier, Howson and Hall).

From free groups, i.e., groups consisting of words, we move to groups consist-
ing of 2-dimensional words, diagram groups. One of the most famous diagram
group is the R. Thompson group, and we prove some basic properties of that
group in this chapter.

Next we present a (negative) solution of the finite basis problem for groups
due to Bryant and Yu. Kleinman. Again, this is not the first solution of the
problem (the first was by Olshanskii [256]), but it is one of the easiest.

One of the most active parts of group theory deals with growth functions of
groups. Here we present a proof of the Bass–Guivarc’h theorem giving precise
estimates of the growth functions of nilpotent groups. We also present Grig-
orchuk’s solution of Milnor’s problem about groups of intermediate growth.

Another hot topic in group theory is amenability, that is the last topic of
the chapter. It is related to growth and to the Burnside problem. In particular,
we discuss Adian’s solution of the von Neumann-Day problem.

Theorems proved in this Chapter include.

● Theorem 5.1.17 of Greendlinger about groups with presentations satis-
fying a small cancelation condition.
● Theorem 5.2.2 of Burnside and Theorem 5.2.3 of Sanov about groups

of exponents 3 and 4.
● Theorem 5.2.1 of Golod solving the unbounded Burnside problem.
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● Theorem 5.3.1 of Bryant and Yu. Kleiman giving an example of a
non-finitely based variety of groups.
● Theorem 5.4.1 of Abért giving a general condition implying that a group

does not satisfy any nontrivial identity.
● Theorem 5.7.28 of Bass and Guivarc’h describing growth functions of

nilpotent groups.
● Theorem 5.7.31 of Grigorchuk giving an example of an infinite periodic

finitely generated group of intermediate growth.
● Theorem 5.8.3 of Hausdorff, Banach and Tarski about doubling a sphere.

● Ph. Hall’s marriage Lemma 5.8.25.
● Theorem 5.8.29 of Følner about amenable groups.
● Theorem 5.8.40 of Jónsson and Dekker about groups with Tarski num-

ber 4.
● Theorem 5.8.45 of Adian about non-amenability of groups given by

certain Dehn presentations.

5.1. Van Kampen diagrams

5.1.1. Group presentations. Let X be a set. If R is a set of group words
in X (i.e., words in the alphabet X ∪X−1), then we can consider the normal
subgroup N generated by R in the free group FX , i.e., the smallest normal
subgroup containing R. In this case we shall say that the group G = FX/N is
given by a presentation gp⟨X ∣ R ⟩ (compare with Section 1.8.5).

Exercise 5.1.1. Prove that N is generated as a subgroup by all the conju-
gates of elements of R, that is elements of the form rz = z−1rz, z ∈ FX , r ∈ R.

Note that if r ≡ uv ∈ R, then vu = 1 in G because vu = ru. The word vu is
a cyclic shift of r. Hence we can and will assume that each cyclic shift of every
r ∈ R is reduced, that is each r ∈ R is cyclically reduced.

Exercise 5.1.2. Prove that a group word W in the alphabet X belongs to
the normal subgroup N if and only if it can be represented in the free group in
the form

(5.1.1) u1r1u2 . . . umrmum+1

where

● u1u2 . . . um+1 = 1 in the free group,
● each ri is a cyclic shift of a word from R±1.

5.1.2. Van Kampen diagrams: the definition. Let G be a group given
by a presentation P = gp⟨X ∣ R ⟩. Then G is a semigroup given by the presenta-
tion

P
′ = sg⟨X ∪X−1∪{1} ∣ 1 ⋅1 = 1, x1 = x = x1, xx−1 = 1, x−1x = 1, r = 1, x ∈X,r ∈ R ⟩

where X−1 is a copy of X, and there is an involution −1∶X ↔ X−1 (see Section
1.8.5). Note that the 0-relations 1 ⋅ 1 = 1, x ⋅ 1 = x, etc. will play an important
role later, see Section 5.1.4.6. If a freely reduced word W in X ∪X−1 is equal
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to 1 in G, then there exists a (W,1)-diagram over P ′. Adding inverse edges
labeled by letters from X ∪X−1, we turn it into a labeled graph in the sense
of Serre. Let us collapse every edge e that is labeled by 1, that is, identify
ι(e) and τ(e), and remove e, e−1 from the set of edges. If ι(e) = τ(e) in the
diagram, then there could be a subgraph bounded by the edge e. In this case we
remove e together with that subgraph. Also if there exist two edges e, f with
ι(e) = ι(f), τ(e) = τ(f) and having the same label x ∈ X, then we can identify
these edges and remove the whole subgraph bounded by the path ef−1. Note that
these transformations do not destroy planarity of the graph and do not change
the boundary path labeled by W. The result is a van Kampen diagram ∆ over P.
Clearly, since ∆ is planar, if we remove ∆ from the plane, the plane decomposes
into a number of bounded components called cells and one infinite component.
Then ∆ has the property that the boundary of each cell is labeled by a word
of R, and the boundary of the infinite component (called the boundary of ∆,
and denoted ∂(∆), is the word W. In this case we shall call ∆ a van Kampen
diagram over the presentation P for the word W. A van Kampen diagram is
called minimal if it has the smallest number of cells among all van Kampen
diagrams over P with the same boundary label.

Figure 5.1 shows how a typical van Kampen diagram may look like (without
labels of edges). One can see that the cells may be of different sizes and shapes,
a cell can touch itself, etc. It is important also that a diagram itself may not be
an embedded disc: several pieces as on Figure 5.1 can be connected by paths to
form a tree of discs.

Figure 5.1. A van Kampen diagram without labels

Thus we have shown how to turn a word that is equal to 1 in a group into
a diagram. This is the first half of the van Kampen lemma.

Lemma 5.1.3. If a freely reduced group word W over the alphabet X is equal
to 1 in G, then there exists a van Kampen diagram over the presentation of G
with boundary label W.

This is a half of the so-called van Kampen lemma [210, 260, 52]. The
converse statement (that the boundary label of every van Kampen diagram is
equal to 1 in G) constitutes the second half. In order to prove it, we have to,
given a van Kampen diagram, produce an equality of the form (5.1.1) and apply
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Exercise 5.1.2. The proof is by cutting a van Kampen diagram along the edges.
In a sense it shows how to turn a diagram into a word. This is the second half
of the van Kampen lemma.

Proposition 5.1.4. Let ∆ be a van Kampen diagram over a presentation
gp⟨X ∣ R⟩ where X = X−1, R is closed under cyclic shifts and inverses. Let W
be the boundary label of ∆. Then W is equal in the free group to a word of the
form u1r1u2r2 . . . umrmum+1 where:

(1) Each ri is a word from R±1;
(2) u1u2 . . . um+1 = 1 in the free group;
(3) ∑m+1

i=1 ∣ui∣ ≤ 4∣E∣ where E is the set of positive edges of ∆.

In particular, W is in the normal subgroup N and is equal to 1 in G.

Remark 5.1.5. Part (3) of Proposition 5.1.4 shows that the way we cut the
diagram is close to the most economical.

Proof. If ∆ has an internal edge (i.e., an edge which belongs to the bound-
aries of two cells) then it has an internal edge f one of whose vertices belongs
to the boundary (why?). Let us cut ∆ along f leaving the second vertex of f
untouched. We can repeat this operation until we get a diagram ∆1 which does
not have internal edges. The boundary label of ∆1 is equal to W in the free
group because each cut inserts a subword xx−1. The number of edges of ∆1

which do not belong to contours of cells (let us call them edges of type 1 ) is the
same as the number of such edges in ∆, and the number of edges which belong
to contours of cells in ∆1 (edges of type 2 ) is at most twice the number of such
edges of ∆ (we cut each edge from a contour of a cell at most once, after the
cut we get two external edges instead of one internal edge).

Suppose that for a cell Π in ∆1 there are at least two edges each of which
has a common vertex with Π but does not belong to the contour of Π.

Π
O O

Π′

Figure 5.2. Cutting Π′ inside Π

Take any point O on the boundary ∂(Π) of the cell Π which belongs to one of
the edges not on ∂(Π). Let p be the boundary path of ∆1 starting at O and let q
be the boundary path of Π starting at O. Consider the path qq−1p. The subpath
q−1p bounds a subdiagram of ∆1 containing all cells but Π. Replace the path
q in qq−1p by a loop q′ with the same label starting at O and lying inside the
cell Π. Let the region inside q′ be a new cell Π′. Then the path q′q−1p bounds
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a diagram whose boundary label is equal to W in the free group F (X). Notice
that Π′ has exactly one edge having a common vertex with Π′ and not belonging
to the contour of Π′ (see Figure 5.2). Thus this operation reduces the number
of cells Π such that more than one edge of the diagram has a common vertex
with Π but does not belong to the contour of Π.

After a number of such transformations we shall have a diagram ∆2 which
has the form of an apple tree T with cells hanging like apples (each has exactly
one common vertex with the tree).

The number of edges of type 1 in ∆2 cannot be bigger than the number of all
edges in ∆1, so it cannot be more than two times bigger than the total number
of edges in ∆.

The boundary label of ∆2 is equal to W in the free group, and it has the
form

u1ri1
u2ri2

. . . umrimum+1

where m is the number of cells in ∆, u1u2 . . . um+1 is the boundary label of a tree
consisting of edges of type 1 in ∆2 (traced counterclockwise), so u1u2 . . . um+1 = 1
in the free group. The sum of lengths of ui is at most four times the number of
edges in ∆ because the word u1u2 . . . um+1 is written on the tree T , and when
we trace the tree counterclockwise, we pass through each edge twice. �

5.1.3. Van Kampen diagrams and tilings. An elementary school

problem and its non-elementary solution. As an easy application of van
Kampen diagrams, consider the following elementary problem.

Example 5.1.6. Let P be the standard 8× 8 chess board with two opposite
squares removed (Figure 5.3). Prove that P cannot be tiled by the standard
2 × 1 dominos.

a a a a a a a

a

a a

a

a

a

b bb b

b bb

b

b

b

b

b

b

Figure 5.3. The chess board with two squares removed and two dominos
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Proof. The elementary solution of this problem is well known. Color
squares of P in black and white in the usual (chessboard) way. Then the number
of squares of one color (black or white) in P differs from the number of squares
of the other color by 2. Since each domino covers exactly one white and exactly
one black square, P cannot be tiled by dominos.

Here is a solution which, although less elementary, can be applied to many
regions of the plane square grid for which the elementary proof above does not
work; it also applies to regions of non-square (say, hexagonal) lattices on the
plane. This solution first appeared in a paper by W. Thurston [315]. The
ideas of that paper have many applications in several areas of mathematics from
combinatorics to probability to mathematical physics.

Let us label horizontal edges pointed rightward in P by the letter a and verti-
cal edges pointed upward by the latter b. Then the (counterclockwise) boundary
of P has label W = a7b7a−1ba−7b−7ab−1. Every domino can be placed either verti-
cally or horizontally. In the first case its boundary label is ab2a−1b−2, and in the
second case its boundary label is a2ba−2b−1. Now consider the group G with the
presentation gp⟨a, b ∣ ab2a−1b−2 = 1, a2ba−2b−1 = 1 ⟩. Suppose that P can be tiled
by the dominos. Then every such tiling turns P into a van Kampen diagram
over the presentation of G. Hence, by the van Kampen lemma (more precisely
by Proposition 5.1.4), the word W would be equal to 1 in G. But consider the
6-element symmetric group S3 and two permutations

1

1

1

1

2

2

2

2

3

3

3

3

α =

β = .

,

in it (as in Exercise 1.8.42). Both relations of G hold if we replace a by α and
b by β because α2 = β2 = 1. Hence the substitution a ↦ α, b ↦ β extends to a
homomorphism G→ S3. Note that W (α,β) = (αβ)4 = αβ is the permutation

1

1

2

2

3

3

.

which is not trivial. Hence W is not equal to 1 in G, a contradiction. �

This example shows a similarity between the word problem in groups and
the tiling problem. Indeed, by the van Kampen lemma, a word W is equal to 1
in G = gp⟨X ∣ R ⟩ if and only if we can tile a disc with boundary labeled by W
by pieces whose boundaries are labeled by words from R. Nevertheless the word
problem differs from the tiling problem as in Example 5.1.6 because, as we have
seen, when we draw a van Kampen diagram, we do not fix the shapes or sizes
of the tiles, only the labels of the boundaries of them, so one can view a general
van Kampen diagram as a tiling of a disc by tiles made of soft rubber, while the
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traditional tiling problems such as Example 5.1.6 are about tiles made of hard
plastic.

5.1.4. The three main methods of dealing with van Kampen dia-

grams: bands, Swiss cheese, and small cancelation. The number of pa-
pers dealing with van Kampen diagrams is very large. Still one can distill a few
methods that are commonly used in many of these papers. Let G = gp⟨X ∣ R ⟩
be a group presentation. We shall always assume that R is closed under taking
cyclic shifts and inverses (indeed, if a word is equal to 1 in a group, then so are
its cyclic shifts and the inverse).

5.1.4.1. The band method. HNN extensions. Suppose that there exists a
subset P ⊂ X so that every relation r ∈ R either does not have letters from
P or has the form up1vp

−1
2 w where p1, p2 are letters from P of X, and the

words u, v,w do not have letters from P. Let ∆ be a van Kampen diagram over
the presentation gp⟨X ∣ R ⟩. Suppose that a cell corresponding to the relation
up1vp

−1
2 w = 1 is in ∆. Then the edges e, f labeled by the letters p1, p2 of this

relation must either belong to the boundary ∂∆ or to another cell corresponding
to a relation containing letters from P. Thus cells corresponding to relations
containing letters from P form P -bands, i.e., sequences of cells where every two
consecutive cells share an edge labeled by a letter from P , see Figure 5.4.

p1 p2 p3 p4 p5 p6

Figure 5.4. A P -band with 5 cells, pi ∈ P

Bands are partially ordered by inclusion. The minimal bands are just edges,
they do not have any cells. If we do not say otherwise, all bands we will be
dealing with will be maximal. Every P -band has the start edge and the end
edge labeled by letters from P. The boundary of the subdiagram which is the
union of cells from the band is subdivided by the start and end edges into two
parts, the sides of the band. These are labeled by words not containing letters
from P.

For example, consider the presentation Pab = gp⟨a, b ∣ a−1b−1ab = 1 ⟩ of the
commutative group Z × Z. Then we can talk about a-bands and b-bands, i.e.,
both sets {a, a−1} and {b, b−1} can play the role of the set P above. If ∆ is a van
Kampen diagram over that presentation, then every cell in ∆ is an intersection
of an a-band and a b-band. The next two exercises give two basic properties of
bands.

Exercise 5.1.7. Prove that if ∆ is a minimal van Kampen diagram over
Pab, then no a-band and no b-band forms an annulus, see Figure 5.5.

Exercise 5.1.8. Prove that if ∆ is a minimal van Kampen diagram over
Pab, then no a-band intersects a b-band twice, see Figure 5.6.
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b
b b b b

a a a a

aaa a

Figure 5.5. A b-annulus

b b

a a

Figure 5.6. A b-band intersects an a-band twice

Exercise 5.1.9. Use Exercises 5.1.7, 5.1.8 to show that every minimal van

Kampen diagram over Pab with boundary of length n has as most n2

16
cells.

One immediate application of bands is the following classical theorem first
proved by Higman, B.H. Neumann and H. Neumann [154]. Recall that for every
element t of a group G, the conjugacy map a ↦ at, a ∈ G, is an automorphism.
Hence if A and B are two subgroups of G, G is a subgroup of H and t−1At =
B for some t ∈ H, then A and B are isomorphic (such subgroups are called
conjugate). Theorem 5.1.10 shows that the converse is also true: every two
isomorphic subgroups in a group G are conjugate in some bigger group H > G.

Theorem 5.1.10. Let G be a group and A,B be subgroups of G. Suppose that
A and B are isomorphic and φ∶A → B is an isomorphism. Then there exists a
group H > G and t ∈ H such that t−1At = B. Moreover t−1at = φ(a) for every
a ∈ A.

Proof. Let us consider the following triangular presentation P of G. The
set of generators X consists of all elements of G, and the set R of relations
consists of all relations of the form ab = c which are true in G where a, b, c ∈ G.
Thus P is just the multiplication table of G. Note that if G is infinite, then P
is infinite.
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Now consider the following presentation P ′ of a group H:

P
′ = gp⟨X ∪ {t} ∣ P ∪ {t−1at = φ(a), a ∈ A} ⟩

(we also add, by default, all cyclic shifts and inverses of the relations). Thus we
add a new “formal” generator t and the relations that we want: the conjugation
by t “induces” the isomorphism φ. Note that by definition X is a subset of H
and all relations from P hold in H. Therefore the map a ↦ a from G to H is
a homomorphism ψ∶G → H. It would be enough to show that ψ is injective1.
By contradiction, suppose that some element p ∈ G = X is “killed” by ψ, that
is ψ(p) = 1 in H. Then there must be a van Kampen diagram ∆ over the
presentation P ′ with boundary label p. We can of course assume that ∆ has the
smallest number of cells corresponding to relations containing t (we shall call
these cells t-cells).

Let P be the set {t, t−1}. Note that every relation from P ′ that contains t
has the form utvt−1w or ut−1vtw so we can consider P -bands (which we shall
call t-bands).

Lemma 5.1.11. No t-band in ∆ forms an annulus.

Proof. Indeed, suppose that ∆ has a t-annulus T . We can assume that
the subdiagram ∆′ bounded by T contains the smallest number of cells for all
t-annuli in ∆. Let ∆′′ = ∆′ ∖ T (more precisely, ∆′′ is obtained by removing all
closed cells of T from ∆′, and then taking the closure of the remaining open
diagram). Since different t-bands do not intersect, the subdiagram ∆′′ does not
contain any t-cells(prove it!). Therefore ∆′′ is a diagram over the presentation
P. Let u be the boundary label of ∆′′ which is the internal boundary of T . Let
v be the external boundary label of T . Note that every letter from the word u

occurs in a relation containing t. Therefore either all letters from u are in A or all
letters from u are in B depending on the direction of the t-edges of T (prove it!).
In the first case, v is the word φ(u), and in the second case v is the word φ−1(u).
By Proposition 5.1.4, then u = 1 in G. Since φ is an isomorphism, then v = 1 in
G. Hence there exists a van Kampen diagram Ψ over P with boundary label v
– by Lemma 5.1.3. Let us replace the subdiagram ∆′ in ∆ by the diagram Ψ
(it is possible because ∆′ and Ψ have the same boundary labels!). The diagram
∆′′′ we get has the same boundary label as ∆ and fewer t-cells, a contradiction
with the minimality assumption about ∆. �

Now we can easily finish the proof of the theorem. Since no t-bands of ∆
form an annulus, each maximal t-band must start and end on the boundary of
∆. Hence ∂(∆) must contain an edge (in fact at least two edges) labeled by t±1).
But edges in ∂(∆) are labeled by letters from X, a contradiction. �

The group H constructed in the proof of Theorem 5.1.10 is called the HNN
extension of the group G with associated subgroups A and B and free letter t,
denoted HNNφ(G) or simplyG∗φ for Higman, B.H. Neumann and H. Neumann.

1To avoid confusion, note that the left a in the notation a ↦ a is from G, and the right
a is from H ; in general a, a′ that are not equal in G may be equal in H , so the map is not
automatically injective.
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For example, the famous Baumslag–Solitar group BSm,n = gp⟨a, b ∣ b−1amb = an ⟩
is an HNN extension of the infinite cyclic group gp⟨a ⟩, the associated subgroups
are ⟨am ⟩ and ⟨an ⟩ (both are infinite cyclic), and φ∶amk ↦ ank.

5.1.4.2. The Swiss cheese method. Amalgamated products. Suppose that the
set of relations R in a presentation P has a subset R′, and ∆ is a diagram over
P. Consider the union ∆′ of all cells corresponding to the relations of R′. It
is a planar labeled graph which is a union of several connected components
which are diagrams with holes. The connected components look like pieces of
Swiss cheese, hence the name of the method. The key idea of dealing with Swiss
cheese subdiagrams is to show that the holes do not actually exist, and connected
components are in fact van Kampen subdiagrams. Let us demonstrate this idea
on another classical result about the amalgamated products.

It is very common to have two subgroups G,G′ of a bigger group T so that
A = G∩G′ is nontrivial. Thus G and G′ form an amalgam. Conversely, suppose
that two groups G and G′ have a common subgroup A and G∩G′ = A. We need
to find a group T which contains subgroups G1 and G′1 isomorphic to G and G′

respectively, so that G′1 ∩G1 is isomorphic to A. The next theorem shows that
it is always possible.

Theorem 5.1.12. Let G,G′ be two groups and A < G,A′ < G′ be two sub-
groups. Suppose that A is isomorphic to A′ and φ∶A → A′ is an isomorphism.
Then there exists a group T with two subgroups G1,G

′
1, and two isomorphisms

ψ1∶G1 → G, ψ2∶G′1 → G′, such that ψ−1
1 (G1 ∩G′1) = A, ψ−1

2 (G1 ∩G′1) = A′ and
ψ2φ(a) = ψ1(a) for every a ∈ A.

Proof. Let P = gp⟨X ∣ R ⟩ and P ′ = gp⟨X ′ ∣ R′ ⟩ be the triangular pre-
sentations of G and G′ (see the proof of Theorem 5.1.10) where X and X ′ are
disjoint. Consider the following presentation

T = gp⟨X ∪X ′ ∣ R ∪R′ ∪ {a = φ(a) ∣ a ∈ A} ⟩.
Let T be the group given by the presentation T . Clearly the maps x ↦ x (x ∈ X)
and x′ ↦ x′ (x′ ∈ X ′) are homomorphisms ψ∶G → T , ψ′∶G′ → T. It is enough to
show that ψ and ψ′ are injective (why?).

Suppose that, say, for some element u ∈ G, ψ(u) = 1 in T. Then there exists
a van Kampen diagram ∆ over T with boundary label u. We can assume that ∆
has the smallest possible number of cells corresponding to the relations a = φ(a),
a ∈ A (extra cells for short). Let ∆′ be one of the connected components of the
Swiss cheese subdiagram of ∆ formed by all the P ′-cells in ∆. We shall show
that ∆′ does not have holes. In fact it is easier to prove the following stronger
statement

Lemma 5.1.13. Let Ψ be a diagram over T whose boundary label is a word
over X (or a word over X ′, respectively). Suppose that Ψ has the smallest
number of extra cells among all diagrams over T with the same boundary label.
Then the Swiss cheese subdiagram of Ψ formed by all P ′-cells (resp. P-cells)
does not have holes (that means what we thought was Swiss cheese is in fact
cheddar or provolone).
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Proof. Induction on the number of cells in Ψ that correspond to the re-
lations a = φ(a), a ∈ A (extra cells for short). Suppose that the label of ∂(Ψ)
is a group word in X, but one of the connected components Ψ′ of the Swiss
cheese subdiagram formed by P ′-cells has a . . . hole Ω (the other case is similar).
That hole Ω is a subdiagram of Ψ whose boundary is a group word in X ′ (prove
it!). It has fewer extra cells than Ψ, so we can assume that the Swiss cheese
subdiagram Ω′ of Ω which is formed by all P-cells from Ω does not have holes,
hence it is a disjoint union of van Kampen diagrams. Suppose that Ω′ is not
empty. Then the boundary of Ω′ consists of edges with labels from X. The only
cells from Ω∖Ω′ that can contain these edges are the extra cells. Therefore the
boundary label v′ of every connected component Ω′0 of Ω′ is a group word over
A. By Proposition 5.1.4 v′ = 1 in G. Let Ω′′0 be the diagram Ω′0 together with
all the extra cells which have common edges with ∂(Ω′0). The boundary label of
Ω′′0 is φ(v′). Since v′ = 1 in G, φ(v′) = 1 in G′. Hence by Lemma 5.1.3 we can
replace Ω′′0 by a van Kampen diagram over P ′ with the same boundary label.
This operation reduces the number of extra cells, a contradiction. Hence we can
assume that Ω′ is empty, so Ω does not have P-cells. Thus it must consist of
extra cells. But every extra cell has an edge labeled by a letter from X, and two
extra cells corresponding to relations a = φ(a) and a′ = φ(a′) which share an
edge must correspond to the same relation, and so their union can be replaced
by one edge labeled by a or φ(a) (see Figure 5.7) which would reduce the number
of extra cells. Thus Ω is empty, a contradiction. �

Ð→a φ(a) a a

Figure 5.7. Cancelation of cells

Now the proof of Theorem 5.1.12 is easy and in fact is already contained in
the proof of Lemma 5.1.13. Since ∆′ does not have holes, it is a disjoint union
of van Kampen diagrams over P ′. Let ∆′0 be a connected component of ∆′. The
union ∆′′0 of ∆′0 and all extra cells that share an edge with ∆′0 is a van Kampen
diagram with boundary label v over X. Since φ−1(v) is equal to 1 in G′ (why?),
v = 1 in G, so by Lemma 5.1.3, there exists a van Kampen diagram Ψ over P
with boundary label v. Replacing ∆′′0 by Ψ, we reduce the number of extra cells,
a contradiction. �

The group T constructed in the proof of Theorem 5.1.12 is called the free
product of G and G′ with amalgamated subgroup A = A′, denoted G∗A=A′ G′. In
the important particular case when A is the trivial subgroup, T is called the free
product of G and G′, denoted G∗G′. By induction, one can define free products
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and free products with amalgamation of several groups. For example, every
free group is a free product of several infinite cyclic groups. Another classical
example of free product with amalgamation is the group SL(2,Z) (see Exercise
1.8.33). This group is the free product of the cyclic group of order 4 and the
cyclic group of order 6 with amalgamated subgroup of order 2 (for more on this
group see [289, 50]).2

Exercise 5.1.14. Let groups G1,G2 be given by Church–Rosser semigroup
presentations sg⟨X1 ∣ R1 ⟩ and sg⟨X2 ∣ R2 ⟩ where X1,X2 are disjoint. Show
that sg⟨X1 ∪X2 ∣R1 ∪R2 ⟩ is a Church–Rosser presentation of the free product
G1 ∗G2 and that the canonical words are of the form a1b1a2 . . . anbn where ai, bi

are canonical words in G1,G2 respectively, a1, bn may be empty, other ai, bi are
not empty.

For more on HNN extensions and free products with amalgamation see [289,

210].
5.1.4.3. Auxiliary planar graphs. The Dehn–Greendlinger algorithm. The

third idea used in dealing with van Kampen diagrams is the following: construct
a planar graph Γ(∆) associated with a van Kampen diagram ∆, and then use
the fact that the Euler characteristic of a tesselated polygon on a plane (i.e.,
the number of vertices minus the number of edges plus the number of cells) is 1
to deduce properties of Γ(∆) and ∆.

For example, suppose that ∆ is a van Kampen diagram over some presenta-
tion P and ∆ contains several subdiagrams ∆1, . . . ,∆n such that if i ≠ j, then
∆i and ∆j share only boundary vertices and edges (but not cells). In this case,

for every i ≠ j, ∂(∆i)∩ ∂(∆j) is empty or a disjoint union of arcs l1i,j, . . . , l
k(i,j)
i,j .

The idea is then to consider the following auxiliary graph Γ(∆): put a vertex
vi inside each subdiagram ∆i and connect vi and vj by k(i, j) edges, one edge
per arc lsi,j. Clearly this graph is planar. One of the simplest use of the Euler
characteristic is the following statement published by Heawood in 1890.

Theorem 5.1.15 (Heawood, [148]). Every finite planar graph without mul-
tiple edges and loops (i.e., edges whose tail and head coincide) either is empty
or has a vertex of degree at most 5.

Proof. Let Γ be a finite planar graph without parallel edges and loops.
Since the Euler characteristic of the plane is 1, the Euler formula gives V −E+F =
k where V is the number of vertices, E is the number of edges and F is the
number of faces, i.e., finite connected regions obtained after removing Γ from
the plane, k ≥ 1 is the number of connected components of Γ. Suppose that every
vertex of Γ has degree at least 6. Then E ≥ 3V (each vertex belongs to at least 6
edges, each edge belongs to 2 vertices). We also have F ≤ 2

3
E because every edge

is on the boundary of at most 2 faces and every face has boundary consisting of

2The notation G∗φ for HNN extensions and G∗A=A′G
′ for free product with amalgamation

indicates a similarity between HNN extensions and free products with amalgams. Indeed (see
[210]) every HNN extension is a subgroup of some natural free product with amalgamation,
and every free product with amalgamation is inside some natural HNN extension.
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at least 3 edges (since Γ has no parallel edges and no loops). Therefore, if the
graph is not empty, 1 = V −E +F ≤ E

3
−E + 2

3
E = 0, a contradiction. �

Let us demonstrate how this idea applies. Consider the classical small can-
celation condition. Let P = gp⟨X ∣ r = 1, r ∈ R ⟩ be a group presentation. As
usual we assume that R is closed under taking cyclic shifts and inverses. We
shall also assume that every word in R is cyclically reduced (if a cyclic shift of
a word is 1 in the group, then the word is 1 in the group also). A piece is the
maximal common prefix of any two distinct words from R. An easy geometric
picture illustrating this notion is the following. The label of a maximal subpath
l in ∂(π) ∩ ∂(π′) where π,π′ are cells in a van Kampen diagram over P is a
piece which is contained in some cyclic shifts of the labels of ∂(π), ∂(π′) or their
inverses, see Figure 5.8.

π
π′

l1

l2

Figure 5.8. The label of each li is a piece

We say that P satisfies the small cancellation condition C ′(λ) for some
number λ between 0 and 1 if for every piece u that is a subword of r ∈ R we
have ∣u∣ < λ∣r∣.

Exercise 5.1.16. The presentation

gp⟨a, b ∣ a−1b−1ab = 1 ⟩
(for brevity, we omit the cyclic shifts and inverses) satisfies the condition C ′(λ)
for every λ > 1

4
) because the only pieces are a, a−1, b, b−1. The presentation

gp⟨a1, b1, a2, b2 ∣ [a1, b1][a2, b2] = 1 ⟩
satisfies C ′(λ) for every λ > 1

8
). Let γ be the substitution defined in Section

2.5.3.4. Then the presentation

gp⟨a11, . . . , arr ∣ γ(a11) = 1, . . . , γ(arr) = 1 ⟩
satisfies the condition C ′(λ) for every λ > 1/r).

The general wisdom about the small cancellation condition is “the smaller
the λ the better”. It was proved by Goldberg [260] that every group has a
presentation satisfying C ′(λ) for any λ > 1

5
. So only the conditions C ′(λ) with

λ ≤ 1
5

are meaningful.
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The key fact about small cancellation presentation was proved by Greendl-
inger [120].

Theorem 5.1.17 (See Lyndon, Schupp [210]). Let P = ⟨X ∣ R ⟩ be a group
presentation satisfying C ′(λ), λ ≤ 1/6, then every minimal van Kampen diagram
∆ over P either has no cells or has a cell π where ∂(π) = uv with ∣u∣ > ∣v∣, and
u is a subpath of ∂∆ (this cell is called a Greendlinger cell). It sticks out of the
diagram as on Figure 5.9.

π

∆

u

v

Figure 5.9. A Greendlinger cell: ∣v∣ < ∣u∣
Proof. We shall give a sketch of the proof in the case λ ≤ 1

12
which is a

bit easier. Consider any minimal van Kampen diagram ∆ over P. Consider
the auxiliary graph Γ(∆) corresponding to all cells in ∆ (i.e.„ as above, put a
vertex in each cell, connect vertices if the corresponding cells share parts of the
boundary, one edge per each maximal arc in the intersection of their boundaries).

Lemma 5.1.18. The graph Γ(∆) does not have loops and parallel edges.

Proof. We prove that Γ(∆) has no parallel edges, leaving the other part
as an exercise. Induction on the number of cells in ∆. Suppose that two vertices
v1, v2 corresponding to cells π1, π2 are connected by two edges. That means the
intersection ∂(π1)∩ ∂(π2) contains at least two maximal arcs l1, l2 as on Figure
5.8.

Then there exists a subdiagram ∆′ of ∆ with boundary of the form ∂(∆1) =
p1p
−1
2 where the path p1 is part of ∂(π1) and path p2 is a part of ∂(π2) which con-

tains cells (here we use the fact that all words in R are cyclically reduced!). Since
the diagram ∆′ contains fewer cells than ∆, we can assume that Lemma 5.1.18,
and hence Theorem 5.1.17, applies to ∆′. Therefore there exists a Greendlinger
cell π in ∆′, i.e., there exists a path l ⊆ ∂(π) ∩ ∂(∆′) such that ∣l∣ > 1

2
∣∂(π)∣.

Then l = l1l2 where l1 = ∂(π) ∩ p1, l2 = ∂(π) ∩ p2. Then one of the paths l1 or
l2 has length greater than 1

4
∣∂(π)∣. That means there exists a piece which is a

subword of the label of ∂(π) and is longer than 1
4
∣∂(π)∣, a contradiction with

C ′( 1
12
). This contradiction proves the claim.
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Exercise 5.1.19. Prove the remaining part of the lemma: that Γ(∆) does
not have loops.

Now let us show how to deduce Theorem 5.1.17 from Lemma 5.1.18. Since
Γ(∆) is planar, does not have parallel edges and loops, it must have a vertex
v of degree at most 5 by Theorem 5.1.15. Therefore there exists a cell π which
has at most 5 cells π1, π2, . . . which share a boundary edge with π. By Lemma
5.1.18, each intersection li = ∂(π) ∩ ∂(πi) is a path. The label of this path is a
piece (why?). Hence ∣li∣ ≤ 1

12
∣∂(π)∣ by the condition C ′( 1

12
). Note also that every

edge of ∂(π) either belongs to the boundary of ∆ or to one of the li. The sum of
lengths of the paths l1, l2, . . . is at most 5

12
∣∂(π)∣. The complement l = ∂(π)∖∪li

is ∂(∆) ∩ ∂(π) and has length at least 7
12
∣∂(π)∣ > 1

2
∣∂(π)∣.

�

Remark 5.1.20. There are two gaps in this proof. First, the intersection
∂(∆) ∩ ∂(π) may not be an arc but a union of several disjoint subarcs of ∂(π).
Second, the diagram ∆ may not be a disc but a tree of discs. In that case
∂(∆) ∩ ∂(π) may be a union of several disjoint subarcs of ∂(∆).

Exercise 5.1.21. Fill the gaps mentioned in Remark 5.1.20. Hint: To fill
the first gap, assume that ∂(∆) ∩ ∂(π) is a disjoint union of several arcs, and
consider a (smaller) subdiagram bounded by ∂(π) and ∂(∆). To fill the second
gap, prove that if a planar graph has no parallel edges or loops, and has at least
2 vertices, then it contains at least 2 vertices of degree ≤ 5 (this is not much
stronger than Theorem 5.1.15). Alternatively, one can use 0-cells and contiguity
subdiagrams (see Section 5.1.4.6 below).

Theorem 5.1.17 provides the following algorithm for solving the word prob-
lem in a group G given by a finite (or even recursive) presentation gp⟨X ∣ R ⟩
satisfying C ′(λ), λ < 1

6
. Consider a word w. If w is not trivial (i.e., equal to 1 in

the free group) and does not contain more than a half of a word from R, then
w ≠ 1. If w contains a subword u such that uv ∈ R for some v and ∣v∣ < ∣u∣, then
replace u by v in w. The new word w′ is shorter than w. Moreover w = 1 in G if
and only if w′ = 1 in G, and we can proceed by induction on the length of ∣w∣.
This algorithm was first discovered by Dehn to solve the word problem in the
fundamental groups of the orientable surface Sg of genus g > 1, or surface group
for short i.e., the group π1(Sg) = gp⟨a1, . . . , ag, b1, . . . , bg ∣ [a1, b1]⋯[ag, bg] = 1 ⟩.
That group satisfies C ′(λ) for every λ > 1

4g
(prove it!).

Thus a presentation of a group G satisfying the conclusion of Theorem 5.1.17
is called a Dehn presentation. Groups admitting a Dehn presentations have been
studied extensively (probably the first paper where these groups were introduced
in full generality and studied was the paper by Adian [4]). Groups having finite
Dehn presentations are known under the name of Gromov hyperbolic groups
after Gromov discovered deep connection between these groups, topology and
geometry in his seminal paper [129].

The surface groups play extremely important role in the modern group the-
ory. The next exercise clarify their structure.
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Exercise 5.1.22. Show that π1(Sg) can be represented as a free product of
two free groups with cyclic amalgamated subgroup if g ≥ 2 (say, one free group is
generated by a1 and b1, another is generated by the rest of generating set), and
as an HNN extension of a free group with cyclic associated subgroups if g ≥ 1
(any generators can be considered as a free letter).

The next exercise shows that π1(Sg) has nice finite Church–Rosser presen-
tation.

Exercise 5.1.23 (Hermiller, [150]). Let us denote a−1
i by āi, b

−1
i by b̄i (so

that the defining relator of π1(Sg) has the form ā1b̄1a1b1ā2b̄2a2b2 . . . āg b̄gagbg =
1). Let us also denote P = ā2b̄2a2b2...āg b̄gagbg, Q = b̄gāgbgag...b̄2ā2b2a2. Consider
the monoid presentation with generators

a1, . . . , ag, b1, . . . , bg, ā1, . . . , āg, b̄1, . . . , b̄g

and relations
aiāi = 1, āiai = 1, bib̄i = 1, b̄ibi = 1 for all i,
a1b1 = b1a1Q,

ā1b̄1 = Qb̄1ā1,

ā1b1 = b1P ā1,

a1Qb̄1 = b̄1a1.

.

Show that this is a finite Church–Rosser presentation of the surface group
π1(Sg). Hint: The most difficult part of this exercise is to prove that the rewrit-
ing system is terminating. For this you can use the recursive path ordering on
the set of words (see Section 1.2.3).

5.1.4.4. Small cancellation and conjugacy. Annular (Schupp) diagrams. Let
G = gp⟨X ∣ R ⟩ be a group presentation. Suppose that two words u, v over X are
conjugate in G, that is there exists a word w such that wuw−1 = v in G. Then
there exists a van Kampen diagram with ∂(∆) = p1p2p

−1
3 p−1

4 where the labels of
p1, p2, p3, p4 are w,u,w, v. Thus we can identify the arcs p1 and p3 making the
diagram into an annulus ∆′ with two boundary components: one labeled by u

and another labeled by v. The paths p1 = p3 form a cut of the diagram ∆′. The
only difference between ∆′ and van Kampen diagrams is that ∆′ is a tesselated
annulus, not a tesselated disc. Such annular diagrams are sometimes called
Schupp diagrams (Schupp introduced them in [288]). Note that if there exists
an annular diagram ∆′ with boundary labels u, v, and p is any path without
self-intersections, connecting the two boundary components, so that the word
u on a boundary component of ∆ starting (and ending) at p− and the word v

starts and ends at p+, we can cut ∆′ along p and obtain a van Kampen diagram
∆ with boundary label wuw−1v−1. So wuw−1 = v in G. See Figure 5.10. Thus
we obtain

Lemma 5.1.24. The words u, v are conjugate in G if and only if there exists
an annular diagram over the presentation of G with boundary labels u and v.

Note that another way of getting annular diagrams is by removing subdia-
grams from van Kampen diagrams. One can deal with annular diagrams in the
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u

v

w w ←→

u

v
w

Figure 5.10. Turning a conjugacy van Kampen diagram into
an annular diagram and back

same manner as with van Kampen diagrams. In particular, the auxiliary graphs
are defined similarly. Only one needs to be aware that a cell can now touch itself
forming an annulus surrounding the hole in the diagram, and also two cells can
touch twice, again, forming an annulus surrounding the hole. So the auxiliary
graph may have loops (at most one per vertex) and parallel edges: at most two
per vertex. Since the graph is still planar, the Euler characteristic method still
works, only one needs smaller λ in C ′(λ). In particular, the following analog of
Theorem 5.1.17 still holds.

Theorem 5.1.25. Let P = ⟨X ∣ R ⟩ be a group presentation satisfying C ′(λ).
Then every minimal annular diagram ∆ over P either has no cells or has a
cell π which shares more than (1 − 7λ) of its boundary edges with the boundary
components of ∆, see Figure 5.11.

π

∆

Figure 5.11. A Greendlinger cell π of an annular diagram ∆

This implies, in particular, the following interesting result.
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Theorem 5.1.26. Let P = ⟨X ∣ R ⟩ be a group presentation satisfying C ′(λ),
λ < 1

14
. If two words u, v are conjugate modulo P, then there exists a cyclic shift

u′ of u, a cyclic shift v′ of v, and a word w of length at most 7
2
λ(∣u∣ + ∣v∣) such

that w−1u′w = v′ modulo P.

Proof. Indeed, let ∆ be a minimal annular diagram over P with boundary
components p and q labeled by u and v. Applying Theorem 5.1.25, we find a
Greendlinger cell π which sticks out of ∆. We only consider the case when ∂(π)
intersects both p and q leaving the other cases as an exercise. Thus ∂(π) =
t1s1t2s

−1
2 where s1 ⊆ p, s2 ⊆ q,

∣p∣ + ∣q∣ ≥ ∣s1∣ + ∣s2∣ > (1 − 7λ)∣∂(π)∣.
Hence ∣t1∣+ ∣t2∣ ≤ 7λ∣∂(π)∣ ≤ 7λ

1−7λ
(∣p∣+ ∣q∣). Thus at least one of the paths t1 or t2

has length at most 7λ
2(1−7λ)(∣u∣ + ∣v∣). The label of that path is the desired word

w. �

5.1.4.5. Diagrams and elementary topology 3. A van Kampen diagram can
be viewed as a CW complex on the plane. One can notice that, when dealing
with van Kampen diagrams we have been using some topological properties of
the plane. For example, we use the Euler characteristic in the proof of Theorem
5.1.15. We also repeatedly used Jordan’s theorem: every simple closed loop on
the plane separates the plane into two path connected components (find places
above where Jordan’s theorem is used!).4 In fact the possibility to use topology
when dealing with diagrams is what makes diagrams so effective and the proofs
so short. If we work with words instead of diagrams, we, in effect, have to prove
syntactic analogs of these topological statements!

The next two lemmas give other important applications of the topology of
the plane to van Kampen and annular diagrams. We only sketch the proofs, a
more detailed proof would make us go too deep into topology (and for a reader
who knows basic topology, these proofs should be trivial).

Lemma 5.1.27. Let ∆ be a van Kampen or annular diagram over a presen-
tation P. Let p, p′ be two paths in ∆ that are homotopic in ∆ (here we view ∆
as a CW-complex). Then the labels of p, p′ are equal modulo P.

Proof. Indeed, a homotopy is a series of moves when we either replace a
path ee−1 by an empty path or insert a subpath ee−1 (e is an edge), or substitute
a subpath which is a part of the boundary of a cell π by the complement of this
subpath in ∂(π). The effect of these moves on the label is: we either insert a
word that is equal to 1 in the free group, or we insert a relation from P. Both
operations do not change the word modulo P. �

Lemma 5.1.28. Let ∆ be an annular diagram over a presentation P with
boundary paths p, q whose labels are u and v. Suppose that ∆ has two cuts c, c′

3Warning: Some knowledge of elementary topology is required to read this subsection.
4The full Jordan’s theorem is a relatively complicated statement (although see [103]). Here

we are using it only in the case when the curve is a polygon (all edges of a van Kampen diagram
can be drawn as broken lines on the plane), which is relatively easy.
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with c− = c′− ∈ p−, c+ = c′+ ∈ q and labels w and w′. Then for some integer n, we
have w = unw′ modulo P.

Proof. Indeed, as we know from basic topology, the fundamental group of
an annulus is cyclic. Hence c is homotopic (in ∆) to c′ times a power of p. It
remains to use Lemma 5.1.27. �

5.1.4.6. Small cancellation, 0-cells and the baby version of contiguity subdi-
agrams. The goal of this section is first to calm down potential critics who can
say that cutting off subdiagrams and replacing them with subdiagrams with the
same boundary labels is not that easy topologically because, as we have men-
tioned, a cell in a van Kampen diagram over a presentation gp⟨X ∣ R ⟩ is not
necessarily an embedded disc (see Figure 5.1): the boundary of a cell can have
multiple edges and vertices. Moreover the diagram itself may be a tree of discs
connected by arcs. The second, more important, goal is to introduce a “baby
version” (or, more precisely, rank 0 version) of the notion of contiguity subdia-
gram which will play a crucial role in the proof of the Novikov–Adian theorem
below.

To avoid topological difficulties, Olshanskii introduced (see [260]) the no-
tions of 0-edges and 0-cells. A 0-edge is an edge labeled by 1 (the identity element
of the group). Let us allow 0-edges in a van Kampen diagram. That means, we
can replace a relation a1a2⋯ak = 1 by the equivalent relation a11a21 . . . an1 = 1.
Letters from X will be called non-0-letters. A 0-relation is a relation of one
of two forms 1k = 1 and 1ka1la−11m = 1, k, l,m ≥ 0. A cell corresponding to a
0-relation is called a 0-cell, see Figure 5.12

1

1 1

1

1 1

1

1
1

1

a

1 1

1
1

1
1

1a

Figure 5.12. 0-cells

A 0-cell is a cell corresponding to a 0-relation. Clearly adding 0-relations
to P does not change the group. 0-cells allow us to assume that every cell and
the diagram itself is an embedded disc. For example, Figures 5.13, 5.14 shows
what to do when a cell touches itself and when a diagram consists of two disc
diagrams connected by an arc.

As noted in [260, Chapter 4], using 0-cells, one can transform every van
Kampen diagram ∆ into a diagram ∆′ over the “extended presentation” (in-
cluding the 0-relations) with boundary label freely equal to the label of ∂(∆)
and such that
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a1 a1

a2 a2
a3 a3

a4 a4

a5 a5

a6 a6

a7 a7

1

1

1

1

1

1

1 1
Ð→

a8 a8

a8

Figure 5.13. Turning a cell into an embedded disc

a
Ð→

a

a
1 1

u v u v

Figure 5.14. Turning a diagram into an embedded disc

● No two non-0-edges e ≠ f±1 share a vertex.
● No two different non-0-cells share a boundary vertex.

Computing the length of a path in a diagram ∆ containing 0-cells, we usually
ignore the 0-edges. The “dual” graph Γ(∆) in the case of small cancelation
condition C ′(λ) is a little bit more tricky to define. Of course, only the non-0-
cells should be the vertices of Γ(∆): 0-cells do not satisfy the small cancelation
condition. But as we saw, non-0-cells in ∆ may not share parts of the boundary,
so if we define the graph Γ(∆) as before, it would have no edges. The cure is
the following. Notice that for every generator a ∈ X all 0-relations containing
an a contain exactly two occurrences of a (see Figure 5.12). Therefore 0-cells
containing a on the boundary form a-bands! The sides of the a-bands consist
of 0-edges. An a-band can start (end) on the boundary of a non-0-cell or on
∂(∆). Let us call an a-band connecting a non-0-cell π (or an arc p on ∂(∆)) with
another non-0-cell π′ (or another arc p′ from ∂(∆) ) a bond. Note that if we
remove all 0-cells and 0-edges from ∆, then the start and end edges of a bond will
coincide, so bonds just tell us which edges π or p shares with π′ or p′. Now it is
not difficult to define when two non-0-cells share an arc. If T1 and T2 are two not
necessarily distinct bonds between non-0-cells π1, π2 (for arcs p1, p2 the definition
is the same), then consider the subdiagram ∆′ bounded by ∂(π1), ∂(π2) and
sides of the bands T1, T2, and containing T1,T2 but not containing π1, π2. The
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boundary of ∆′ is subdivided into four arcs: ∂(∆′) = p1p2p
−1
3 p−1

4 where p1, p3 are
the sides of T1,T2, p2 is a part of ∂(π1), p4 is a part of ∂(π2), see Figure 5.15.
Suppose that ∆′ consists of 0-cells. Then we call ∆′ a contiguity subdiagram
between π1 and π2, p1, p3 are sides of ∆′, p2, p4 are called the contiguity arcs of
∆′. There is a partial order on contiguity subdiagrams induced by inclusion. As
in the case of bands, we shall consider only the maximal contiguity subdiagrams.
Note that every bond is a contiguity subdiagram as well but not necessarily a
maximal one.

π1
π2

T1

T2

∆′

a a

b b

Figure 5.15. A contiguity subdiagram

Contiguity subdiagrams between a cell and a boundary arc of ∆ or between
two boundary arcs are defined in the same way. Note that p1 and p3 consist of
0-edges. Moreover the labels of arcs p2 and p3 are equal in the free group since
∆′ consists of 0-cells. So these labels are pieces. The notions of a cell sharing an
arc of its boundary with the boundary of the diagram and a cell sticking out is
changed accordingly. The picture of a cell sticking out is on Figure 5.16 where
∆′ is a contiguity subdiagram.

Now we can define the “true” auxiliary graph Γ(∆): put a vertex inside every
non-0-cell, connect two vertices by an edge per contiguity subdiagram between
the corresponding cells.

It is easy to see that the graph Γ(∆) is the same as before insertion of 0-
edges and 0-cells, so the formulation and the proof of Theorem 5.1.17 remain
virtually the same.

Exercise 5.1.29. Re-prove Theorem 5.1.17 assuming that the diagram con-
tains 0-cells (removing 0-cells and then applying the previous proof constitutes
cheating!).

5.2. The Burnside problems for groups

5.2.1. Golod’s counterexample to the unbounded Burnside prob-

lem for groups. Let K be a countable field of characteristic p > 0. Consider the
algebra A = F /I constructed in Section 4.4.6. Let B be the algebra A with an
identity element adjoined. Consider the semigroup G generated by all elements
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π

∆

u

u′

v

∆′

Figure 5.16. A cell π sticking out: ∣v∣ < ∣u∣, u = u′ in the free group

1 + x where x ∈ X. Every element of this semigroup has the form 1 + a where
a ∈ A. Since A is a nil-algebra apn = 0 in A for some n which depends on a. Since
the characteristic is equal to p we have that (1 + a)pn = 1 + apn = 1 (see Exercise
1.4.18). Therefore G is a group (every element 1+ a has an inverse (1 + a)pn−1).
By definition G is finitely generated. If G were finite, then KG would be a finite
dimensional algebra. The algebra KG contains 1 and all elements 1 + x, x ∈ X.
So KG contains all the generators x of A. Since KG is a subalgebra of A we
can conclude that KG = A. But A is not finite dimensional and KG is finite
dimensional, a contradiction. Therefore we have

Theorem 5.2.1 (Golod, [114]). G is an infinite finitely generated periodic
group.

This is a counterexample to the unbounded Burnside problem for groups.
Recall that Burnside formulated his problem in 1902, and Golod solved it

in 1964. It is remarkable that a solution of a 60 years old problem can be
that simple (other examples discussed in this book are the Hanna Neumann
conjecture which was formulated in 1957 and proved with a 2-page proof in 2011,
see Section 5.9.5, and the finite basis problems for varieties of rings formulated
in the 50s and solved in 1999 with a 5-page proof, see Section 4.5.3).

Now there exist many other methods of constructing counterexamples to the
unbounded Burnside problem for groups (Aleshin, Grigorchuk, and others using
groups of automatic transformation (see, for example, [230, 170]), Sushchansky
using the so-called iterated wreath products [309], Olshanskii, Osin and Sapir
(see [263]) using the so-called lacunary hyperbolic groups, Olshanskii and Osin
[262] using the so-called large groups, etc. We shall return to this in Section
5.7.4).
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5.2.2. The Bounded Burnside problem. Positive results. There are
very few values of n such that every group satisfying the identity xn = 1 is
known to be locally finite, namely n = 1,2,3,4,6. This fact is obvious for n = 1,
an easy exercise for n = 2, a medium difficulty exercise for n = 3 and nontrivial
for n = 4,6. We present here the proofs for n = 3 and n = 4 (since the variety
var{x4 = 1} will appear again later). These cases as well as case n = 6 can be
found, for example, in the classical book by M. Hall [144, Section 18.4] or in
the book by Vaughan-Lee [324].

Theorem 5.2.2 (Burnside, [144]). Every group satisfying the identity x3 = 1
is locally finite.

Proof. Let G = gp⟨x1, . . . , xk ⟩ be a finitely generated group satisfying the
identity x3 = 1. Induction on k. The case k = 1 is obvious. Assume that all
k − 1-generated groups with the identity x3 = 1 are finite. The van Kampen
diagram on Figure 5.17 (from [260]) shows that the identity x3 = 1 implies
the identity [y, yx] = 1. Therefore every normal subgroup of G generated (as

x

y
x

y

xy

x

x−1

x−1

y

yx−1

x

Figure 5.17. The identity x3 = 1 implies the identity [y, yx] = 1

a normal subgroup) by one element is commutative (prove it!). Let N be the
normal subgroup generated by xk. Since G/N is (k − 1)-generated, it is finite
by the induction assumption. Every commutative group satisfying the identity
x3 = 1 is locally finite (Exercise 3.3.2). Hence by Corollary 3.4.2 G is finite. �

Theorem 5.2.3 (Sanov, [276]). Every group satisfying the identity x4 = 1 is
locally finite.

Proof. We need to show that every finitely generated group satisfying the
identity x4 = 1 is finite. If the number of generators k of the group is 1, the
statement is obvious. Suppose that we have proved the result for some k. Let
G be a group generated by {x1, . . . , xk, y} and satisfying the identity x4 = 1.
Suppose that G is infinite. Let H = ⟨x1, . . . , xk ⟩ be the subgroup of G generated
by x1, . . . , xk. Then H is finite by the inductive assumption. Let M be the
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subgroup of G generated by H and y2. Whether M is finite or infinite, we have
two groups G1 < G2 both satisfying the identity x4 = 1, G1 is finite, G2 is infinite
and generated by G1 and t such that t2 ∈ G1. If M is finite, then G2 = G,
G1 =M , t = y. If M is infinite, then G2 =M , G1 =H, t = y2.

We need to show that this situation is impossible. Since G2 is infinite and is
generated by a finite set G1∪{t}, t2 ∈ G1, there exists an arbitrary long geodesic
word of the form

(5.2.1) g1tg2t . . . gstgs+1

for G2 where gi ∈ G1. The relation (tg)4 = 1 implies tgt = g−1tg′tg−1 where
g′ = t2g−1t2 ∈ G1 (check it!). Therefore for every i = 2, . . . , s − 1 we can rewrite
the word (5.2.1) as follows:

g1tg2 . . . t(gi−1g
−1
i )tg′it(g−1

i gi+1) . . . tgs+1.

Note that the length of that word in the alphabet G1 ∪ {t} is not bigger than
the length of (5.2.1).

Rewriting the subword t(gi−1g
−1
i )t as before amounts to changing some gr

again, in particular, we replace gi−2 by gi−2(gi−1g
−1
i )−1 = gi−2gig

−1
i−1. By induction

we conclude that for every i > 2 and odd j < i, we can replace gi−i by

hi,j = gi−jgi−j+2 . . . gi−1g
−1
i g−1

i−2 . . . g
−1
i−j+1.

For every i = 1,2, . . . consider the element hi = g2g4 . . . g2ig
−1
2i−1g

−1
2i−3...g

−1
3 . If

s > 2∣G1∣, then hi must be equal to hj for some i < j. But then h2i,2j−1 = 1
in G1 (check it!). Therefore g2i−2j+1 can be replaced by 1 in (5.2.1) without
increasing the length. Then the subword t2 can be replaced by an element from
G1, reducing the length of the word (5.2.1) which contradicts the assumption
that the word (5.2.1) is geodesic. �

5.2.3. The Novikov–Adian theorem. Here we present a “road map”
for Olshanskii’s proof from [258] of a version of Novikov–Adian’s theorem for
sufficiently large odd exponents [251, 3]. Note that this is only a road map: we
wanted to describe main ideas, methods and “points of interest” of the proof.
For the actual proof the reader is referred to [258, 260].

Theorem 5.2.4 (Novikov–Adian, [251, 3], Olshanskii [258, 260]). For ev-
ery m ≥ 2, the m-generated free Burnside group Bm,n, i.e., the free group in the
variety of groups var{xn = 1}, is infinite for every sufficiently large odd n (say,
n > 1010).5

In preparation of this section, we essentially used the text sent to us by
Victor Guba [133] , and further explanations by Alexander Olshanskii.

5Although the formulations in [251, 3] and [258, 260] are similar, the book [3] has estimate
n ≥ 665 instead of n > 1010. This is a very important distinction. Even from our road map, it
will be clear that proving the theorem for much smaller n would require significant additional
effort. Currently there are no methods of lowering the estimate to “below 50”, for example.
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5.2.3.1. The basic rough idea. Fix a big enough odd number n. It suffices to
show that B(2, n) is infinite because B(2, n) is a homomorphic image of B(m,n)
for every m ≥ 2.

Order the cyclically reduced words in the free group F2 = gp⟨a, b ⟩ in an
almost arbitrary way: u1 < u2 < . . . . The only requirement is: if u is shorter
than v, then u < v. Consider the following sequence of groups Gi with group
presentations

PBi = gp⟨a, b ∣ Cn
1 = 1,Cn

2 = 1, . . . ,Cn
i = 1 ⟩

where G0 is the free group F2, and Ci is the smallest word which has infinite
order in Gi−1, for every i ≥ 1. Note that then Ci is not a proper power in Gi−1

of a smaller word because of our choice of the order < (prove that!). The main
fact to prove about the group Gi is this

Theorem 5.2.5. The group Gi is infinite for every i ≥ 0. In fact all Prouhet
cube-free words pm (see Section 2.1) in the alphabet {a, b} are pairwise different
in Gi.

It is proved in [258] that the group B2,n is given by the group presentation

PB = gp⟨a, b ∣ Cn
i = 1, i ≥ 1 ⟩.

i. e. it is an inductive limit of groups Gi (this is not completely obvious, it is
only obvious that the inductive limit is periodic). Suppose that B2,n is finite.
Then it is given by a finite presentation gp⟨a, b ∣ R ⟩ (the multiplication table,
for example). Since R follows from {Cn

i = 1 ∣ i ≥ 1}, it must follow from a
finite number of these relations {Cn

1 = 1, . . . ,Cn
m = 1}. But this means Gm is

a homomorphic image of B2,n which is impossible since Gm is infinite. Thus
Theorem 5.2.4 follows from Theorem 5.2.5.

It is in fact proved in [258] that the groups Gi are infinite and hyperbolic
(similar facts are also basically proved in [251], see also Section 5.2.3.15 below),
moreover its presentation satisfies a natural generalization of the small cance-
lation condition C ′(λ) where contiguity subdiagrams are used to define “pieces
of relations” (as in Section 5.1.4.6). To show that all Prouhet words pm are
different in Gi, suppose, by contradiction, that pk = pm in Gi, k <m. Since pk is
a prefix of pm, w = p−1

k pm is a subword of pm, hence cube-free. Since w = 1 in Gi,
there exists a van Kampen diagram ∆ over the presentation of Gi with bound-
ary label w. We need to prove an analog of Theorem 5.1.17: if ∆ is minimal in
some sense, then one of the cells shares large enough part of its boundary with
the boundary of ∆. Indeed, a big enough subword of Cn

i contains cubes, so w
cannot be cube-free.

The index i of Gi and Cn
i is called the rank. Thus Ci is called a period of

rank i. Accordingly we call a cell in a diagram over PB a cell of rank i if it
corresponds to the relation Cn

i , by definition 0-cells have rank 0. The rank of a
diagram is the maximal rank of its cells.

We also define the type of a van Kampen (or annular) diagram ∆ over PB as
the sequence of ranks of its cells arranged in the non-increasing order (s1, s2, . . . ).
We order types lexicographically.

211



5.2.3.2. j-pairs. We say that two cells π, π′ of rank j form a j-pair if there
is a path p without self-intersections (i.e., simple) connecting these cells whose
label is equal to 1 in Gj−1, and the boundary labels of π, π′ starting at p− and
p+ respectively are mutually inverse. In that case we can cut off the two cells
together with the path p, and insert a diagram of rank at most j − 1 in the
resulting hole (indeed, the boundary label of the hole is equal to 1 in Gj−1). The
new diagram will have the same boundary label but smaller type, so we shall
always assume that our diagrams over PB do not contain j-pairs of cells, see
Figure 5.18. Note that the path p can be empty as on Figure 5.7.

p

π π′

p′

p′′Ð→

w w−1 w w−1

Figure 5.18. Removing a j-pair

We call a van Kampen or annular diagram of rank i reduced if it does not
contain j-pairs for any j ≤ i.

5.2.3.3. Parameters. Now let us turn to the proof in [258]. It consists of
several lemmas proved by a simultaneous induction on the type of a diagram
over PB. This means that proving every lemma, we can assume that all other
lemmas are already proved for diagrams of smaller type. One can view all these
lemmas as one large lemma or as a “crown of lemmas” (which is similar to a
“crown of sonnets” [197]). Our goal is to explain the semantic meaning of these
lemmas and give some ideas of their proofs.

In the proof, we often use the phrase that some quantity a (length of a path,
or weight of a cell, etc.) is “much smaller” than the other quantity b. This
usually means that a ≤ νb for some very small parameter ν. There are several
concrete parameters in [258] (and even better chosen parameters in [260]). They
are denoted by small Greek letters α,β, η, θ, . . . . All inequalities involving these
parameters become obvious if we take into account that the ratio between a
“very small number” and an “even smaller number” can be assumed arbitrary
large but fixed in advance, hence do not depend on the rank. This leads to a
very large value of n, which is the reciprocal of the smallest parameter, but we
do not care here about how large n is as long as it is finite.

5.2.3.4. Contiguity subdiagrams. The definition and the spirit of Zimin
words. As in Section 5.1.4.6, contiguity subdiagrams will connect a cell π with
another cell π′ or a boundary arc p in a van Kampen or annular diagram. Let
us define only contiguity subdiagrams connecting a cell π1 with another cell π2

in a van Kampen diagram. Other definitions are completely similar.
Every contiguity subdiagram Ψ will have boundary subdivided into four arcs

p1q1p
−1
2 q−1

2
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where q1 is an arc from ∂(π1), q2 is an arc in ∂(π2) (hence the need to consider
diagrams with boundary subdivided into at most four arcs!). The arcs p1, p2

are called the sides of a contiguity subdiagram. The quotient
∣q1∣
∣∂(π1)∣ is called the

degree of contiguity of π1 to π2 via Ψ. The role of this quantity is similar to the
λ in C ′(λ), i.e., labels of p1 and p2 play the role of “pieces” of relations. See
Figure 5.19.

π1
π2

p1

q1

p2

q2

Figure 5.19. A rough sketch of a contiguity subdiagram

The contiguity subdiagrams of a diagram ∆ are defined by induction. The
0-contiguity subdiagrams are defined using 0-cells as in Section 5.1.4.6. Suppose
that j-contiguity subdiagrams for every j < i are defined already. Consider a
cell π of rank k and two contiguity subdiagrams: a j1-contiguity subdiagram Γ1

connecting π with some cell Π1 of rank > k and a j2-contiguity subdiagram Γ2

connecting π with a cell Π2 of rank > k. Assume that j1, j2 < k, j1, j2 < i, and
Γ1, Γ2 do not have common cells. Assume also that the degree of contiguity of π
via Γs is at least β, s = 1,2 where β is one of the small but not extremely small
parameters fixed in advance, that is the degrees of contiguity of π to Π1 and
Π2 are large enough. Then the smallest subdiagram of ∆ containing π,Γ1,Γ2 is
called a k-bond between Π1 and Π2 with the principal cell π, see Figure 5.20.

Π1
Π2π

Γ1 Γ2

Figure 5.20. A bond

If there are two bonds, a j-bond B1 and a k-bond B2 without common
cells, connecting a cell Π1 with a cell Π2, then the subdiagram bounded by
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B1,B2, ∂(Π1), ∂(Π2), containing the bonds and not containing Π1,Π2 is called a
max(j, k)-contiguity subdiagram connecting Π1 and Π2. Its sides are sides of the
bonds, its contiguity arcs are the obvious subarcs of ∂(Π1), ∂(Π2), see Figure
5.21.

Π1
Π2q1 q2

p1

p2

Figure 5.21. A contiguity subdiagram determined by two bonds

The next exercise provides a little more detailed structure of a contiguity
subdiagram. It can be easily proved by induction. Let us define a band of bonds
connecting a cell π and a cell Π as a sequence of bonds with principal cells
π1, π2,. . . , πs of ranks r1, . . . , rs and 0-contiguity subdiagrams Γ0, Γ1,. . . ,Γs, Γ0

connects π1 with π, for i = 1, . . . , s − 1, Γi connects πi with πi+1, Γs connects
πs with Π, and the ranks r1, r2, . . . of these cells π1, . . . , πs form a sequence
satisfying the following properties (provided it is not empty which can happen
if a bond defining the contiguity subdiagram is a 0-bond):

(Z) The sequence r1, r2, . . . , if not empty, contains exactly one maximal
number r; exactly one maximal r′ among the numbers to the left of r6,
exactly one maximal r′′ among the numbers to the right of r; exactly one
maximal number to the left of r′, exactly one maximal number between
r′ and r, etc.

Exercise 5.2.6. Every contiguity subdiagram has the form depicted on Fig-
ure 5.22 where U and V are bands of bonds.

Note that the indices of letters in a Zimin word obviously satisfy properties
(Z). So Zimin words appear, in spirit, in the definition of a contiguity subdia-
gram.

6The set of numbers to the right (left) of r may be empty, still among the numbers in that
set there is a maximal one!

214



U

V

Figure 5.22. A contiguity subdiagram determined by two
bands of bonds (the picture is not up to scale: in reality, the
sides are much shorter than the contiguity arcs)

5.2.3.5. Boundary arcs: smooth, almost geodesic, compatible with a cell. The
van Kampen and annular diagrams studied in [258] usually come with bound-
ary subdivided into several (at most 4) arcs. For instance, the boundary of a
contiguity subdiagram Ψ is naturally subdivided into 4 arcs: the two sides and
the two contiguity arcs. Hence, for the sake of induction, if we study contiguity
subdiagrams in a diagram ∆, we need to consider a subdivision of the boundary
of ∆ as well.

Note that the labels of the contiguity arcs q1, q2 are periodic words with
periods Ci and Ck (where Ci is the period of rank i, Ck is the period of rank k,
so that the label of ∂(π1) is Cn

i , the label of ∂(π2) is Cn
k ). Thus we can assign

ranks i, k to the paths q1 and q2. So we can assume that some boundary arcs of a
diagram have ranks and periodic labels. Note that since the whole diagram from
where the contiguity subdiagram Ψ was taken, does not have j-pairs for any j,
we can assume that there is no cell in Ψ which is compatible with any boundary
arc of rank j where compatibility is defined naturally: a cell π is compatible
with a boundary arc q if when we attach a cell π of rank j to the diagram Ψ
along the boundary arc q, we get a j-pair of cells π′ and π, see Figure 5.23.

Thus a boundary arc q of rank j of a diagram ∆ is called smooth if the label
of q is a periodic word with period C which is not conjugate in Gj to a power of
a shorter word, and the diagram does not contain a cell that is compatible with
q.

A boundary arc of rank j is called almost geodesic, if it is not homotopic in
the diagram ∆ to a “substantially shorter” path. Here “substantially shorter”
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π

π′

q

Ψ

Figure 5.23. A cell π j-compatible with a boundary arc q of ∂(Ψ)
means “whose length is at most the length of the boundary arc times a fixed
parameter < 1 that is close to 1 but not too close”.

5.2.3.6. A good system of contiguity subdiagrams. Now consider all possible
collections of pairwise disjoint contiguity subdiagrams between different cells
in ∆ and between cells and boundary arcs. By definition every non-zero edge
belongs to a 0-bond, hence a 0-contiguity subdiagram. Thus there is a collection
of contiguity subdiagrams such that every non-0-edge belongs to a contiguity
subdiagram of that collection and different contiguity subdiagrams do not share
a cell. Let us call such collections of contiguity subdiagrams full7. Among all
full collections of contiguity subdiagrams let us choose a collection with minimal
possible number of contiguity subdiagrams. Let us call such collections good8.
We fix one good collection Σ(∆) of contiguity subdiagrams for each reduced
diagram over PB. We call a cell of ∆ special if it is one of the non-0-cells of the
two bands of bonds that define a contiguity subdiagram from Σ(∆) (i.e., one
of the non-0-cells from the contiguity subdiagram whose boundary share edges
with the sides of a contiguity subdiagrams). A cell is called concealed if it is not
special but is contained in one of the contiguity subdiagrams from Σ(∆). All
other non-0-cells of ∆ are called ordinary.

5.2.3.7. The auxiliary weighted graphs and the existence of a cell that sticks
out. One of the main goals is to prove an analog of Theorem 5.1.17: in the
good system of contiguity subdiagrams Σ, there is one ordinary cell that is
attached to one of the boundary arcs via a contiguity subdiagram from Σ with
high contiguity degree. This is proved in [258, Section 3], and we shall first
talk about this section returning to the lemmas from [258, Section 2] later. We
assume that every diagram we consider is normal. This means that the rank of
a contiguity subdiagram is always less than the ranks of the cells or boundary
arcs which this subdiagram connects. The fact that all reduced diagrams are

7In [258] these collections are called complete.
8In [258, 260] more complicated definitions of good collections of contiguity subdiagrams

were used but our definition can be used instead.
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in fact normal is proved later, in [258, Section 4] (but remember that we are
dealing with a crown of lemmas!).

To show the existence of a cell that sticks out, we prove that the total length
of contiguity arcs of contiguity subdiagrams between a cell and a boundary arc
is large (these contiguity arcs will be called external. That would imply there
exists a cell π for which the total length of the external contiguity arcs in ∂(π)
is large as well. Since the number of boundary arcs of the diagram is at most 4
by assumption, π is the cell we need.

One of the neat features of [258] is that instead of lengths of paths we
consider their weights. Thus with every cell and every edge of a van Kampen
diagram we associate its weight. The idea is that (a) the weight of a non-0-cell
is the sum of weights of its boundary edges, (b) the weight of a non-concealed
cell of a higher rank is bigger than the weight of a cell of a smaller rank, and
(c) the weight of an edge on the boundary of a cell of a higher rank is smaller
than the weight of an edge on the boundary of a cell of a smaller rank. The
easiest way to achieve that is to assign to every non-concealed non-0-cell π the

weight ∣∂(π)∣ 23 and to every edge of the boundary ∂(π) the weight ∣∂(π)∣− 1

3 . We
also assign weight 0 to every concealed cell and its boundary edges. There is
no ambiguity in assigning weights to edges because no two non-0-cells share an
edge by our assumption - they only share edges with 0-cells.

If one cell is attached to another cell or to a boundary arc via a contiguity
subdiagram from Σ and the contiguity degree is ≥ β, then we shall say that
the cell is attached essentially. The minimality of Σ implies that there is no
ordinary cell π which is attached essentially to two cells Π1,Π2. Otherwise we
can view the cell and the two contiguity subdiagrams as a bond between Π1 and
Π2 (making the ordinary cell special) thus decreasing the number of contiguity
subdiagrams (recall that our good system Σ had minimal possible number of
contiguity subdiagrams).

First estimate the total weight of all special cells in contiguity subdiagrams
of Σ as very small. For this we use three lemmas about a contiguity subdiagram
Ψ connecting cells π and Π proved in [258, Section 2] (similar lemmas hold for
contiguity subdiagrams connecting a cell with a boundary arc). The first lemma
says that the sides of Ψ are very small compared to the perimeters of the cells.
The second lemma says that if a cell π is attached essentially to a cell Π, then
the rank of π is much smaller than the rank of Π, and the label of the contiguity
arc from ∂(Π) contains at most one and a little bit (say, less than 17

15
) of the

period of that cell (recall that all cells have boundary labels Cn
i for some periods

Ci). The third lemma says that the contiguity degree of π to Π cannot exceed
a certain parameter α which is only a little bigger than 1

2
.

A few words about the proofs of these lemmas. Since Ψ has smaller type
than the whole diagram ∆, we can assume that all the other lemmas from the
crown of lemmas are true for Ψ. The principal cell π′ of each of the two bonds
on the sides of Ψ must have ranks less than the minimum of ranks of π and
Π by definition. It is attached to π and Π by two contiguity subdiagrams Ψ1,
Ψ2 of even smaller ranks. Since Ψ1 and Ψ2 have smaller type than Ψ, we can
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assume that the sides of these contiguity subdiagrams are very small and the
contiguity arc of Ψi in ∂(π) and ∂(Π) contains at most one and a little bit of a
period of that cell. On the other hand, the contiguity arcs of these contiguity
subdiagrams that are contained in ∂(π′) contain at least β∣∂(π′)∣ edges. Since
all contiguity arcs in this case are almost geodesic (it is one of the lemmas in the
crown of lemmas), and the sides of Ψi are small, we can deduce that the length
of the period of the cell π′ is much smaller than the lengths of periods of π and
Π. Hence the perimeter of π′ is much smaller than the perimeters of π and Π.
This of course implies that the part of ∂(π′) which is contained in the side of Ψ
is very small. The whole side of Ψ1 is then the union of three very short paths,
hence very small.

The second lemma is a direct consequence of the analog of Fine–Wilf theorem
proved later (see Section 5.2.3.12) which states that there are no “rectangular”
diagrams with very short sides, and smooth long sides where one long side has
more than 1 + ǫ of a period, and the other long side has more than βn periods
(here ǫ is a small number, say, 1

120
).

The proof of the third lemma goes as follows. Suppose that the contiguity
degree of π to Π via a contiguity subdiagram Ψ is large, say, > 8

15
. Let u be the

label of the contiguity arc in ∂(π). Then u is equal in rank j (where j is smaller
than the rank of Π) to the label u′ of the complementary arc p′ = ∂(π) ∖ p
which has length at most 7

15
∣∂(π)∣ ≤ 7

8
∣u∣. As we have seen the contiguity arc

∂(Ψ)∩∂(Π) cannot contain much more than 1+ ǫ periods. Let C be that period
and the label of the contiguity arc be CC ′ where ∣C ′∣ < ǫ∣C ∣. Then CC ′ is equal
to u multiplied by two short words on the left and on the right. Since u is equal
to u′ in rank j, we conclude that CC ′ is equal to u′ multiplied by two short
words in rank j which contradicts almost geodesicity of the contiguity arc.

Now let us finish the estimate of the total sum of weights of special cells in
a band of bonds B of a contiguity subdiagram Ψ. We know that B has property
(Z), the Zimin type structure. The cell π1 of maximal rank from the band of
bonds has (as we have established above) weight that is much smaller than the
weights of both π and Π. The two cells π2, π3 of the next to the maximal ranks
of B have weights which are much smaller (same scaling constant!) than the
perimeters of π1 and π (resp. π1 and Π). Continue in this manner we see that
the weights of the non-0-cells of B form a geometric progression, and its sum
is small compared to the weights of π and Π. Therefore the total weights of
the cells of B is at most δ times the sum of weights of π and Π. In order to
estimate the total weight of all special cells we use an auxiliary graph Γs(∆)
as in Section 5.1.4.6: put a vertex in each cell that is connected to another cell
via a contiguity subdiagram from Σ, connect these cells by edges - one per each
contiguity subdiagram. We assign weights to vertices and edges: the weight of a
vertex is the weight of the corresponding cell, the weight of an edge is the weight
of all special cells in the corresponding contiguity subdiagram.

Since the graphs have weights, we need a more “fancy” version of the old
Theorem 5.1.15. That is [258, Lemma 1.4].

218



Lemma 5.2.7 (A weaker form of Lemma 1.4 from [258]). Consider a planar
graph Φ without parallel edges and loops where every vertex v ∈ Φ and every edge
e are equipped with finite weights ν(v), ν(e), so that ν(e) ≤ amin{ν(e−), ν(e+)}
for every edge e of Φ for some number a. Then N2 ≤ 7aN1 where N1,N2 are the
sums of weights of vertices and edges of Φ respectively.

Remark 5.2.8. In fact since the boundaries of the diagrams that we are
considering are subdivided into several arcs, we also need to add to Φ several
“external” vertices corresponding to the boundary arcs. The weights of these
vertices are set to∞ (and are not included into N1). We also should have at most
one edge connecting every “internal” vertex with one of the “external vertices”,
preserving planarity. The formulation and the proof of Lemma 5.2.7 stay almost
the same.

Lemma 5.2.7 can be proved in the same way as Theorem 5.1.15.

Exercise 5.2.9. Prove Lemma 5.2.7.

Lemma 5.2.7 applied to Γs(∆) immediately gives estimate of the total weight
(denote it by A) of all special cells as very small.

Now we need to deal with ordinary cells. Every contiguity arc of an ordinary
cell π is either internal (if the corresponding contiguity subdiagram is between
π and another cell) or external (if the corresponding contiguity subdiagram is
between π and a boundary arc). Our goal is to show that the total weight
(denote it by E) of the external arcs is large, or, equivalently, that the total
weight of the internal arcs (denote it by I) is small.

First we estimate the total weight of contiguity arcs of contiguity subdi-
agrams from Σ of contiguity degree at most β. Consider the auxiliary graph
Γβ(∆) where the vertices are inside cells connected by the contiguity subdia-
grams from Σ and one vertex per each boundary arc, the edges are, again, one
per a contiguity arc of contiguity degree at most β. The weight of a vertex is
the weight of the corresponding cell, the weight of an edge is the sum of weights
of the two contiguity arcs of the corresponding contiguity subdiagram. Then
Lemma 5.2.7 gives that the sum of weights (denote it by B) of contiguity arcs
with contiguity degree at most β is very small.

It remains to estimate the total weight (denote it C) of the internal contiguity
arcs with contiguity degree > β. Let Ψ be one of the corresponding contiguity
subdiagrams from Σ between a cell π and a cell Π and p, q are the two contiguity
arcs of Ψ with p ⊆ ∂(π) and contiguity degree at least β. Then, as we know, the
label of q contains at most one plus a little bit of a period of the cell Π, and
the length of q is at most the length of p plus a little bit. Hence the rank of
Π is much bigger than the rank of π. But here we use the nice feature of the
weights: the weights of edges of a cell of higher rank are much smaller than the
weights of edges of a cell of smaller rank. Therefore the weight of q is much
smaller than the weight of p and we can simply ignore q. We also know that the
contiguity degree of p is at most 1

2
plus a little bit. It is important to note that

π cannot be attached to any other cell or a boundary arc with contiguity degree
> β. Indeed, that contiguity subdiagram and Ψ together with π would then form
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a bond and it would contradict the minimality of our good system of contiguity
subdiagrams Σ. In particular, the external arcs of π are very short (recall that
there are at most 4 external arcs of ∆). Therefore the weight of p is at most 1

2

plus a little bit of the sum of weights of all internal contiguity arcs from ∂(π).
Since every ordinary cell has at most one such arc p we obtain that C is at most
1
2

plus a little bit (say, 8
15

) of the total weight of all internal contiguity arcs of
ordinary cells.

Thus I ≤ A+B+C where C ≤ 8
15
I and A,B are very small. But this inequality

implies (move C to the left!) that I is also very small, hence E is large, say, 1
minus a little bit (call this number θ) of the total weight of ordinary cells in ∆.
Hence, in average, external arcs of ordinary cells are large. In particular, there
exists one ordinary cell and contiguity subdiagrams from Σ attaching π to the
boundary arcs with total contiguity degree at least θ. That is the sticking out
cell we were looking for. We call this cell a θ-cell of ∆.

5.2.3.8. Why are all reduced diagrams normal? In [258, Section 4], it is
proved that every reduced diagram ∆ is normal. For this consider any contiguity
subdiagram Ψ of a cell π to a cell Π (the case when Ψ connects π and a boundary
arc is similar). As usual, we subdivide ∂(Ψ) into four boundary arcs p1q1p

−1
2 q−1

2

where q1, q2 are contiguity arcs, q1 ⊆ ∂(Π), p1, p2 are the sides. We need to show
that the rank of Ψ is small. By induction on the type of ∆, we can assume that
Ψ already is normal. Hence the two bonds B1 and B2 that define the contiguity
subdiagram Ψ have small rank contiguity subdiagrams. So we need to estimate
the rank of the subdiagram Ψ′ of Ψ between B1 and B2.

The subdiagram Ψ′ between the two bonds B1,B2 satisfies the following
properties:

● Ψ′ is normal, its boundary is subdivided into four arcs: long arcs q′1 ⊆ q,
q′2 ⊆ q2, and short arcs p′1, p

′
2.● arcs q′1 and q′2 are almost geodesic.

● ∣p1∣ + ∣p2∣ ≤ µ(∣q1∣ + ∣q2∣) for some small parameter µ.

The idea is to cut Ψ′ into small pieces by short bonds where the main cells
(if these are not 0-bonds) are θ-cells (see Figure 5.24). In fact it is enough to
find either a 0-bond between q′1 and q′2, or a θ-cell in Ψ′ which is essentially
attached to both q′1 and q′2, forming a bond between q′1 and q′2. Indeed, then the
bond divides Ψ′ into two similar subdiagrams and we can proceed by induction
on the type.

The proof in [258] of existence of the bond is by induction on the type of the
diagram. We consider all subdiagrams Ψ′′ of Ψ′ with boundary consisting of two
long arcs: q′′1 ⊆ q1, q′′2 ⊆ q2, and two short sides p′′1 , p′′2 . We can assume that the
quotient of the sum P of lengths of shorter sides by the sum Q of lengths of the
longer sides is the smallest possible among all these subdiagrams. In particular,
p′1 and p′2 must be the shortest paths in Ψ′ connecting their endpoints (i.e., these
are geodesics in Ψ′).

Since Ψ′ is normal, it contains a θ-cell π. If π is attached via contiguity
subdiagrams of degrees ≥ β to the long sides of Ψ′, then we found a bond
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between q′1 and q′2. If not, the cell π must be essentially attached to either p′1 or
p′2 (in particular µ > 0), hence ∂(π) is very short (since pi are geodesic).

Therefore π cannot be attached by contiguity subdiagrams to both p′1 and p′2
(the distance between p′1 and p′2 is too large). So π must be essentially attached
to, say, p′1, and either only to q′1 or to both q′1 and q′2. In both cases we cut off
the subdiagram Ψ′′ bounded by π, its contiguity subdiagrams and p1. Since the
contiguity degrees of π to q1, q2 cannot be both ≥ β, and since p′1 is geodesic and
q′1, q

′
2 are almost geodesic, we conclude that the contiguity degree of π to p1 and

to one of the paths q′1, q
′
2 must be almost 1

2
. Therefore when we cut off Ψ′′, we

get a new diagram where the sum P ′ of shorter sides can be estimated as about
P − a for some a, and the sum of the longer sides can be estimated as Q − a for
the same a. Since (P −a) ≤ µ(Q−a), and the new subdiagram has smaller type,
we can proceed by induction on type.

Thus we can cut Ψ into small subdiagrams as in Figure 5.24.

p1 p2

q1

q2

Figure 5.24. A contiguity subdiagram subdivided by bonds
into small subdiagrams

It remains to note that diagrams of small perimeter over PB must have very
small ranks (that is proved later, see Section 5.2.3.10 and is used here because
the types of the small subdiagrams of Ψ are smaller than the type of ∆).

5.2.3.9. Why are smooth arcs almost geodesic? Let us prove that smooth
boundary arcs are almost geodesic ([258, Lemma 4.2]). Suppose that we have a
diagram ∆ over PB with boundary subdivided into two arcs ∂(∆) = qt where q
is smooth of rank i and t is geodesic. We need to prove that q is almost geodesic,
say, .9∣q∣ ≤ ∣t∣.

Choose a θ-cell π in ∆ that is attached to t and q via contiguity subdiagrams
Ψ1, Ψ2 with total contiguity degree at least θ. By [258, Lemma 2.3] (the third
lemma from [258, Section 2] discussed in Section 5.2.3.7), the contiguity degree
of π to q can only be slightly bigger than 1

2
. The same is true for the contiguity

degree of π to t (an even easier proof since t is geodesic). Hence both contiguity
degrees can be only slightly less than 1

2
. Then π together with Ψ1 and Ψ2 forms

a bond B between q and t, the diagram ∆ is divided by that bond into three
smaller subdiagrams ∆1,∆2,∆3 as on Figure 5.25.

As before we estimate the sides p1, p2 of the bond B as very small compared
to ∣∂(π)∣. It is important to note that the lengths of p1 and p2 are small also
compared to ∣q2∣. This follows from the fact that almost all edges of ∂(π) belong
to the contiguity arcs of π from the bond B, only about half of that belongs to
the lower contiguity arc (a cell cannot be attached to a geodesic via a contiguity
subdiagram with contiguity degree much bigger than 1/2), so a large potion of
∂(π) belongs to the upper contiguity arc, which by almost geodesicity (we are
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∆1 ∆3
πp1 p2

q1

q2

q3

t1 t2 t3

Ψ1

Ψ2

Figure 5.25. The diagram ∆ is split into three subdiagrams by
a bond

applying it here to a subdiagram of smaller type!) is of almost the same size as
q2. Thus analyzing subdiagrams ∆1 and ∆3 on Figure 5.25 we get inequalities
of the form .9∣q1∣ − µ∣q2∣ < ∣t1∣ and .9∣q3∣ − µ∣q2∣ < ∣t3∣ for some small number µ.
One can notice that when we compare ∣q1∣ + ∣q3∣ with ∣t1∣ + ∣t3∣, we loose 2µ∣q2∣
(the multiplicative parameter .9 is what we want). Comparing ∣q2∣ with ∣t2∣
helps us recover the loss. Indeed, since the arc q is smooth, and the degree of
contiguity of π to q is bigger than β, the label of q2 contains almost one period
C by Lemma [258, Lemma 2.3] (discussed in Section 5.2.3.7), more precisely,
it contains at most 1 + ǫ periods where ǫ is very small. Note also that C, by
the definition of periods, is geodesic (without ”almost”). Therefore the distance
between endpoints of q2 in ∆ is not just ≥ .9∣q2∣ (as would follow from almost
geodesicity) but ≥ (1 − 2ǫ)∣q2∣. Thus, comparing q2 with t2 we get (1 − 2ǫ)∣q2∣ −
2µ∣q2∣ < ∣t2∣. Adding up the estimates for the three parts of q, we get

.9∣q1∣ + .9∣q3∣ + (1 − 2ǫ)∣q2∣ − 4µ∣q2∣ < ∣t∣.
Thus

.9∣q1∣ + .9∣q2∣ + (1 − 2ǫ − 4µ)∣q2∣ < ∣t∣.
It remains to notice that 1 − 2ǫ − 4µ > .9 .

Note that an almost the same proof gives that a smooth boundary compo-
nent of an annular diagram cannot be much longer than the other boundary
component (an “annular” version of almost geodesicity).

Similar argument of cutting a diagram by bonds whose principal cells are θ-
cells into several smaller subdiagrams is used to prove also several other lemmas
in [258, Section 4], in particular the following important statement:

Lemma 5.2.10 (Lemma 4.5 in [258]). If A and C are simple words in Gi,
i.e., not conjugated in Gi−1 to powers of shorter words, and A is conjugated to
a power of C in Gi, A =X−1C lX, then l = ±1.

5.2.3.10. Why do diagrams with small perimeters have small ranks? Let ∆
be a reduced diagram with boundary q. Let π be a cell from ∆ and ∆′ be
the annular diagram obtained by removing π from ∆. The boundary of π is
smooth because ∆ is a reduced diagram. Hence by the annular version of almost
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geodesicity (Lemma 5.2.11 below), the length of ∂(π) cannot be much bigger
than ∣q∣. Thus the rank of π cannot be large also.

5.2.3.11. Short cuts in annular diagrams. The following lemma is proved in
[258, Section 5].

Lemma 5.2.11. Let ∆ be a reduced annular diagram over PB with boundary
components p, q. Then there are vertices o1 in p and o2 in q, and a path s

connecting o1, o2 such that ∣s∣ is much smaller than ∣p∣+∣q∣ (say, ∣s∣ < 1
100
(∣p∣+∣q∣)).

This lemma is similar to Theorem 5.1.26, and the proof is very similar too:
one just needs to use a θ-cell instead of a Greendlinger cell of ∆.

5.2.3.12. A generalization of the Fine–Wilf theorem. Now we come to the
last and the most technical part of the proof, [258, Section 6], where we consider
diagrams with periodic boundary arcs (contiguity subdiagrams).

An easy consequence of the Fine–Wilf Theorem 1.2.16 is that if U and V

are periodic words with periods A and C respectively, where A and C are not
proper powers, U ≡ V , and ∣U ∣ ≥ ∣A∣ + ∣C ∣, then A and C coincide up to a
cyclic shift. [258, Section 6] contains several generalizations of this statement
for groups Gi. All these statements easily follow from Theorem 1.2.16 when
i = 0, i.e., when we consider periodic words in the free group. In the case i > 0,
we need to consider long and narrow diagrams with periodic long paths (e.g.,
contiguity subdiagrams). In Sections 5.2.3.8-5.2.3.11 we used several properties
of contiguity subdiagrams. These properties follow from the next lemma.

Lemma 5.2.12. Suppose that ∆ is a reduced diagram with ∂(∆) = p1q1p
−1
2 q−1

2

where p1 and p2 are very short compared to q1, q2 (just how short pi should be
will be clear from the proof) and the labels u1, u2 of q1 and q2 are periodic words
with periods A and C which are simple in Gi, ∣A∣ ≥ ∣C ∣, and u1 contains at
least 1 + ǫ periods while u2 contains very large number of periods. Then A is a
conjugate of C±1 in Gi.

In order to prove this lemma, several similar lemmas are proved by induction
on ∣A∣ + ∣C ∣. In each case the labels of the long paths are periodic either with
different or the same periods. Thus these lemmas are of the “AC form” (when
periods on the two long sides of the diagram are different) or of the “AA form”
(when periods are the same). The simultaneous induction is on the sum L of
the two periods (thus these lemmas form a sub-crown of lemmas). The reason
we need several of these lemmas is that we should be sure that when we use
an AA-lemma (resp. AC-lemma) to prove an AC-lemma (resp. AA-lemma),
the number of periods on the long side of the diagram is large enough. The
“large enough” in Lemma 5.2.12 is about 104 while in Lemmas 5.2.13, 5.2.14
below it is about 500. Here are a typical AA-lemma and an AC-lemma. We first
give a sketch of proofs of these lemmas and then say (Remark 5.2.15) how the
formulations should be adjusted to make the sketch work.

Lemma 5.2.13 (AA). Suppose that ∆ is a diagram of rank i with ∂(∆) =
p1q1p

−1
2 q−1

2 where p1 and p2 are very short and the labels u1, u2 of q1 and q2 are
periodic words with period A which is simple in Gi, and u1 contains large enough
number of periods. Then the boundary arcs q1 and q2 are compatible.
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Lemma 5.2.14 (AC). Suppose that ∆ is a diagram of rank i with ∂(∆) =
p1q1p

−1
2 q−1

2 where p1 and p2 are very short, the label u1 of q1 is a periodic word
with period A, the label u2 of q2 is a periodic word with period C, A,C are
simple in Gi, and u1, u2 contain large enough number of periods but the number
of periods in u1 is significantly larger than the number of periods in u2 (and so
C is shorter than A). Then the boundary arcs q1 and q2 are compatible.

Proof. AA → AC. Suppose the conditions of Lemma 5.2.14 hold. We can
assume that the label of q1 starts with A, the label of q2 starts with C. Then
the label of q1 is equal to AA′ and to A′Ā where the A′ contains large enough
number of periods A, Ā is a cyclic shift of A. Hence we can find two points
o1, o2 on q1, o1 is the head of the subpath labeled by A, o2 is the tail of the
subpath labeled by Ā. Cutting ∆ into small subdiagrams as on Figure 5.24, we
can find vertices o′ and o′′ on q2 which are “projections” of o1, o2 onto q2 i.e.,
the distances from o1 to o′ and from o2 to o′′ are very small. Since C is also
small compared to A, we can further assume that the label of the subpath of
the path q2 between o′′ and o′ is a power of C (by moving if necessary o′′ and
o′ a little bit). Let r1 and r2 be the shortest paths in ∆ connecting o1 with o′

and o2 with o′′ respectively. These two paths divide ∆ into three subdiagrams:
∆1,∆2,∆3 (see Figure 5.26).

ĀA o2o1

o′′o′

p1 p2

q1

q2

∆1 ∆2 ∆3r1 r2

Figure 5.26. A diagram with periodic boundary arcs

Since u2 (the label of q2) contains very large number of periods, the labels
of the bottom parts of the boundaries of ∆1 and ∆3 contain many periods.

Let R1,R2 be the labels of r1, r2 and P1, P2 be the labels of p1, p2.

Now let us flip the union of ∆2 and ∆3 and attach its top arc to the top arc
of the union of ∆1 and ∆2 (the labels of these arcs are equal to A′). We get

diagram ∆̄ as on Figure 5.27.
The diagram ∆̄ satisfies all the conditions of Lemma 5.2.13 except the sides

of it, while very small, are not small enough. But by cutting off small pieces of
∆̄ from the left and from the right (using θ-cells again), we deduce that a very

large subdiagram ∆̂ of ∆̄ satisfies all conditions of Lemma 5.2.13, and, moreover,∣C ∣+ ∣C ∣ < ∣A∣ + ∣C ∣, so we can apply Lemma 5.2.13 and deduce that the top and

the bottom arcs of ∆̄ are i-compatible, i.e., there exists a path z connecting the
top and the bottom arcs whose label is 1 in Gi, and z−, z+ divide the arcs into
subarcs containing integral number of periods, see Figure 5.28.

This implies that R−1
1 P1 is equal to a power of C in Gi (on Figure 5.28 it

is Ck−k′). Now consider the subdiagram ∆1 on Figure 5.26. The top arc of
that diagram is labeled by A, and the union of the other three arcs is labeled
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P1 ∆1 +∆2
R2

(∆2 +∆3)−1R−1
1

large power of C

large power of C

P−1
2

Figure 5.27. The diagram ∆̄ obtained by gluing the inverse of
∆2 +∆3 on top of ∆1 +∆2

P1 R2

R−1
1 P−1

2
z

Ck C l

Ck′ C l′

Figure 5.28. The top and the bottom arcs of ∆̄ are compatible

by R−1
1 CsP2 (for some s) which is equal to a conjugate of a power of C in Gi

(why?). But this contradicts the assumption that A is not conjugate to a power
of a smaller word in Gi. This completes the proof of Lemma 5.2.14.

Let us prove Lemma 5.2.13. Let ∆ be a diagram satisfying the conditions of
that lemma. By increasing p1 by at most half of the length of A, and replacing
A by its cyclic shift, we can assume that u1 and u2 start with A (note that
assuming this we no longer claim that p1 is very short, just that it does not
exceed 1

2
∣A∣ plus a little bit). We will show that the label P1 of p1 is equal to 1

in Gi. Suppose that it is not equal to 1.
One of the words u1 or u2 is a prefix of the other word. Without loss of

generality assume that u1 = u2v. Note also that v is short because of almost
geodesicity of periodic paths (Section 5.2.3.9). Then we can identify the two
subpaths of the longer arcs of ∂(∆) labeled by u2 and obtain an annular diagram

∆̄ with inner boundary labeled by P1 and the other boundary labeled by v times
a very short word (see Figure 5.29).

P1

u1 = u2v

u2

p2 P1

u2

R

Figure 5.29. Turning diagrams with periodic arcs into annular diagrams

By Section 5.2.3.11 there exists a very short path r connecting the boundary
components of ∆̄. Let R be its label. There also exists a path r1, also connecting
the boundary components, whose label is u2. By Lemma 5.1.28 then u2 is equal
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in Gi to R times a power of P1, multiplied by two short words on the left and
on the right (why should we multiply by the two short words?). The word P1

may not be simple in Gi, in which case it is conjugate (by a short word) to a
power of a simple word P that is even shorter than P1. Since ∣P ∣+ ∣A∣ < ∣A∣+ ∣A∣,
we can then apply Lemma 5.2.14 and get a contradiction. �

Remark 5.2.15. The difficulty in the above proofs of Lemmas 5.2.13,5.2.14
is the following. When we turn an AA-diagram into an AC-diagram (and con-
versely), we need to cut off some pieces of the new diagram from the left and
from the right in order to make the sides of the diagram short enough. As a
result, the number of periods on the periodic arcs of the diagram can decrease
and eventually (we are proving the lemmas by induction!), the numbers of pe-
riods won’t be big enough any longer. The solution (used in [258, 260]) is the
following. While in the AA-lemma we still require only that the periodic sides
contain a big enough, say > k (that number is about 500), number of periods,
in the AC-lemma, we assume that the arc with period C contains, say > 1.2k
periods while the arc with period A has only > .8k periods. Then when we
convert the AA-diagram into AC-diagram and cut a number of periods A in the
process, we still have at least > .8k periods A on the A-side of the new diagram.
On the other hand, since the length of the word C, by construction, is at most
2/3 of the length of A, and the periodic paths are almost geodesic, the number
of periods C must be > 1.2k, so the AC-lemma applies. Similar argument works
when we convert an AC-diagram into an AA-diagram. The numbers 1.2, .8,2/3
are carefully chosen in such a way, that the lemmas in the crown fit together
well.

5.2.3.13. The conclusion of the road map. This completes our road map of
the proof of the crown of lemmas from [258]. Let us deduce Theorem 5.2.4.
First, why all cube-free words w are not equal to 1 in the group given by the
presentation PB ? Suppose that w = 1 in Gi. Consider a reduced van Kampen di-
agram ∆ with boundary label w. Then this diagram has a θ-cell π corresponding
and a contiguity subdiagram Ψ connecting π with ∂(∆) with contiguity degree
at least θ. If Ψ has rank 0, then ∂(∆) contains a subword which is equal (in
the free group!) to a subword of at least θ of the length of Cn

j . Since θ ≫ 1/n,

that subword contains C6
j , a contradiction. So the rank of Ψ is > 1. Suppose

that at least one of the two bands of bonds, say, B, defining Ψ contains non-zero
cells. Take the non-zero cell π′ of B that is the closest to ∂(∆). Suppose that
it corresponds to a relation Cn

k = 1. By the definition of a bond, π′ is attached
to ∂(∆) via a 0-contiguity subdiagram with contiguity degree at least β. Since
β ≫ 1/n, we get that w contains C6

k as a subword, a contradiction. Therefore
both bonds defining the contiguity subdiagram are 0-bonds. Therefore the non-
zero edges of ∂(Ψ) belong to ∂(π)∪ ∂(Ψ). Consider a θ-cell π1 in Ψ. It’s degree
of contiguity to ∂(π) cannot be much bigger than 1/2. Hence it is attached to
∂(∆) by a contiguity subdiagram Ψ1 with contiguity degree > θ′ > θ−β > 1

2
. Note

that Ψ1 ⊂ Ψ. Continuing in this manner, we will find a cell πk that is attached
to ∂(∆) via a contiguity subdiagram Ψk which does not contain non-zero cells
at all, and the contiguity degree is at least θ′. Since β ≫ 1

n
, we conclude that the
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label of ∂(∆) contains a big portion of the label of ∂(πk) and cannot be cube
free.

5.2.3.14. Why is the group defined by PB of exponent n? In other words,
why the exponent of every element of G divides n ? It is in fact possible to prove
more: every word in the generators of G is conjugate to a power of a period
Ci (this gives what we need since the order of Cj divides n by definition of G).

Indeed, let C be a word in the generators of G. Then Ck = 1 for some k, suppose
that this equality is true in Gi and not true in Gi−1. We can assume that C is
not a conjugate of a power of a shorter word D in Gi (otherwise take D instead
of C).

Consider a van Kampen diagram ∆ with boundary label Ck. Let i be the
rank of ∆. Then ∂(∆) cannot be smooth of rank i because otherwise it would
be almost geodesic in Gi, but it is equal to 1, so has length 0 in Gi. Therefore
there exists a cell π of ∆ that is compatible with ∂(∆). But that means C is
equal in Gi−1 to a cyclic shift of Cj where Cn

j is the boundary label of π. Thus
C is conjugate to Cj in G.

5.2.3.15. The groups Gi are hyperbolic. Indeed, consider any reduced dia-
gram ∆ over PB considered as a diagram with one boundary component. Pro-
ceeding as in Section 5.2.3.13, we can find a θ′-cell in ∆, i.e., a cell π and a con-
tiguity subdiagram Ψ connecting π with ∂(∆) with contiguity degree > θ′ > 1/2.
Such that the rank of Ψ is smaller than the rank of π. Then the perimeter of Ψ
is bounded in terms of the perimeter of π. Therefore the subdiagram ∆π = π∪Ψ
shares more than a half of its perimeter with ∂(∆). Now consider all (finitely
many) possible diagrams of the form ∆π for all π of rank at most i, i.e., a union
of a cell π with a contiguity subdiagram (note that the contiguity subdiagram
may be empty). We just proved that the set of boundary labels of these diagrams
is a Dehn presentation of Gi.

5.2.3.16. Why do we need n to be odd? We never used this assumption in
our road map. In fact it is used crucially in [258, Lemma 6.3] which we skipped.
It has similar formulation as Lemma 5.2.13 but with different estimates on the
sizes of the boundary arcs. At some point in the proof of that lemma, we need to
make sure that the period C as in Lemma 5.2.12 must be A, and cannot be A−1

(there are two options in Lemma 5.2.10 also), i.e., As cannot be conjugate to A−s

if s ≠ 0. It is true if n is odd. Indeed, if A = Z−1A−1Z in G, then Z−2AZ2 = A,
hence Z−2AkZ2 = Ak for every k. Applying Lemma 5.2.13, we deduce that Z2

must be equal to a power of A. Since n is odd, Z is a power of Z2 in G (prove
it!). Hence Z is a power of A, and A = Z−1A−1Z implies A = A−1 but that is
only possible if A = 1 (again because n is odd).

On the other hand if n = 2k is even, then A2k = 1, so Ak = (A−1)k. So in
fact if n is even [258, Lemma 6.3] is wrong (the hardest situation is when a
cell π together with a contiguity subdiagram connecting π with itself surrounds
the hole in an annular diagram), and as a result the whole crown of lemmas
breaks down because they are all connected to each other. It took a lot of
efforts to overcome that difficulty. Finally Sergei Ivanov [156] and Igor Lysenok
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[213] managed to prove that the free Burnside groups of all sufficiently large
exponents (odd or even) with at least 2 generators are infinite.

5.3. The finite basis problem for groups and rings

In this section we shall present an example of R. Bryant and Yu. Kleiman
of a non-finitely based variety of groups and finish the discussion of the example
of Gupta and Krasilnikov of a non-finitely based variety of rings from Section
4.5.3.

5.3.1. An example of R. Bryant and Yu. Kleiman.

5.3.1.1. The result. The existence of non-finitely based varieties of groups
was shown by Olshanskii in 1969, see [256], and the very first explicit examples
of such varieties were constructed by Adian [2] and Vaughan-Lee [323]. That
solved one of the main problems about varieties of groups (see Hanna Neumann’s
book [248]). Here we present a remarkably elegant and transparent example due
to Roger Bryant [57] and Yuri Kleiman [180].

Consider the variety of groups given by all identities of the form

(5.3.1) (x2
1x

2
2⋯x2

n)4 = 1, n ≥ 1.

Every group G satisfying these identities has a normal subgroup H of exponent
4 which is generated by all squares of elements and the factor-group G/H is
of exponent 2 (prove that!). Conversely, every extension of a normal subgroup
of exponent 4 by a group of exponent 2 satisfies all identities (5.3.1). That
variety is denoted by B4B2. Note that B4B2 is locally finite by Corollary 3.4.2
and Theorem 5.2.3.

Theorem 5.3.1. The variety B4B2 is non-finitely based.

Proof. For every n ≥ 1 let un = (x2
1x

2
2⋯x2

n)4. By definition, the infinite set
of identities un = 1, n ≥ 1, defines the variety B4B2. Observe that un = 1 implies
uℓ = 1 for all ℓ < n (why?). Therefore, if the variety B4B2 were finitely based, it
would be defined by a single identity un = 1 for some n. In order to show that
this is impossible, we construct a series of groups Cn, n = 1,2, . . . , such that for
each n, the group Cn satisfies un = 1 but does not satisfy uN = 1 for some N > n.

5.3.1.2. Some properties of nilpotent groups of class 2. Recall that we denote
the word x−1y−1xy by [x, y]. It is convenient to denote [[x, y], z] by [x, y, z]. We
shall need some properties of nilpotent groups of class 2, that is groups G for
which the factor-group G/Z(G) is commutative, see Section 3.6.2 (recall that
Z(G) denotes the center of G, i.e., the set of elements x such that xy = yx for
every y ∈ G).

Exercise 5.3.2. Prove the following properties of nilpotent groups of class
2.

(1) A group is nilpotent of class 2 if and only if it satisfies the identity[x, y, z] = 1
(2) A group G is nilpotent of class 2 if and only if its derived subgroup G′,

i.e., the subgroup generated by all commutators [x, y], x, y ∈ G, is inside
Z(G).
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(3) If a group G is nilpotent of class 2, then for every a ∈ G, the map x↦ [x,a]
is a homomorphism from G to Z(G).

(Hint: Use Exercise 1.4.1)

5.3.1.3. The semigroup S and its semigroup algebra F2S. We start with the
semigroup S with zero 0 given by the presentation sg⟨x0, x1, . . . ∣ x2

i = 0, i ≥ 0 ⟩.
Exercise 5.3.3. Prove that the presentation of S is Church–Rosser and the

canonical words are words without subwords of the form x2
i , i ≥ 0.

We need the following

Definition 5.3.4. Let T be a semigroup with zero 0, K be a field. The
semigroup algebra KT is the vector space over K spanned by T ∖ {0} as a basis
(so the elements of T ∖{0} are linearly independent over K) with multiplication
naturally extending the multiplication in T :

(∑αigi)(∑βjhj) =∑αiβjgihj .

Exercise 5.3.5. Prove that KT is indeed an associative algebra over K.

Let F2 be the field with 2 elements, i.e., the field {0,1} of integers modulo
2. We shall need the semigroup algebra E = F2S.

5.3.1.4. The group A. For every i ≥ 0 let ai be the 3×3-matrix over E of the
form

⎛⎜⎝
1 xi 0
0 1 xi

0 0 1

⎞⎟⎠ .
Then each of the matrices ai is invertible and its square is the identity matrix

(because 1 + 1 = 0 in F2). Thus the semigroup A = ⟨ai, i ≥ 0 ⟩ is a group.

Exercise 5.3.6. Show that the elements ai, i ≥ 0 satisfy relations

a2
i = 1, [ai, aj , am] = 1, i, j,m = 0,1, . . . .

In fact it is possible to prove that A is isomorphic to the group given by the
presentation from Exercise 5.3.6, but we shall not need it.

Let An be the subgroup of A generated by a0, . . . , a2n.

Exercise 5.3.7. (1) Prove that in An, [ai, aj] = (aiaj)2, in particular, every
commutator of generators is a square. Deduce that every element of the derived
subgroup A′n is a product of squares.

(2) Prove that the derived subgroup A′n is inside the center Z(An), that is
An is a nilpotent group of class 2.

(3) Prove that the derived subgroup A′n satisfies the identity x2 = 1
(4) Prove that the factor-group An/A′n satisfies the identity x2 = 1, i.e., the

square of every element of An is in A′n. Combining with part 1, this gives that
A′n consists of products of squares of elements of An. Hint: Use Exercise 5.3.6.

By parts (2) and (3) of Exercise 5.3.7 A′n is a commutative group of exponent
2. If we re-denote the operation in A′n as +, and the identity element as 0, we
can view A′n as a vector space over F2.
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Lemma 5.3.8. The commutators [ai, aj], i < j, form a basis of the vector
space A′n.

Proof. By definition, the derived subgroup of An viewed as a vector space
over F2 is spanned by commutators [ai, aj], 0 ≤ i < j ≤ 2n + 1, each of which is
equal to ⎛⎜⎝

1 0 xixj − xjxi

0 1 0
0 0 1

⎞⎟⎠
(check it! notice a nice connection between group and ring commutators). Since
for any z1, z2 ∈ R we have

⎛⎜⎝
1 0 z1

0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎝

1 0 z2

0 1 0
0 0 1

⎞⎟⎠ =
⎛⎜⎝

1 0 z1 + z2

0 1 0
0 0 1

⎞⎟⎠ ,
and ⎛⎜⎝

1 0 z

0 1 0
0 0 1

⎞⎟⎠
2

=
⎛⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎠ .
These matrices are linearly independent because commutators xixj − xjxi in E

are linearly independent.

Exercise 5.3.9. Prove the last statement. Hint: Notice that all words
xixj, i ≠ j, are canonical in S. In a linear combination of commutators with non-
zero coefficients look at the lexicographically maximal canonical word xixj and
show that it appears exactly once and cannot cancel with another word in the
linear combination, hence the combination is not equal to 0.

�

Exercise 5.3.10. Show that the dimension of the vector space A′n is (2n+2
2
) =

(2n+2)(2n+1)
2

, the number of 2-element subsets of {a0, . . . , a2n+1}.
By Exercises 5.3.10 and 1.4.16, ∣A′n∣ = 22n2+3n+1.

The key property of An is that while by Part (4) of Exercise 5.3.7 every
element of A′n is a product of a number of squares of elements in An, we have

Lemma 5.3.11. There are elements in A′n that are not products of n squares.

Proof. Indeed consider any element g of An. It is represented by some word
w in generators a0, . . . , a2n+1. Then g2 is represented by the word w2. Note that
if w = ∗aiaj∗ where ∗ represents any words, then

ww = ∗aiaj ∗ ∗aiaj∗ = ∗ajai[ai, aj] ∗ ∗ajai[ai, aj]∗
= ∗ajai ∗ ∗ajai ∗ [ai, aj]2 = ∗ajaj ∗ ∗ajai∗

because [ai, aj] is in the center of An and its square is 1. Thus in the word
ww, one can permute the letters of both copies of w as one wishes as long as
this is done in a synchronous manner. Since a2

i = 1, g2 is represented by the
square of a word aj1

. . . ajs where j1 < . . . < js. Thus the number of squares in An
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is at most the number of different subsets of the set {a0, . . . , a2n+1}, i.e., 22n+2

(Exercise 1.1.1). Hence the number of elements in A′n that can be represented

as a product of n squares does not exceed (22n+2)n = 22n2+2n (prove it!). Since

22n2+2n < 22n2+3n+1, there exists an element a ∈ A′n which cannot be represented
as a product of n squares. �

5.3.1.5. The group Bn. Let a be an element of A′n that is not a product of
n squares in An.

For g ∈ An, we denote by g the image of g in the (commutative) factor-group
An = An/A′n.

Now for each n = 1,2, . . . , we define another nilpotent of class 2 group Bn

as the group generated by the set {bg, ck ∣ g ∈ An, k ∈ An} (notice that the
generators bg are indexed by elements of An and the indexes of generators ck

are from An) subject to the relations

(5.3.2) (bg)2 = (ck)2 = [bg, ck] = 1, [bg, bh] =
⎧⎪⎪⎨⎪⎪⎩

1 if gh−1 ≠ a
cg if gh−1 = a,

(Note that if gh−1 = a, then g = h.)

Exercise 5.3.12. Show that Bn is a nilpotent group of class 2 generated by
bg, g ∈ An, its derived subgroup B′n ⊆ Z(Bn) is a commutative group of exponent

2 (that is again can be viewed as a vector space over F2) and {ck ∣ k ∈ An} forms
a basis of B′n.

Exercise 5.3.13. Let b = bg1
. . . bgs , gi ∈ An. Let b′ be the product of the

same factors bgi
in a different order. Show that b2 = (b′)2. Hint: Copy the proof

of Lemma 5.3.11.

Exercise 5.3.14. Prove that for every h,h′, g ∈ An, bhbhg and bh′bh′g com-
mute.

5.3.1.6. The group Cn. The group An acts on the set of generators bg, ck, g ∈
An, k ∈ An of Bn in the following natural way

h ⋅ bg = bgh, h ⋅ ck = ckh
.

Exercise 5.3.15. Show that for every h ∈ An, the map x ↦ h ⋅ x preserves
the defining relations of Bn, and hence extends to an automorphism of Bn.

Consider the semidirect product Cn of An and Bn, that is the set of pairs(x, y), x ∈ Bn, y ∈ An with operation (x, y)(x′, y′) = (x(y ⋅ x′), yy′).
Exercise 5.3.16. Show that Cn is a group that is an extension of a normal

subgroup B̂n = {(x,1) ∣ x ∈ Bn} which is isomorphic to Bn by the group Cn/B̂n

which is isomorphic to An.

Each element of Cn can be written as (bg1
bg2
⋯bgs , g) where g, g1, g2, . . . , gs ∈

An.

Our goal is to show that Cn satisfies the first n identities of the form
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(5.3.3) (x2
1 . . . x

2
t )4 = 1

but does not satisfy some identities of this form (that would complete the proof
of the theorem).

The following lemma describes elements g from Cn with g4 = 1.

Lemma 5.3.17. Suppose that

(5.3.4) d = (bg1
bg2
⋯bgs , g) ∈ Cn

is such that g ∈ A′n. Then d4 ≠ 1 if and only if g = a and for some k ∈ An, the
number of gi in (5.3.4) such that gi = k is odd.

Proof. First consider the case when d is such that all elements gi in (5.3.4)
have the same image k = gi in An. We have

d2 = (bg1gbg2g⋯bgsgbg1
bg2
⋯bgs ,1) ∈ B̂n

since g2 = 1. By Exercise 5.3.13, we can write

(5.3.5) d4 = ((bg1
bg1gbg2

bg2g⋯bgsbgsg)(bg1
bg1gbg2

bg2g⋯bgsbgsg),1).
The products bgi

bgig and bgj
bgjg commute by Exercise 5.3.14 for every i, j. There-

fore we can regroup the right-hand side of (5.3.5) as follows:

d4 = ((bg1
bg1g)2(bg2

bg2g)2⋯(bgsbgsg)2,1).
Note that

(bgi
bgig)2 = bgi

bgigbgi
bgig = [bgig, bgi

] = (ck)ǫ,
where ǫ = 1 if g = a and ǫ = 0 otherwise. Therefore d4 = (ck)sǫ hence d4 ≠ 1 if and
only if g = a and s is odd.

In the general case, since [bg, bh] = 1 whenever g ≠ h (see (5.3.2)), we can
collect bgi

’s into blocks with the same gi. The action of the element g preserves
these blocks since g belongs to A′n. When we calculate the 4-th power of each
block, we get (ck)skǫ where gi = k for each gi in the block and sk is the size of the
group. Since the elements ck are linearly independent (Exercise 5.3.12), d4 ≠ 1
if and only if g = a and some sk is odd. �

Now let us show that the identity (x2
1 . . . x

2
t )4 = 1 holds in Cn for all t ≤ n. If

we calculate the product x2
1x

2
2⋯x2

n with x1, x2, . . . , xn being arbitrary elements of
Cn, the second element of the pair has the form g2

1g
2
2⋯g2

n for some g1, g2, . . . , gn ∈
An and cannot be equal to a since a is not a product of n squares. Lemma 5.3.17
then implies that (x2

1x
2⋯x2

n)4 = 1.
On the other hand, the element a is a product of some m > n squares in An,

so let g1, g2, . . . , gm ∈ An be such that a = g2
1g

2⋯g2
m. At least one of these elements

does not belong to A′n since a ≠ 1. Since squares commute in An (Exercise 5.3.7,
Parts (4) and (1), we may assume that gm ∉ A′n. Now let xi = (1, gi) if i <m and
xm = (ba, gm). Then (x2

1 . . . x
2
m)4 is not equal to 1 in Cn by Lemma 5.3.17 (check

it!). Thus one of the identities of the form (5.3.3) fails in Cn. �
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5.3.2. Construction of the algebra R used in Section 4.5.3. Recall
that the proof in Section 4.5.3 relied on the existence of an associative algebra
R with identity element over the 2-element field F2 satisfying the following two
properties:

(R1) R satisfies the identities (x, y2) = ((x, y), z) = 0.
(R2) for every n > 1, there exist s1, . . . , sn+1 ∈ R such that the product

s2
1⋯s2

n+1 does not lie in the linear subspace M spanned by the set of
all products of at most n squares in R;

Here we construct such an algebra R.
5.3.2.1. The subgroup G of the group A. We start with a subgroup G of the

group A from Section 5.3.1.4 generated by all elements of the form gi = a0ai, i > 0,
i.e., matrices

⎛⎜⎝
1 x0 + xi x0xi

0 1 x0 + xi

0 0 1

⎞⎟⎠ .
over the semigroup algebra E = F2S.

Exercise 5.3.18. Show that G satisfies the following relations:

[gi, gj , gk] = 1, [gi, gj]2 = 1, g4
i = 1, i, j, k ∈ N.

We denote by G2 the subgroup of G generated by all squares, that is, ele-
ments of the form g2 (g ∈ G).

Observe that for all i, j ∈ N

[gi, gj] = g−1
i g−1

j gigj = g3
i g

3
j gigj = g2

i ⋅ (gig
3
j )2 ⋅ g2

j ∈ G2

(since g4
i = 1, we have g−1

i = g3
i ).

This and the fact that the commutators [gi, gj] commute with all elements
in G (because [gi, gj , gk] = 1 in G for all i, j, k ∈ N) allow us to rewrite each
element y ∈ G as

(5.3.6) y = gi1
⋯giqh,

where i1 < ⋅ ⋅ ⋅ < iq and h ∈ G2.

Exercise 5.3.19. (1) Using the definition of G as a group of matrices, show
that every g ∈ G has a unique representation (5.3.6).

(2) Show that the elements g2
i and [gi, gj], i, j ∈ N, i > j form a basis of the

vector space G2. Hint: Use the proof of Lemma 5.3.8 and a hint for Exercise
5.3.9.

The product gi1
⋯giq in the representation (5.3.6) is called the trunk of y.9

9Indeed, gi1
⋯giq

is reminiscent of the trunk of a car which is normally in the back. On
the other hand, since G2 is in the center of G, we can rewrite (5.3.6) in the form hgi1

⋯giq
, in

which case gi1
⋯giq

is reminiscent of the trunk of an elephant which is normally in front.
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5.3.2.2. The algebra R. Next we take the group algebra of the group G.

Definition 5.3.20. If H is a group, then the group algebra of H over a field
F is the vector space FG over F spanned by G as a basis (so the elements of
G are linearly independent over F , elements of FG are linear combinations of
elements of G) with multiplication naturally extending the multiplication in G:

(∑αigi)(∑βjhj) =∑αiβjgihj

(compare with Definition 5.3.4 of semigroup algebras).

The associative algebra R we are after will be a factor-algebra of F2G over
some ideal V. Note that if V is such that F2G/V satisfies identities (R1), then
V must contain the verbal ideal W corresponding to these identities. On the
other hand if (R2) holds in F2G/V , it also holds in F2G/W (prove it!). Thus
it would be natural to define R as F2G/W. In fact this R does satisfy (R1) and
(R2). But it turns out that it is computationally easier to consider the following
bigger ideal V.

Consider the map f ∶G × G → F2G: f(y, z) = [y, z] + y2z2 + y2 + z2. Let V
be the ideal of F2G generated by all elements f(y, z), y, z ∈ G. The factor-ring
F2G/V is the desired algebra R.

5.3.2.3. Property (R1). First let us show that indeed V ≥ W , that is R

satisfies the identities ((x, y), z) = 0 = (x, y2). The next exercise shows that the
second identity is redundant.

Exercise 5.3.21. Show that in every associative algebra over a field of char-
acteristic 2 we have

((x, y), y) = (xy + yx)y + y(xy + yx) = xy2 + y2x = (x, y2),
Thus it suffices to prove only the Lie nilpotency of class 2.

Proposition 5.3.22. The algebra R = F2G/V satisfies ((x, y), z) = 0.

Proof. We start with the following exercise.

Exercise 5.3.23. For all y, z ∈ G,

(yz)2 + 1 ≡ (y2 + 1) + (z2 + 1) (mod V ).
Hint:

(yz)2 + 1 = y2z2[y, z] + 1

= y2z2([y, z] + y2z2 + y2 + z2)+y2z2(y2z2 + y2 + z2)+1

≡ y2z2(y2z2 + y2 + z2)+1 (mod V )
≡ (y2 + 1) + (z2 + 1) (mod V )

Now let rk = ∑jk
αkjk

hkjk
for k = 1,2,3 be three arbitrary elements of F2G

(here αkjk
∈ F2, hkjk

∈ G). We need to show that ((r1, r2), r3) ∈ V.
Since ((r1, r2), r3) = ∑

j1,j2,j3

α1j1
α2j2

α3j3
((h1j1

, h2j2
), h3j3

),
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we only need to check that ((h1, h2), h3) ∈ V for all h1, h2, h3 ∈ G. We expand((h1, h2), h3) as follows:

((h1, h2), h3) = h1h2h3 + h2h1h3 + h3h1h2 + h3h2h1

= h1h2h3(1 + [h2, h1] + [h3, h1h2] + [h3, h1h2][h2, h1])(5.3.7)

= h1h2h3(1 + [h2, h1])(1 + [h3, h1h2]).
By the definition of V , we have 1+ [h2, h1] ≡ (1+h2

2)(1+h2
1) and 1+ [h3, h1h2] ≡(1+h2

3) (1+(h1h2)2) (mod V ). By Exercise 5.3.23, 1+(h1h2)2 ≡ (1+h2
1)+(1+h2

2)(mod V ). Substituting these in (5.3.7), we obtain
(5.3.8)((h1, h2), h3) ≡ h1h2h3(1 + h2

2)(1 + h2
1)(1 + h2

3)((1 + h2
1) + (1 + h2

2)) (mod V ).
Since expressions of the form 1 + h2

k commute with each other and (1 + h2
k)2 =

1+h4
k = 0, the right-hand side in (5.3.8) is equal to 0. Thus, ((h1, h2), h3) ∈ V. �

5.3.2.4. Property (R2). In order to prove (R2) we shall first prove three state-
ments about G and F2G.

Lemma 5.3.24. For all h1, . . . , h2s ∈ G,

(h1, h2)⋯(h2s−1, h2s) ≡ h1⋯h2s(1 + h2
1)⋯(1 + h2

2s) (mod V )
Proof. Note that f(y, z) can be rewritten as (1 + [y, z]) + (1 + y2)(1 + z2)

because 1 + 1 = 0 in F2 and squares commute in G. Therefore by the definition
of V , 1 + [hi, hj] ≡ (1 + h2

i )(1 + h2
j) (mod V ) hence (hi, hj) = hihj(1 + [hi, hj]) ≡

hihj(1 + h2
i )(1 + h2

j). It remains to use the fact that 1 + h2
i commutes with all

elements of F2G. �

Lemma 5.3.25. For all h1, . . . , h2s ∈ G, if the product c = h1⋯h2s belongs to
G2, then the product u = (h1, h2)⋯(h2s−1, h2s) belongs to V.

Proof. By Lemma 5.3.24 u ≡ h1⋯h2s(1+h2
1)⋯(1+h2

2s) (mod V ). We write
h2s as h2s = h−1

2s−1⋯h−1
1 c. Then, using Exercise 5.3.23 and taking into account

the fact that c2 = 1 (since c ∈ G2), we get

1 + h2
2s = 1 + (h−1

2s−1⋯h−1
1 c)2 ≡ (1 + h2

1) +⋯+ (1 + h2
2s−1) (mod V ).

Since (1 + h2
i )2 = 1 + h4

i = 0 for all i, we have

u ≡ h1⋯h2s(1 + h2
1)⋯(1 + h2

2s−1)((1 + h2
1) +⋯ + (1 + h2

2s−1)) ≡ 0 (mod V )
as required. �

Let r be an element of F2G, i.e., a linear combination of elements of G. We
can combine elements with the same trunk together, and get a (unique) trunk
decomposition of r = ∑ rt where each trunk component rt = thi where t is the
common trunk of the summands of rt, hi ∈ F2G

2, and different rt have different
trunks.

Lemma 5.3.26. If r ∈ V , then all trunk components of r are in V.
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Proof. Let V ′ be the ideal of the commutative algebra F2G
2 spanned by

all f(y, z), y, z ∈ G. Then V = F2G ⋅ V ′. Since F2G = ∑ tF2G
2 where t runs over

all possible trunks, we get

(5.3.9) V =∑(tF2G
2) ⋅ V ′ =∑ tV ′ =∑(V ∩ tF2G

2).
Now suppose that r = ∑ rt ∈ V where rt ∈ tF2G

2 is a trunk component of r
corresponding to the trunk t. Then (5.3.9) implies that r = ∑ r′t where r′t ∈
V ∩ tF2G

2. Since a decomposition into a sum of trunk components is unique, we
deduce that rt = r′t for every t, so every trunk component of r is in V. �

Observe that for each subspace tF2G
2 (where t is a trunk), we have

V ∩ tF2G
2 = (∑

t′
t′V ′) ∩ tF2G

2 = tV ′.

The first equality here is true because of (5.3.9), and the second equality is a
consequence of Exercise 1.4.14.

Thus we deduce

Lemma 5.3.27. V ′ = V ∩ F2G
2.

Lemma 5.3.28. The set of products A = {(g2
j1
+ 1)⋯(g2

jm
+ 1) ∣ m ≥ 0, j1 <

⋅ ⋅ ⋅ < jm} from F2G is linearly independent modulo V.

Proof. As observed before the formulation of the lemma, F2G
2 ∩ V = V ′.

Since A ⊂ F2G
2, it suffices to prove that A is linearly independent modulo V ′.

Recall that G2 is a group of exponent 2 with a basis consisting of all the ele-
ments g2

i (i ∈ N) and [gi, gj] (i, j ∈ N, i > j). Suppose we have a homomorphism
φ from F2G

2 to some associative algebra Y over F2 such that φ(V ′) = {0} and
φ(B) is linearly independent in Y for some subset B ⊂ F2G

2. Then B would be
linearly independent modulo V ′ and hence modulo V by Lemma 5.3.27.

Thus we need to construct such an algebra Y and a homomorphism φ for
the set A. For this we need the following property of group algebras (a similar
property for semigroup algebras also holds).

Exercise 5.3.29. Suppose that K is a field, P is a group, and Q is an asso-
ciative algebra over K. Let φ be a homomorphism from P to the multiplicative
semigroup of Q. Prove that φ extends to a homomorphism φ̄∶KP → Q which
takes every linear combination ∑αipi to ∑αiφ(pi).

Recall that G2 is a commutative group of exponent 2, and, viewed as a
vector space over F2, G2 has a basis consisting of all elements [gi, gj], i < j and
g2

i (Exercise 5.3.19). Let Q = F2[ti] (i ∈ N) be the algebra of (commutative)
polynomials over F2, Z be the subset of Q consisting of all polynomials with
constant term 1, and J the ideal of Q generated by the polynomials t2i , i ∈
N. Then the set (Z + J)/J is a commutative subgroup of exponent 2 in the
multiplicative semigroup of the algebra Q/J (prove it!). It also can be viewed
as a vector space over F2. By Part (3) of Exercise 1.4.13, any map φ from the
basis of G2 to (Z + J)/J extends to a homomorphism from G2 to (Z + J)/J.
By Exercise 5.3.29, it will then extend to a homomorphism φ̄ from the group
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algebra F2G
2 to Q/J. It is not that difficult to choose φ such that φ̄ “kills” V ′.

For example, we can take φ([gi, gj]) = titj + 1 + J , and φ(g2
i ) = ti + 1 + J.

Exercise 5.3.30. Show that φ̄(V ′) = {0}. Hint: It is a straightforward
computation that φ̄ “kills” elements f(gi, gj) for every i, j. To prove that it
“kills” f(x, y) for every x, y (and hence the whole V ′) use induction on the sum
of lengths of the trunks of x, y.

The image of the set A under this homomorphism is equal to the set

{tj1
⋯tjm + J ∣m ≥ 0 ∣ j1 < ⋅ ⋅ ⋅ < jm}

which is linearly independent in Q/J (prove that!). Thus, A is linearly indepen-
dent modulo V ′. �

We are ready to prove that the algebra R = F2G/V satisfies property (R2).
In fact, we will prove the following more precise statement.

Proposition 5.3.31. Let n be a fixed positive integer and M be the subspace
of R = F2G/V spanned by all products of at most n squares in R. Set si = gi+V ∈
R for i ∈ N. Then s2

1⋯s2
n+1 ∉M.

Proof. Let L be the subspace of F2G spanned by all products of at most
n squares in F2G. It suffices to prove that g2

1⋯g2
n+1 ∉ L + V.

First we describe the squares in F2G. For any r = ∑i αihi ∈ F2G (αi ∈ F2,
hi ∈ G), we have

r2 = (∑
i

αihi)2 = (α +∑
i

αi(hi + 1))2 where α =∑
i

αi

= α2 +∑
i

α2
i (hi + 1)2 +∑

i<j
αiαj(hi, hj).

Therefore, for every r1, . . . , rℓ ∈ F2, the product r2
1⋯r2

ℓ is a linear combination
(with coefficients from F2) of 1 and elements of the forms (h2

1+1)⋯(h2
k+1) (k ≤ ℓ)

and (h2
1 + 1)⋯(h2

p + 1) (u1, u2)⋯(u2q−1, u2q) (q > 0, p+ q ≤ ℓ) where hi, uj ∈ G for
all i, j. We conclude that L consists of linear combinations of 1 and elements of
the forms

(h2
1 + 1)⋯(h2

k + 1) (0 < k ≤ n)(5.3.10)

and

(h2
1 + 1)⋯(h2

p + 1)(u1, u2)⋯(u2q−1, u2q) (q > 0, p + q ≤ n).(5.3.11)

By contradiction, suppose that g2
1⋯g2

n+1 ∈ L+V. Then (g2
1+1) ⋯(g2

n+1+1) ∈ L+V.
Indeed, this element is a sum of g2

1⋯g2
n+1 and several products of fewer squares

of gi. Hence we have

(g2
1 + 1)⋯(g2

n+1 + 1) ≡ β +∑
i

γici +∑
j

δjdj (mod V )
for some β,γi, δj ∈ F2, some elements ci of the form (5.3.10) and some elements
dj of the form (5.3.11). Notice that (h2

1 + 1)⋯(h2
n+1 + 1) and β + ∑i γici lie in
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F2G
2. Lemma 5.3.24 implies that every element

dj = (h2
j1 + 1)⋯(h2

jpj
+ 1)(u(j)1 , u

(j)
2 )⋯(u(j)2qj−1, u

(j)
2qj
)

of the form (5.3.11) belongs to

u
(j)
1 ⋯u(j)2qj

F2G
2.

By Lemma 5.3.26, we may assume that u
(j)
1 ⋯u(j)2qj

∈ G2 for all j. Then, by

Lemma 5.3.25 (u(j)1 , u
(j)
2 )⋯(u(j)2qj−1, u

(j)
2qj
) ∈ V hence dj ∈ V for all j. Therefore,

(g2
1 + 1)⋯(g2

n+1 + 1) ≡ β +∑
i

γici (mod V ),
where β,γi ∈ F2 and each ci is of the form (5.3.10). By Exercise 5.3.23 each ci

of the form (5.3.10) is (modulo V ) a linear combination of products (g2
i1
+ 1)⋯(g2

ik
+ 1) with the same number k of factors as in (5.3.10).

Thus, the element (g2
1+1)⋯(g2

n+1+1) is, modulo V , a linear combination of 1
and elements (g2

i1
+ 1)⋯(g2

ik
+ 1) with k ≤ n. This contradicts Lemma 5.3.28. �

5.4. Groups and identities, Abért’s criterium

In this section we will give a nice and very general criterion due to Miklos
Abért [1] for a group to not satisfy any group identity.

Let G be a group acting on an infinite set X on the right. We say that G
separates X if for any finite subset Y ⊆X, the pointwise stabilizer GY = {g ∈ G ∣
y ⋅ g = y for all y ∈ Y } does not fix any point outside Y (i.e., for every y /∈ Y
there exists g ∈ GY such that y ⋅ g ≠ y).

Theorem 5.4.1 (Abért [1]). If G separates X, then G does not satisfy any
nontrivial group identity.

Proof. Let Fk be the free group with k free generators x1, . . . , xk. Let w ∈ Fk

be a reduced word of length n > 0; that is, w ≡ v1v2⋯vn where vi ∈ {x1, . . . , xk}±1

with vi /≡ v−1
i+1 for 1 ≤ i ≤ n − 1. Let w(j) denote the j-th prefix of w:

w(j) ≡ v1v2 . . . vj , 0 ≤ j ≤ n.
Given a k-tuple g = (g1, . . . , gk) ∈ Gk, we can define the action ⋅g of Fk on X

by x ⋅g w = x ⋅ w(g1, . . . , gk) for every word w in Fk. We say that a tuple g is
distinctive for a word w ∈ Fk of length n and a point f0 ∈X, if the points

fj = f0 ⋅g w(j), 0 ≤ j ≤ n
are all distinct. If there is a point f0 such that (g1, g2, . . . , gk) is distinctive for
w and f0, then, in particular,

f0 ⋅g w = fn ≠ f0,

and so w ≠ 1 in G.

We claim that for all f0 ∈ X and 1 ≠ w ∈ Fk, there exists h ∈ Gk that is
distinctive for w and f0. This implies the statement of the theorem. We prove
our claim by induction on n.
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For n = 1, the word w consists of one letter, and the claim is trivial.
Using the induction assumption, we can find g = (g1, . . . , gk) ∈ Gk such that

f0 ⋅g w(i), 0 ≤ i < n, are all distinct. If fn = f0 ⋅g w ∉ {f0, f1, . . . , fn−1}, then we
have found the right h = g. So we assume that fn = fj for some j < n.

Let

I = {i < n ∣ vi ≡ vn or vi+1 ≡ v−1
n }.

Then j ∉ I. Indeed, if vj ≡ vn, then fj = fj−1 ⋅gvj = fj−1 ⋅vn and fj = fn = fn−1 ⋅gvn.

Hence fj−1 = fn−1, a contradiction. If vj+1 ≡ v−1
n , then fj = fj+1 ⋅g v−1

j+1 = fj+1 ⋅g vn,

fj = fn = fn−1 ⋅g vn and fj+1 = fn−1, a contradiction (because j + 1 ≠ n − 1 in this
case since w is reduced).

We have vn ≡ x±1
ℓ for some ℓ ≤ k. Put Y = {fi ∣ i ∈ I} and define h =(h1, h2, . . . , hk) ∈ Gk by hi = gi if i ≠ ℓ, hℓ = gℓc if vn = xℓ and hℓ = cgℓ if vn = x−1

ℓ ,
where c ∈ GY is to be chosen later.

Then

fi = fi−1 ⋅g vi = fi−1 ⋅h vi, i = 1, . . . , n − 1

and fn−1 ⋅h vn = fn ⋅ c since c ∈ GY (prove that!).
Since fj ∉ Y , the set Y ′ = {f1, . . . , fn} ∖ {fj} contains Y . Therefore we can

choose an element c ∈ GY ′ which fixes Y ′ pointwise and does not fix fj hence
fj ⋅ c /∈ {f1, . . . , fn}. Then (h1, . . . , hk) is distinctive for w and f0. �

5.5. Subgroups of free groups

5.5.1. The definition of a 2-complex and its fundamental group.

5.5.1.1. 2-complexes. Recall that a 2-complex is a graph in the sense of Serre
with a set F (called cells or faces of the complex) and a map from F to the set
of cycles (i.e., closed paths) called the boundaries of cells . A 2-complex is called
connected if its underlying graph is connected. For example, any van Kampen
diagram can be viewed as a connected 2-complex drawn on the plane.

The fundamental group of a connected 2-complex X, denoted by π1(X), can
be (syntactically) defined as follows. Take a maximal (also called spanning)
subtree T of X. Let E be the set of positive edges of X not in T. Label every
edge in T by 1. Then every boundary of a cell of X has label which is a word
over E. Let R be the set of all these labels. The fundamental group π1(X) has
the presentation

gp⟨E ∣ R ⟩.
Exercise 5.5.1. Prove that every spanning tree in X contains all vertices of

X, and the number of positive edges in a spanning tree is the number of vertices
minus 1. Prove that a different choice of a spanning tree T gives an isomorphic
group. Hint: To prove the last statement, use the next Exercise 5.5.2.

An alternative definition of the fundamental group is the following. Let u
be a vertex in X, L(X,u) be the set of all cycles starting and ending at u. The
cycles can be multiplied in the natural way (concatenation), and the product is
associative, so L(X,u) is a semigroup. Now we define an equivalence relation ∼
on L(X,u) generated by the following two kinds of (positive) moves:
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● If a cycle p contains two consecutive mutually inverse edges ee−1, we
can eliminate these two edges, producing a new cycle.
● If a cycle p contains a closed subpath e1e2 . . . en which is a cyclic shift

of one of the boundaries of cells, we can eliminate that subpath.

Exercise 5.5.2. Show that ∼ is a congruence relation on the semigroup
L(X,u) and L(X,u)/∼ is a group. Show that π1(X) is isomorphic to L(X,u)/∼ .
Hint: The isomorphism takes an edge from E to the closed path pe−ep

−1
e+ where

for every vertex x in X, px is the unique simple path on the spanning tree T
connecting u and x.

Thus one can view elements of π1(X) as cycles in X starting and ending at
u.

Exercise 5.5.3. Let G = gp⟨X ∣ R ⟩. Consider the following presentation
2-complex C(P): it has one vertex, one edge for each letter from X labeled by
the letter from X, and one cell for each r ∈ R: the closed path that reads the
word r. Show that π1(C(G)) is isomorphic to G.

We see that 2-complexes and presentations are basically the same things.
But presentations are syntactic objects while 2-complexes can be viewed as topo-
logical spaces if we glue in discs whose boundaries are the distinguished cycles.
The resulting topological space is called a 2-dimensional CW-complex.

Exercise 5.5.4. Find a connected 2-complex with ten vertices whose fun-
damental group is isomorphic to the surface group π1(Sg), g ≥ 1.

Exercise 5.5.5. Let C1 and C2 be two disjoint connected 2-complexes. Let
a1, a2 be vertices in C1,C2. Consider the complex C1 ∪C2, add a vertex a con-
nected by edges to a1 and a2. Show that the resulting 2-complex is connected,
and its fundamental group is the free product π1(C1) ∗ π1(C2).

5.5.1.2. Fundamental groups of graphs. If a 2-complex does not contain cells,
i.e., is simply a graph (in the sense of Serre), then the fundamental group does
not have relations, hence it is free. The next theorem now follows from the
second part of Exercise 1.3.11.

Theorem 5.5.6. (1) The fundamental group of every finite connected graph
Γ is free.

(2) The rank of the free group is the number of positive edges of Γ minus the
number of vertices plus 1.

Exercise 5.5.7. Let Γ be a connected finite graph in the sense of Serre with
the set V of vertices. For every x ∈ V let dx be the out-degree of the vertex x.

Prove that the rank of the fundamental group of Γ is equal to 1
2 ∑(dx − 2) + 1.

Hint: Use induction on the number of edges. First assume that the graph is
a tree, reduce the problem to a smaller tree obtained by removing a leaf and
its (mutually inverse) edges. Next suppose that the graph is not a tree, and so
there exists an edge e such that removing edges e±1 (but leaving vertices e− and
e+) we obtains a connected graph again. Then use the induction assumption for
this smaller graph.
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Remark 5.5.8. An analog of Theorem 5.5.6 is true for countable graphs as
well: the fundamental group of a graph is always free. The rank of the free group
is finite if and only if the ranks of fundamental groups of all finite subgraphs of
the graph are bounded from above. For example, the rank of the fundamental
group of the graph on Figure 5.30 is equal to 1 (for every base vertex u) while
the rank of the fundamental group of the graph on Figure 5.31 is infinite.

. . . . . .

Figure 5.30. The rank of the fundamental group of this graph is 1

. . . . . .

Figure 5.31. The rank of the fundamental group of this graph is ∞

5.5.2. Subgroups of free groups and inverse automata.

5.5.2.1. Constructing an inverse automaton from a subgroup of a free group.
Let H be a subgroup of the free group F = gp⟨A ⟩ generated by words u1, . . . , un

in A ∪ A−1 (we assume that A ∩A−1 = ∅ and A is finite). Consider the linear
diagrams ε(ui), i = 1, . . . , n.

b

b

b

a

a

b

b a

a

b

a

Ā
A

Figure 5.32. Constructing an automaton recognizing a sub-
group of a free group generated by aba−1, b

Identify the initial and terminal vertices of these diagrams to obtain a union
of labeled circles connected at a distinguished vertex, denote it by 1. This graph
can be viewed as a graph in the sense of Serre (see Section 1.3.5) with correct
labeling: positive edges have labels from A, negative edges have labels from A−1

(if e has label a, then e−1 has label a−1). Let Ā be this automaton.
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Let A be the inverse automaton obtained from Ā by foldings as in Section
1.3.5. Let the vertex 1 be the input and output vertex of the automaton.

Figure 5.32 shows the process of constructing A for the subgroup

H = ⟨aba−1, b ⟩.
Theorem 5.5.9. (1) The automaton A recognizes those and only those re-

duced words that represent elements of H.
(2) The language of all reduced words from H is rational.
(3) The group H is isomorphic to the fundamental group of the underlying

graph of A.

Proof. Let w be a reduced word from H. Then w is freely equal to a word
w̄ that is a product of words ui and their inverses. The word w̄ is then accepted
by Ā. The word w is obtained from w̄ by a sequence of rewritings using rewriting
rules aa−1 → 1, a ∈ A±1: w̄ ≡ w1 → w2 → ⋅ ⋅ ⋅ → wk ≡ w. Then w1 is accepted by
an automaton obtained from ā by one folding, w2 is accepted by an automaton
obtained from Ā by at most two foldings. By induction, we conclude that w is
accepted by an automaton Â obtained from Ā by several foldings. By Exercise
1.7.13, the rewriting system where objects are automata and rules are foldings
is Church–Rosser. Therefore A (being a terminal object) is obtained from Â by
several foldings. It is easy to check that the language accepted by A contains
the language accepted by Â (check it by induction on the number of foldings

needed to get A from Â). Hence w is accepted by A.
Let

(5.5.1) Ā → A1 → ⋅ ⋅ ⋅ →Am = A

be a sequence of automata such that Ai+1 is obtained from Ai by one folding of
edges ei, e

′
i (with ι(ei)) = ι(e′i) and the same label ai). Let xi+1 be the head of

the edge fi+1 in Ai+1 that is the result of the folding of ei, e
′
i. Note that there

exists a homomorphism φi from Ai to Ai+1 which takes every edge except for
ei, e

′
i and their inverses to themselves and ei, e

′
i to fi+1.

Clearly every word accepted by Ā is a product of words uj and their inverses,
so it represents an element of H. Thus it is enough to prove (for every i =
1, . . . ,m − 1) that if w is any word accepted by Ai+1, then there exists a word
w′ accepted by Ai and freely equal to w. The word w labels a cycle p starting
and ending at the vertex 1.

So we shall achieve our goal if we prove the following

Lemma 5.5.10. For every path p in Ai+1 starting at 1, there exists a path in
Ai with Lab(p′) = Lab(p) in the free group and φi(τ(p′)) = τ(p).

Proof. Induction on the length of the path p. If p has no edges, there is
nothing to prove. Suppose p = qe where e is an edge. By induction, there exists
a path q′ in Ai starting at 1, and satisfying Lab(q′) = Lab(q), φi(τ(q′)) = τ(q).

Case 1. Suppose that τ(q) ≠ τ(fi+1), e ≠ fi+1. Then e has unique pre-image
e′ in Ai, and we can set p′ = q′e′.

Case 2. Suppose that τ(q) ≠ τ(fi+1), e = fi+1. Then we can set p′ = q′ei.
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Case 3. Suppose that τ(q) = τ(fi+1). Then τ(q′) must be equal to either
τ(ei) or τ(ei+1). Without loss of generality assume that τ(q′) = τ(ei).

Case 3.1. Suppose that there exists an edge e′ in Ai with ι(e′) = τ(q),
Lab(e′) = Lab(e). Then we can set p′ = q′e′.

Case 3.2. Suppose that there is no edge e′ in Ai with ι(e′) = τ(q′) = τ(ei),
Lab(e′) = Lab(e). Then by the definition of folding there must exist an edge e′

with ι(e′) = τ(e′i), Lab(e′) = Lab(e). Then we can set p = q′e−1
i e′ie

′. �

This completes the proof of Part (1) of Theorem 5.5.9.
To prove Part (2) note that the language of reduced words from H is the

intersection of the language of words recognized by the automaton A and the
language of reduced words which is rational by Exercise 1.3.5. Since the inter-
section of two rational languages is rational by Lemma 1.3.4, the second part of
Theorem 5.5.9 follows.

To prove Part (3) notice that if two cycles in the underlying graph Γ of A
are equivalent (the equivalence is defined in Section 5.5.1.1), then their labels
are equal in the free group. Therefore there exists a homomorphism Lab from
the fundamental group of the underlying graph of A to H. That homomorphism
takes every circle starting and ending at 1 to its label.

Clearly the homomorphism is surjective. It remains to show that if Lab(p)
is equal to 1 in H, then the cycle p is equivalent to 1 (the path with no edges).
Let p be a cycle with Lab(p) = 1 in the free group and a shortest cycle in
its equivalence class. By contradiction, suppose that p is not empty. Since
Lab(p) = 1, the word Lab(p) must contain a subword aa−1 for some a ∈ A∪A−1.

SinceA is an inverse automaton, that means p must contain a subpath consisting
of two consecutive mutually inverse edges ee−1. Removing that subpath, we get
a path p′ whose label is equal to Lab(p) in the free group. But p′ is shorter than
p, a contradiction. �

Remark 5.5.11. If a subgroup H was not finitely generated, then we still
could construct an (infinite) automaton A that recognizes words from H by the
same procedure as above.

Exercise 5.5.12. Show that the automaton A depends only on the sub-
group H and does not depend on the generating set u1, . . . , un. Hint: Consider
all words u in H and the corresponding linear diagrams ε(u). Construct the

(infinite) automaton Â identifying ι(ε(u)) and τ(ε(u)) for all u. Show that

the automaton obtained by all foldings from Â is equal to the automaton A
described above.

Remark 5.5.13. Recall that inverse bi-rooted automata where input and
output vertices coincide are idempotents in E-unitary inverse semigroups (see
Section 3.8.3). Thus Theorem 5.5.9 gives a connection between idempotents of
inverse semigroups and finitely generated subgroups of free groups. For more on
this see Margolis–Meakin–Sapir [221].

5.5.2.2. Some properties of subgroups of free groups. Theorem 5.5.9 gives
many important results about subgroups of free groups almost “for free”. Here
we present only three of these results.
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Theorem 5.5.14. Every free group of at most countable rank embeds into
the free group of rank 2.

Proof. Consider the following subgroup of the free group F2 = gp⟨a, b ⟩ of
rank 2: H is generated by words a−ibai, i ≥ 0. Then the automaton A looks as
on Figure 5.33 (check that!). Hence by Theorem 5.5.9 and Remark 5.5.8 the
rank of the free group H is infinite.

. . .

b b b b b

a a a a a

Figure 5.33. An infinite inverse automaton recognizing a free
subgroup of F2 of infinite rank

�

Theorem 5.5.15 (Schreier property). Every subgroup of the free group is
free.

Proof. Indeed, it follows from Theorems 5.5.9, 5.5.6 and Remark 5.5.8. �

Theorem 5.5.16 (P. Hall’s LERF property). For every finitely generated
subgroup H of a free group F and every element w /∈ H, there exists a homo-
morphism from F onto a finite group such that φ(w) /∈ φ(H).

Proof. Let A = (Q,A) be the finite inverse automaton recognizing H with
input=output vertex 1. Let ε(w) be the linear diagram for w. Let us identify
ι(ε(w)) with vertex 1, and do all foldings in the resulting automaton to produce
an inverse automaton A′ = (Q′,A). Note that A′ recognizes all reduced words
from H but does not recognize w. Note that every a ∈ A induces a partial injec-
tive map ⋅a∶Q′ → Q′ (the map is injective because A′ is an inverse automaton).
Extend each map ⋅a, a ∈ A to a permutation αa, a ∈ A of the set Q. The substitu-
tion a↦ αa extends to a homomorphism φ from the free group gp⟨A ⟩ onto the
finite group S generated by all the permutations αa, a ∈ A. Note that for every
g ∈H, we have φ(g)∶1 ↦ 1 while φ(w)∶1 ↦ 1 ⋅w ≠ 1. Hence φ(w) /∈H.

Theorem 5.5.17 (Howson property). The intersection of any two finitely
generated subgroups of a free group is finitely generated.

Proof. Let Ai = (Qi,A) be an inverse automaton recognizing the subgroup
Hi, i = 1,2. Then by Lemma 1.3.4 the intersection H1 ∩H2 is recognized by the
equalizer automaton A. It is easy to see that A is also an inverse automaton.
Hence by Part (3) of Theorem 5.5.9 and Theorem 5.5.6 the subgroup H1 ∩H2

is finitely generated. �
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Remark 5.5.18. A more careful analysis of the equalizer automaton A gives
that the rank r of H1 ∩H2 and ranks ri of subgroups Hi satisfy the following
inequality

r − 1 ≤ 2(r1 − 1)(r2 − 1)
(see Hanna Neumann [246, 247], and proofs involving inverse automata by
Wilfried Imrich [155], Walter Neumann [249]). The claim that one can replace
in this inequality 2 by 1 is the famous Hanna Neumann conjecture which was
open since mid 50s and was recently settled in the affirmative by Friedman and
Mineyev (see Section 5.9.5).

5.6. Diagram groups

5.6.1. The Squier complex of a string rewriting system. With every
string rewriting system P = sr⟨X ∣ R ⟩ we can associate a 2-complex S(P),
called the Squier complex [307]. Its vertices are all words from X+, positive
edges are the elementary diagrams (p,u → v, q) with tail puq and head pvq, and
cells correspond to independent rewritings: if u1 → v1 and u2 → v2 are from R

and a vertex of S(P) (i.e., a word in X) has the form pu1qu2r where p, q, r are
words, then the path with edges

(p,u1 → v1, qu2r)(pv1q, u2 → v2, r)(p,u1 → v1, qv2r)−1(pu1q, u2 → v2, r)−1

is a cell of S(P). Note that this path is the trivial way to complete the diamond
with two edges (p,u1 → v1, qu2r) and (pu1q, u2 → v2, r).

5.6.2. Diagrams as 2-dimensional words, diagram groups.

5.6.2.1. Diagram monoids and groups. The definition. First let us give a
formal definition of a diagram introduced in Section 1.7.4. In order to distinguish
these diagrams from van Kampen diagrams, let us call these semigroup diagrams.

An informal definition of semigroup diagrams has been essentially given in
Section 1.7.4): a semigroup diagram is a planar directed labeled graph tesselated
by cells. Each diagram ∆ has the top path top(∆), the bottom path, bot(∆)
the initial and terminal vertices ι(∆) and τ(∆). These are common vertices of
top(∆) and bot(∆). The whole diagram is situated between the top and the
bottom paths, and every edge of ∆ belongs to a (directed) path in ∆ between
ι(∆) and τ(∆).

More formally, let X be an alphabet. For every x ∈ X we define the trivial
diagram ε(x) which is just an edge labeled by x. The top and bottom paths of
ε(x) are equal to ε(x), ι(ε(x)) and τ(ε(x)) are the tail and the head vertices of
the edge. If u and v are words in X, a cell (u → v) is a planar graph consisting
of two directed labeled paths, the top path labeled by u and the bottom path
labeled by v, connecting the same points ι(u → v) and τ(u → v). There are three
operations that can be applied to diagrams in order to obtain new diagrams.

(1) Addition. Given two diagrams ∆1 and ∆2, one can identify τ(∆1) with
ι(∆2). The resulting planar graph is again a diagram denoted by ∆1+∆2, whose
top (bottom) path is the concatenation of the top (bottom) paths of ∆1 and ∆2.

If u = x1x2 . . . xn is a word in X, then we denote ε(x1) + ε(x2) +⋯+ ε(xn) (i.e.,
a simple path labeled by u) by ε(u) and call this diagram also trivial.

245



∆1

∆2

∆1 ○∆2

∆1 ∆2

∆1 +∆2

Figure 5.34. Operations on diagrams

(2) Multiplication. If the label of the bottom path of ∆1 coincides with
the label of the top path of ∆2, then we can multiply ∆1 and ∆2, identifying
bot(∆1) with top(∆2). The new diagram is denoted by ∆1 ○∆2. The vertices
ι(∆1 ○∆2) and τ(∆1 ○∆2) coincide with the corresponding vertices of ∆1,∆2,
top(∆1 ○∆2) = top(∆1),bot(∆1 ○∆2) = bot(∆2).

(3) Inversion. Given a semigroup diagram ∆, we can flip it about a hor-
izontal line obtaining a new semigroup diagram ∆−1 whose top (bottom) path
coincides with the bottom (top) path of ∆.

Definition 5.6.1. A semigroup diagram over a string rewriting system P =
sr⟨X ∣ ui → vi, i ∈ I ⟩ is any labeled graph obtained from the trivial diagrams and
cells ui → vi, i ∈ I, by the operations of addition, multiplication and inversion.
If the top path of a diagram ∆ is labeled by a word u and the bottom path is
labeled by a word v, then we call ∆ a (u, v)-diagram over P.

One can also give a slightly different definition of a semigroup diagram using
the elementary diagrams from Section 1.7.4.

Definition 5.6.2. A diagram over a string rewriting system P is any labeled
graph obtained as a product of elementary diagrams corresponding to the rules
of P and their inverses.

Exercise 5.6.3. Prove that the Definitions 5.6.1 and 5.6.2 are equivalent.

Exercise 5.6.4. Show that the diagram x0 on Figure 5.38 is equal to

(x → x2) ○ (ε(x) + (x → x2)) ○ ((x → x2)−1 + ε(x)) ○ ((x → x2)−1).
Represent x1 from the same Figure as a product of sums of cells and trivial
diagrams.

As for planar trees, two semigroup diagrams are called equal if there exists
a continuous deformation of the plane that takes one of them to another. We
do not distinguish equal diagrams (as we do not distinguish identically equal
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words or equal trees). In order to avoid confusion of different kinds of equality
of diagrams, words, etc., equal diagrams will be also called isotopic and we will
use the symbol ≡ to denote isotopy of diagrams.

Recall that an (u,u)-diagram is called spherical. For every word u, the set
of all (u,u)-diagrams with operation ○ is a monoid whose identity element is the
linear diagram ε(u) corresponding to the word u. That monoid is denoted by
DM(P, u) and is called the diagram monoid corresponding to the presentation
P and the word u.

Two cells in a semigroup diagram form a dipole if the bottom path of the
first cell coincides with the top path of the second cell, and the cells are inverses
of each other. In this case, we can obtain a new diagram removing the two cells
and replacing them by the top path of the first cell. This operation is called
elimination of dipoles. The new diagram is called equivalent to the initial one.
A semigroup diagram is called reduced if it does not contain dipoles.

Exercise 5.6.5. For every string rewriting system Γ consider the following
rewriting system. The objects are all semigroup diagrams over Γ. Positive moves
are removing dipoles. Prove that the rewriting system is Church–Rosser, hence
there exists exactly one reduced semigroup diagram in every class of equivalent
semigroup diagrams over Γ.

Now let P be a semigroup presentation and P = {c1, c2, . . .} be the corre-
sponding collection of cells. The diagram group DG(P, u) corresponding to P
and a word u consists of all reduced spherical (u,u)-diagrams obtained from the
cells of P and linear diagrams by using the three operations mentioned above.
The product ∆1∆2 of two diagrams ∆1 and ∆2 is the reduced diagram obtained
by removing all dipoles from ∆1 ○ ∆2. By Exercise 5.6.5 the multiplication is
well defined.

Exercise 5.6.6. Prove that DG(P,u) is a group which is a quotient of
DM(P,u) by the equivalence relation define above. That equivalence relation is
in fact a congruence.

5.6.3. Diagram groups and Squier complexes. There is a close con-
nection between diagram groups of semigroup presentations and the Squier com-
plexes of the corresponding rewriting systems.

Exercise 5.6.7 (Guba, Sapir [135]). Show that the diagram group DG(P,u)
is the fundamental group of the connected component of the Squier complex
S(P ) containing u. Hint: Consider semigroup diagrams as paths in the Squier
complex, spherical diagrams being cycles. Show that equivalent diagrams corre-
spond to cycles that are equal in the fundamental group (using the solution of
Exercise 5.6.5.)

5.6.4. Diagram groups. Examples. The following five exercises can be
solved by finding fundamental groups of the corresponding Squier complexes
(Exercise 5.6.7).

Exercise 5.6.8. Let P = sr⟨a ∣ a → a ⟩. Show that

(1) The diagram group DG(P, a) is isomorphic to Z.
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(2) The diagram group DG(P, an) is isomorphic to the free commutative
group Zn.

Exercise 5.6.9. Let P = sr⟨a ∣ a → a, a → a ⟩ (yes, two same rules). Show
that DG(P, a) is the free group with two generators.

Exercise 5.6.10. Let P = sr⟨ab → a, bc→ c, b → b ⟩. Show that DG(P, ac) is
isomorphic to Z ≀Z (see Exercise 1.8.25).

Exercise 5.6.11. Let Pi, i = 1,2, be a presentation sg⟨Xi ∣ Ri ⟩, where
X1,X2 are disjoint. Let P = P1∪P2. Show that for every two words u1 ∈ X+1 , u2 ∈
X+2 , DG(P, u1u2) is isomorphic to the direct product DG(P1, u1)×DG(P2, u2).

Exercise 5.6.12. Let Pi, i = 1,2, be a string rewriting system sr⟨Xi ∣ Ri ⟩,
where X1,X2 are disjoint. Let ui, i = 1,2 be a word in Xi, a a letter not in
X1 ∪X2. Consider a rewriting system P = sr⟨X1 ∪X2 ∪ {a} ∣ R1 ∪R2 ∪ {a →
u1, a → u2} ⟩. Show that DG(P, a) is isomorphic to the free product DG(P1, u1)∗
DG(P2, u2). Hint: Use Exercise 5.5.5.

5.6.5. Combinatorics on diagrams. Semigroup diagrams can be con-
sidered as 2-dimensional words. Indeed, as we saw in Section 1.2.2, words are
linear (1-dimensional) diagrams. Many facts about combinatorics on words have
2-dimensional analogs (see [135]). Here we present a description of commuting
diagrams which is similar, in a sense, to the description of commuting words
(Theorem 1.2.9). Note, though, that the 2-dimensionality makes a difference.
For example, if a spherical diagram ∆ is a sum of two spherical diagrams ∆1,∆2,
then every diagram ∆k

1 +∆m
2 , m,n ≥ 0 commutes with ∆. Hence it is not true

that every two commuting diagrams have common powers (as in Theorem 1.2.9).
Our goal is to show that in fact this is basically the only difference between 2-
dimensional and 1-dimensional diagrams (so the situation here is somewhat sim-
ilar to the situation in free associative algebras, see Section 4.3). Moreover, the
proof we are giving (following [135]) is very similar to Guba’s proof of Theorem
1.2.9.

In what follows, we fix a semigroup presentation P, and consider the diagram
monoid DM(P) (which is a 2-dimensional analog of a free monoid rather than
the free group).

5.6.5.1. Some basic properties of semigroup diagrams. The following lemmas
contain the main properties of semigroup diagrams.

Lemma 5.6.13. Every positive path in a diagram is a simple arc (we consider
diagrams as graphs in the sense of Serre as in Section 1.3.4).

Lemma 5.6.14. (a) For every vertex v of a diagram ∆ there exists a positive
path from ı(∆) to τ(∆) passing through v.

(b) Every diagram ∆ has exactly one source-vertex ı(∆) (which has no in-
coming edges and exactly one sink-vertex τ(∆) (which has no outgoing edges).

(c) For any vertex v of ∆ that does not coincide with ı(∆) and τ(∆) there
exists an enumeration of positive edges incident to v in the clockwise order:
e1, . . . , en such that for some k, 1 ≤ k < n, edges e1, . . . , ek are outgoing and
edges ek+1, . . . , en are incoming, see Figure 5.35.
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Figure 5.35. Outgoing and incoming edges incident to a vertex
in a semigroup diagram do not mix

Lemma 5.6.15. Every positive path p in a diagram ∆ from ı(∆) to τ(∆)
divides ∆ into two diagrams ∆1 and ∆2 such that bot(∆1) = top(∆2) = p and
∆ =∆1 ○∆2.

All three of these lemmas can be easily proved by induction on the number
of cells.

Exercise 5.6.16. Prove Lemmas 5.6.13-5.6.15.

5.6.5.2. Nice and simple diagrams. A diagram is called simple if it is not a
linear diagram and not a sum of nontrivial diagrams, that is its top and bot-
tom paths have exactly two vertices in common. A not necessarily spherical
diagram ∆ is called nice if for every decomposition ∆ ≡ ∆1 +∆2 at least one
of the diagrams ∆1 and ∆2 is spherical. In other words a diagram is called
nice if every common vertex of the paths top(∆) and bot(∆) determines de-
compositions top(∆) = p′p′′, bot(∆) = q′q′′ such that Lab(p′) ≡ Lab(q′) or
Lab(p′′) ≡ Lab(q′′).

Lemma 5.6.17. For every spherical diagram ∆ there exists n > 0 such that
∆m is nice for every m ≥ n.

Proof. We shall use an induction on the number of possible decompositions
∆ ≡∆1 +∆2 where ∆i are not spherical. This number is equal to the number of
common vertices v of top(∆) and bot(∆) which correspond to decompositions
top(∆) = p′p′′,bot(∆) = q′q′′ such that Lab(p′) /≡ Lab(q′), Lab(p′′) /≡ Lab(q′′)
(why?).

Let us choose such a decomposition with the shortest possible path top(∆1).
In this case the path bot(∆1) will also be the shortest possible. Then ∆1 is
nice. Let v be the common vertex of top(∆) and bot(∆) which determines
this decomposition. Consider the diagram ∆2 ≡ ∆′ ○∆′′ where ∆′ and ∆′′ are
isotopic copies of ∆. Let v′ and v′′ be the representatives of v in ∆′ and ∆′′

respectively. As above we can assume that the bottom path of ∆1 is longer than
the top path of this diagram, so ∆2 has the form on Figure 5.36.

Let w be an arbitrary common vertex of top(∆2) and bot(∆2) distinct
from the initial and the terminal vertices of ∆2. Every such vertex belongs also
to bot(∆′) = top(∆′′). Therefore w divides both ∆′ and ∆′′ into a sum of
two diagrams. Thus the representative of w in ∆ cuts ∆ into a sum of two
subdiagrams. If both of these subdiagrams are spherical, then w divides ∆2 into
a sum of spherical diagrams.
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Figure 5.36. The square of a diagram which is a sum of non-
spherical subdiagrams

Consider all vertices on bot(∆) whose representatives in bot(∆′′) deter-
mine decompositions of ∆2 into sums of two non-spherical diagrams. As we
have established in the previous paragraph, these vertices belong to the set of
vertices of bot(∆) which determine decompositions of ∆ with the similar prop-
erty. But the vertex v which belongs to the second set does not belong to the
first set. Indeed, its representative v′′ belongs to bot(∆1) and ∆1 is a nice dia-
gram. Therefore the number of decompositions of ∆2 into a sum of non-spherical
diagrams is smaller than the number of similar decompositions of ∆. Applying
the induction hypothesis we deduce that ∆n is nice for some n. Finally, if ∆n is
nice, then ∆m is nice as well for every m > n (why?). �

Every spherical diagram ∆ can be uniquely decomposed into a sum of spher-
ical diagrams ∆1 +∆2+ . . .+∆m where each summand is either a linear diagram
or indecomposable into a sum of spherical diagrams, and there are no consec-
utive linear summands. We call these summands components of the diagram
∆.

Exercise 5.6.18. Prove that a diagram ∆ is nice if and only if each com-
ponent of ∆ is either simple or linear.

5.6.5.3. Automorphisms of spherical graphs. Let ∆ be a simple spherical
diagram. Identifying top(∆) and bot(∆) we obtain a graph Γ on a sphere S2.

We denote the images of the vertices ı(∆) and τ(∆) by s1 and s2 respectively.
Consider the group of homeomorphisms of S2 (i.e., bijective continuous maps
from S2 onto itself) which preserve the orientation of the sphere and induces
automorphisms of the graph Γ (this means that the homeomorphisms must take
vertices of Γ to vertices, edges to edges and preserve the incidence relation).
Notice that such homeomorphisms must stabilize s1 and s2 since s1 is the only
“source” in Γ (there are no positive edges coming into s1) and s2 is the only
“sink” in Γ (there are no positive edges coming out of s2).

Consider all automorphisms of Γ induced by these homeomorphisms of S2.

We call these automorphisms spherical. Clearly these automorphisms form a
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group which we shall denote by G. Since Γ is a finite graph the group G is finite.
Our goal is to describe this group.

Lemma 5.6.19. Let ψ ∶ Γ→ Γ be a spherical automorphism. If ψ stabilizes a
vertex v of Γ which is different from s1 and s2 or ψ stabilizes an edge, then ψ

is the identity.

Proof. Let ψ ∶ Γ → Γ be a spherical automorphism induced by a homeo-
morphism φ ∶ S2 → S2. Let e1, . . . , en be the positive edges of Γ coming out of
s1 and numbered in, say, the clockwise order. Since φ preserves the orientation
there must be a number k such that φ takes ei to ei+k (here 1 ≤ i ≤ n and the
addition is considered modulo n). Therefore it is clear that if ψ(ei) = ei for some
i then ψ stabilizes all edges e1, . . . , en.

Suppose that ψ(v) = v for some vertex v different from s1 and s2. By Lemma
5.6.14c there exists a clockwise enumeration of the positive edges incident to v
in the clockwise order: e1, . . . , en such that for some k, 1 ≤ k < n, edges e1, . . . , ek

are outgoing and edges ek+1, . . . , en are incoming (we use the fact that v ≠ s1

and v ≠ s2). Since φ(v) = v, and φ is a homeomorphism, ψ cyclically shifts the
sequence of edges e1, . . . , en. This cyclic shift must be trivial since ψ cannot map
edges coming out of v to edges coming into v or vice versa.

Applying the same argument to the initial vertices of the edges incident to v,
to the initial vertices of the edges incident to those vertices, etc., we shall finally
find an edge ei incident to s1 which is stabilized by ψ, because v is connected
with s1. Then as we mentioned before ψ stabilizes all edges ei. Since every vertex
of Γ is connected with the head vertex of one of these edges by a positive path,
ψ stabilizes all the vertices of Γ. Hence ψ is an identity automorphism.

If ψ(e) = e for some edge e then ψ stabilizes the tail and the head of e.
Therefore it is enough to consider the case ı(e) = s1, τ(e) = s2. In this case,
again, ψ must stabilize all edges coming out of s1, which implies that ψ is the
identity automorphism. �

Lemma 5.6.20. The group G of spherical automorphisms of the spherical
graph Γ is cyclic. If m is the order of G then there exists a generator ζ of G and
a positive path p on Γ from s1 to s2 such that the following properties hold. The
paths p, ζ(p), . . . , ζm−1(p) subdivide S2 into m simple diagrams ∆i, (1 ≤ i ≤ m),
where top(∆i) = ζi−1(p) and bot(∆i) = ζi(p). All diagrams ∆i, 1 ≤ i ≤ m, are
isotopic to the same diagram ∆.

Proof. Denote by e1, e2, . . . , en all edges of Γ with the tail vertex s1. Let
the cyclic order on them correspond to, say, the clockwise direction. With
each spherical automorphism ψ ∶ Γ → Γ we can associate an integer k = k(ψ)
such that ψ(ei) = ei+k for all i (the addition here is modulo n). This defines
a homomorphism ψ ↦ k(ψ) from G to Zn. Lemma 5.6.19 implies that this
homomorphism is injective (prove it!). Thus G embeds in Zn, so it is cyclic by
Exercise 1.8.11. Denote by m the order of G.

Now let p be a shortest positive path on S from s1 to s2. It is obvious that
p does not intersect itself. Let us check that if ψ ∶ Γ→ Γ is a spherical nontrivial
automorphism, then p and ψ(p) does not have common vertices except s1 and

251



s2. We say that a path q in Γ is geodesic if any subpath in q cannot be replaced
by a shortest path with the same initial and terminal vertices. It is clear that
p and ψ(p) are geodesic paths. If they have a common vertex v which is not s1

or s2 then the subpaths in p and ψ(p) from s1 to v have the same length since
both paths are geodesic. This implies that ψ(v) = v which is impossible since ψ
is nontrivial.

Let f be an edge with the initial vertex s1. Its G-orbit has exactly m elements
since all edges have trivial stabilizers. Denote by f1, . . . , fm all edges of this orbit
cyclically ordered with respect to a given direction of going around s1. Denote
by ζ the element of G which takes f1 to f2. It is clear that ζ takes fi to fi+1 for
all i (the addition is modulo m). Then the order of ζ equals m, so ζ generates
G. Without loss of generality it can be assumed that f1 is the first edge of p.
Then the m paths p, ζ(p), . . . , ζm−1(p) have first edges f1, . . . , fm, respectively.
We know that any two of our m paths have no common points except s1, s2. So
they subdivide S into m parts such that i-th part (1 ≤ i ≤m) is homeomorphic
to a simple diagram ∆i with the top and the bottom paths ζi−1(p) and ζ(p)
respectively. Since ζ takes ∆i to ∆i+1 for all i, we have that all ∆i are isotopic
to the same diagram. �

Let ∆n ≡∆1 ○ . . . ○∆n be the concatenation of n isotopic copies of a diagram
∆. Consider the mapping from ∆1 ○ . . . ○∆n−1 to ∆2 ○ . . . ○∆n which takes each
vertex (edge) from ∆i (i = 1, . . . , n − 1) to the corresponding vertex (edge) of
∆i+1. This partial map will be called the ∆-shift.

5.6.5.4. Commuting diagrams.

Lemma 5.6.21. Let ∆1 and ∆2 be spherical diagrams. If ∆ ≡ ∆1 ○ ∆2 ≡
∆2 ○∆1 is a simple diagram, then ∆k

1 ≡∆ℓ
2 for some k, ℓ > 0.

Proof. Since ∆ is simple, we can identify the top path of ∆ with its bottom
path and obtain a graph Γ on the sphere S2 (as we have done several times
before). Consider the following spherical automorphism α of the graph Γ. Since
∆ ≡∆1○∆2 ≡∆2○∆1 we have two copies of ∆1, ∆1,1 and ∆1,2, and two copies of
∆2, ∆2,1 and ∆2,2, inside ∆. Let α take the first copy of ∆i (i = 1,2) identically
to the second copy of this diagram, that is α takes ∆i,1 to ∆i,2. It is clear that
α is a spherical automorphism.

As we know (Lemma 5.6.20) the group G of spherical automorphisms of Γ is
cyclic. Let m = ∣G∣. Let a generator ζ and a path p connecting the initial vertex
s1 with the terminal vertex s2 satisfy the conditions of Lemma 5.6.20. Then
there exists a unique number s such that ζs = α−1, 0 < s <m. Then ζm−s = α.

Let q be the path on Γ which is obtained by identifying the top and the
bottom paths of ∆. By the definition of α, ζs takes q to bot(∆1,1) = top(∆2,1)
and ζm−s takes q to bot(∆2,2) = top(∆1,2).

By Lemma 5.6.20 the images of the path p under automorphisms from G

divide the spherical graph Γ into several copies of some diagram Θ. For every
natural number t there exists a natural map (homomorphism) from the graph
Θt to Γ taking the top path of Θt to p. In fact we can take the union Θ∞ of all
Θt, t ≥ 0, and obtain a natural (“covering”) map δ from Θ∞ to Γ which wraps
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around Γ infinitely many times. For every finite path p′ in Γ, one can find a
finite path p′′ in Θ∞ that maps onto p′. That path is contained in Θt for some
t, and will be called a lift of p′ in Θt. Also the Θ-shift of Θ∞ composed with δ

gives ζ (why?). Let us denote the Θ-shift on Θt by ζ̄ on Θt (recall that it maps
the ○-product of the first t−1 copies of Θ to the ○-product of the last t−1 copies
of Θ).

Let us take a sufficiently large power Θt of Θ such that the path q can be
lifted to a path q′ on Θt. Consider the corresponding partial map ζ̄ (which is the

Θ-shift on Θt). Consider the path ζ̄s(m−s)(q′). This path has only two vertices
in common with the path q′ (the tail and the head), so these two paths bound
a subdiagram. One can check that this subdiagram is the (m − s)-th power of
the subdiagram contained between q′ and ζ̄s(q′) which is isotopic to ∆1 (prove
it!). At the same time this diagram is the s-th power of the diagram contained
between q′ and ζ̄m−s(q′) which is isotopic to ∆2 (prove it!). Hence ∆m−s

1 ≡ ∆s
2

as required. �

Theorem 5.6.22. Let ∆1 and ∆2 be spherical diagrams. If ∆ ≡ ∆1 ○∆2 ≡
∆2 ○∆1, then ∆1 = Ψ1 + ⋅ ⋅ ⋅ +Ψk, ∆2 = Π1 + ⋅ ⋅ ⋅ +Πk where Ψi,Πi are spherical
diagrams such that for every i some powers of Ψi and Πi are isotopic.

Proof. Let ∆ =∆1 ○∆2 =∆2 ○∆1. By Lemma 5.6.17, there exists a natural
number n such that ∆n, ∆n

1 ,∆
n
2 are nice. Let ∆n = Ψ1 + ⋅ ⋅ ⋅ +Ψs be the sum

of simple and linear components. Since ∆n = ∆n
1 ○∆n

2 , ∆n
1 decomposes as the

sum of spherical subdiagrams Λ1,1 + ⋅ ⋅ ⋅ +Λ1,s and ∆n
2 decomposes into the sum

of spherical subdiagrams Λ2,1 + ⋅ ⋅ ⋅ +Λ2,s (the subdiagrams are spherical because
∆n

i is nice, i = 1,2). Therefore top(∆n
1) has s + 1 vertices in common with

bot(∆n
1) subdividing the diagram into the sum of subdiagrams Λ1,j . But then

top(∆1) and bot(∆1) also must have s+ 1 vertices in common subdividing ∆1

into a sum of s spherical subdiagarms Ω1,1+⋅ ⋅ ⋅+Ω1,s. Moreover, then Λ1,j = Ωn
1,j

for j = 1, . . . , s. Similarly ∆2 is a sum of spherical subdiagrams Ω2,1 + ⋅ ⋅ ⋅ +Ω2,s,
and Ωn

2,j = Λ2,j , j = 1, . . . , s. Furthermore, for every j from 1 to s, Ψj is a simple
diagrams that is equal to Ωn

1,jΩ
n
2,j = Ωn

2,jΩ
n
1,j. Applying Lemma 5.6.21, we obtain

that some powers of Ω1,j and Ω2,j are isotopic for every j, as required. �

5.6.6. The R.Thompson group F .

5.6.6.1. The definitions of F . R. Thompson’s group F is remarkable be-
cause it does not contain free non-cyclic subgroups (Theorem 5.6.39) and does
not satisfy any nontrivial identity (Theorem 5.6.37). More importantly, it is
a “universal” counterexample to many group theoretic conjectures, and stub-
bornly resists many attempts to answer some basic questions about it (one of
these questions is Problem 5.6.47). The group F has several equivalent defini-
tions. First of all it is the group of all piecewise linear increasing continuous
maps from the unit interval [0,1] onto itself with finite number of linear pieces
each having slope of the form 2k, k ∈ Z and the breakpoints of the derivative
occurring at points of the form a

2b , a, b ∈ N.
The second, syntactic, definition is the following surprisingly simple presen-

tation of F :
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(5.6.1) gp⟨x0, x1 ∣ xx2

0

1 = x
x0x1

1 , x
x3

0

1 = x
x2

0
x1

1 ⟩
where, as usual, ab denotes b−1ab. We shall prove that below.

Note that even the fact that F is finitely generated can be considered very
surprising.

The third definition of F is in terms of diagram groups.

Theorem 5.6.23. If X consists of one letter x and P consists of one rule
x → x2, then the group G = DG(P,x) is isomorphic to the R. Thompson group
F.

Proof. Indeed, the Squier complex for the rewriting system P is easy to
draw (see Figure 5.37).

. . .

x x2 x3 x4

Figure 5.37. The Squier complex for ⟨x ∣ x → x2 ⟩. The thick
line bounds a 2-cell in the complex

Exercise 5.6.24 (Guba,Sapir [135]). Use the definition of the fundamental
group of a 2-complex (Section 5.5.1) and find the following infinite presentation
of the fundamental group of the Squier complex on Figure 5.37:

(5.6.2) gp⟨x0, x1, x2, . . . ∣ xxj

i = xi+1, i > j ∈ N ⟩.
Hint: Choose the spanning tree in the Squier complex consisting of edges (1, x →
x2, xn) (the tree is just the top infinite path in Figure 5.37). The relations
corresponding to the cells of the Squier complex then allow one to express all
edges in terms of edges of the form (xn, x → x2,1). Denote this edge by xn

and prove that all relations of the fundamental group follow from the relations
(5.6.2).

Exercise 5.6.25 (Guba, Sapir [135]). Show that the fundamental group of
the Squier complex of P is generated by the closed paths represented by the two
diagrams on Figure 5.38 (all edges are labeled by x and oriented from left to
right, so we omit the labels and orientation of edges). Show that the diagram
group G has the presentation (5.6.1). Hint: Note that each xi, i > 1, in the

presentation (5.6.2) is equal to x
xi−1

0

1 in G, then show that the generators x0, x1

satisfy (5.6.1) and deduce all other relations from (5.6.2) from these two.

Now we define a homomorphism from G to F turning diagrams into func-
tions.
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x0 x1

Figure 5.38. Generators of the R. Thompson group F

5.6.6.2. From diagrams to functions. There are many natural homomor-
phisms from any diagram group to the group of continuous increasing functions
from an interval onto itself (see [139]). We shall illustrate this construction
using the group G (which, as we shall show, is isomorphic to the R. Thompson
group F ). Let f be the function [0,1] → [0,2] which takes t to 2t (taking any
other homeomorphism [0,1] → [0,2] instead produces a different representation
of G). In the cell corresponding to the rewriting rule x → x2, assume that every
edge has length 1. Connect every point t on the top path to the point f(t) = 2t
on the bottom path by a straight interval. We obtain a lamination of the cell
by line intervals. Now let ∆ be any (xm, xn)-diagram over P = sr⟨x ∣ x → x2 ⟩.
Identify each edge with a unit interval, and laminate each cell as above. As a
result, every point on the top path of the diagram ∆ gets connected with unique
point on the bottom path of the diagram: just follow the lamination intervals.
This produces a function f∆∶ [0,m] → [0, n] which is obviously increasing and
onto. See Figure 5.39

Exercise 5.6.26. Compute the functions corresponding to the diagrams on
Figure 5.38 and check that these functions belong to F (that is the functions
are piecewise linear with appropriate slopes and break points).

Clearly, the function corresponding to a dipole is the identity function, hence
the functions corresponding to equivalent diagrams are equal. Thus the map
φ∶∆↦ f∆ is well defined. It is also obvious that the map φ is a homomorphism
from G into the group of all increasing functions from the unit interval onto
itself. Since diagrams on Figure 5.38 generate G by Exercise 5.6.25, and the
functions corresponding to these diagrams are in F by Exercise 5.6.26, φ is a
homomorphism G→ F.

Let us prove that φ(G) = F. Given a function h from F , let a0 = 0, a1, . . . ,
ak, ak+1 = 1 be the increasing sequence of all the break points of the derivative
of h (k ≥ 0). Let bi = h(ai) for all 0 ≤ i ≤ k + 1. By d we denote the smallest
natural number such that all the numbers 2dai, 2dbi are integers (0 ≤ i ≤ k + 1).
Consider the function g from [0,2d] onto [0,2d] given by g(t) = 2dh(2−dt). All
breakpoints of the derivative of g occur at integer points and all slopes are the
same as the corresponding slopes of h. The homeomorphism g takes [2dai,2

dai+1]
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f ∶x→ 2x

x

φ(x)
Figure 5.39. Turning a diagram into a function

onto [2dbi,2
dbi+1] for all 0 ≤ i ≤ k. On each of these intervals, g has some slope

of the form 2ci , where ci is an integer.

For any j ≥ 0, let ∆j be an (x,x2j )-diagram over P that can be defined by
induction as follows. We let ∆0 = ε(x) and ∆j+1 = π ○ (∆j +∆j) for all j ≥ 0.

Here π is the (x,x2)-cell. The transition function of ∆j is obviously t ↦ 2jt on[0,1]. Now for any number r ≥ 1, we take the sum of r copies of the diagram
∆j. We will denote this sum by r ⋅∆j . Clearly fr⋅∆j

is the linear function t ↦ 2jt

on [0, r].
For any 0 ≤ i ≤ k, if ci ≥ 0, then we let ri = 2d(ai+1 − ai). If ci < 0, then we

let ri = 2d(bi+1 − bi). Let us define the diagram Ψ as the sum of diagrams Ψi

(0 ≤ i ≤ k), where Ψi = ri ⋅∆ci
, if ci ≥ 0 and Ψi = (ri ⋅∆−ci

)−1, if ci < 0. The
transition function of Ψ is exactly g. Now by ∆(h) we will denote the diagram
∆d ○Ψ ○∆−1

d .

Exercise 5.6.27. Show that f∆(h) = h.

It remains to show that φ is injective. For this, it is easiest to use the
syntactic properties of the presentation (5.6.2) of the group G. Note that the

function φ(xi) where xi = x
xi−1

0

1 , is identity on the subinterval [0,1 − 2−i], i ≥ 0,

and is not identity immediately to the right of 1 − 2−i.

Exercise 5.6.28. Prove that!

Let W be a word in xi, i ∈ N, which is not equal to 1 in G. We need to show
that the corresponding function in F is not the identity. Let j be the smallest
index of a letter occurring in W. The relations (5.6.2) show that W is equal in G
to a word xs

jW
′x−t

j where s, t ≥ 0, s+ t ≠ 0, and the indices of all letters in W ′ are

bigger than j. Indeed, the relations (5.6.2) can be rewritten as x−1
j x±1

i = x±1
i+1x

−1
j ,

j < i, and as x±1
i xj = xjx

±1
i+1, j < i, so we can move the positive powers of xj

to the left and the negative powers of xj to the right increasing the indices of
the other letters without changing the value of the word in G. If both s and
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t are bigger than 0, then the word xs
jW

′x−t
j is equal to xs−1

j W ′′x
−(t−1)
j where

W ′′ is obtained from W ′ by increasing all indices of letters by 1 (why?). Hence
we can assume that either s or t (but not both) are equal to 0. If s = 0, we
can replace W by W −1. So we can assume that s > 0, t = 0. But then Exercise
5.6.28 implies that the function corresponding to the word xsW ′ (and hence the
function corresponding to W ) is not the identity function which completes the
proof. �

5.6.6.3. From diagrams to pairs of full binary trees. Let ∆ be an (xm, xn)-
diagram over P = sr⟨x ∣ x→ x2 ⟩. Then it has the longest positive path connecting
ι(∆) and τ(∆) (it follows from Exercise 5.6.29 below that the longest path is
unique). That path divides ∆ into two subdiagrams, positive and negative,
denoted by ∆+ and ∆−, respectively. So ∆ =∆+ ○∆−.

Exercise 5.6.29. Prove that all cells in ∆+ are (x,x2)-cells, all cells in ∆−

are (x2, x)-cells, that is ∆+ is positive, ∆− is negative (see Section 1.7.4). Hint:

Use induction on the number of cells. Remove from the diagram ∆ a cell that
shares an edge with the top path, use the induction assumption and analyze
what can happen to the longest path in the diagram.

Now let ∆ be a (x,x)-diagram. As usual, consider the dual planar graph Γ
of the diagram ∆: put a vertex inside every cell, connect two vertices if the cells
have a common edge. If we draw the diagram in the natural way: top(∆) above
bot(∆), then every vertex of Γ from ∆+ is connected to two vertices below and
to one vertex above it (unless it is the top vertex). Similarly, every vertex of Γ
from ∆− is connected to two vertices above it and to one vertex below it (unless
it is the bottom vertex). Thus the longest positive path p of ∆ cuts Γ into the
union of two full binary trees T + and T −, see Figure 5.6.6.3.

Figure 5.40. A pair of trees corresponding to the generator x0
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The number of leaves of each of the trees is the length of p. Thus T + and T −

have the same number of leaves. Conversely, every full binary tree corresponds
to a positive derivation. Therefore every pair of full binary trees (T +, T −) with
the same number of leaves gives rise to a diagram ∆ =∆(T +, T −) whose positive
part corresponds to T + and negative part corresponds to T −.

Exercise 5.6.30. Show that ∆(T +, T −) is reduced if and only if for every
i = 1, . . . , ∣p∣ − 1, if leaves number i and i + 1 have a common parent in T +, then
leaves number i and i + 1 do not have a common parent in T −.

Exercise 5.6.30 suggest defining the following expansion operation on a pair
of trees (T +, T −) as above. Choose number i between 1 and the number of leaves
of T +, add two children to the leaf number i of T + and to the leaf number i of
T −. The result of the expansion is a new pair of trees.

Exercise 5.6.31. Consider the rewriting system where objects are pairs of
full binary trees with the same number of leaves, and negative moves are the
expansions. Show that this rewriting system is Church–Rosser and the terminal
objects are pairs of trees corresponding to reduced diagrams.

Exercise 5.6.32. Show that for any two (finite) full binary trees T1, T2,
there exists a tree T obtained by a series of expansions (i.e., adding two children
to a leaf) from T1 and by (another) series of expansions from T2.

Now let (T +1 , T −1 ) and (T +2 , T −2 ) be two pairs of full binary trees as above.
The pairs of trees corresponding to the product ∆(T +1 , T −1 )∆(T +2 , T −2 ) can be
obtained as follows. Find two series of expansions that make trees T −1 and T +2
the same. Apply these series of expansions to T +1 and T −2 . Obtain new pair of
trees T +3 , T −3 . Then

∆(T +1 , T −1 )∆(T +2 , T −2 ) =∆(T +3 , T −3 ).
Exercise 5.6.33. Prove this formula.

Exercise 5.6.34. Prove that two diagrams ∆(T +1 , T −1 ) and ∆(T +2 , T −2 ) are
equivalent if and only if there is a pair of trees (T +3 , T −3 ) which can be obtained
by series of expansions both from (T +1 , T −1 ) and from (T +2 , T −2 ).

5.6.7. Multilinear identities of non-associative algebras and elem-

ents of F . Recall that in Section 1.4.1.1 we described a correspondence between
terms in the signature consisting of one binary operation and (finite) full binary
trees where leaves are labeled by variables. For every full binary tree T , we can
label its leaves from left to right by distinct variables a, b, c, . . . . Then the tree T
will correspond to a multilinear term t(T ) (i.e a term where each variable occurs
only once). If a pair of full binary trees has the same number of leaves, then it
corresponds to a pair of multilinear terms that differ only by the arrangement
of brackets. Thus there exists a correspondence between elements of F and
multilinear identities t(T1) = t(T2) where left and right sides differ only be the
arrangement of brackets. Let us call such identities bracket identities.
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Exercise 5.6.35. Suppose that a bracket identity u = v is obtained from an-
other bracket identity by a substitution. Show that the corresponding diagrams
of F are equivalent.

Exercise 5.6.36. Show that the generator x0 of F corresponds to the asso-
ciativity identity (ab)c = a(bc). What is the identity corresponding to x1 ?

For more about connections between F and identities of universal algebras,
and other representations of F see [81, 111].

5.6.8. F is lawless. Although as we saw in Section 5.6.7 the group F

consists of laws, we shall prove here that F does not satisfy any group laws itself.
Here we use the representation of elements of F as functions [0,1] → [0,1].

For f ∈ F by supp(f) we denote the set of all t ∈ I, for which f(t) ≠ t.
Theorem 5.6.37. F does not satisfy any nontrivial group identity.

Proof. Let X be the set of all diadic rational numbers, that is rational
numbers of the form a

2b , a, b ∈ N, from the open interval (0,1). Clearly F acts

on X: x ⋅ f = f(x), f ∈ F,x ∈ X. For every finite set X ′ ⊂X let b be any number
that is not in X ′. Consider any open interval I = (b − ε, b + ε) containing b and
disjoint from X ′. There exists a function f from F that is identity outside I and
does not have fixed points inside I

Exercise 5.6.38. Construct such a function. Construct a diagram of the
form (m ⋅∆d) ○Ψ ○ (n ⋅∆d)−1 (see the definition before Exercise 5.6.27) corre-
sponding to such a function.

Thus supp(f) contains b and does not intersect X ′. Hence F separates X,
and by Theorem 5.4.1 F does not satisfy any nontrivial identity. �

5.6.9. F does not have non-cyclic free subgroups. We have seen that
elements of F can be viewed as 2-dimensional words, so in this regard, F (and any
other diagram group) is a 2-dimensional analog of the free group. Nevertheless
here we show that F is very far from being free.

Theorem 5.6.39 (Brin, Squier [54], Guba, Sapir [137]). F does not contain
any free non-cyclic subgroups. Every subgroup of F is either commutative or
contains a subgroup isomorphic to Z ≀ Z (see Exercise 1.8.25), and hence an
infinitely generated free commutative group. 10.

Proof. Let H be a non-commutative subgroup of F. Consider functions
f, g ∈ H such that fg ≠ gf. Without loss of generality we can assume that H is
generated by f, g. For every function h ∈ H let supp(h) stand for the support
of h that is the set {x ∣ h(x) ≠ x}. Then supp(h) is a union of finitely many
disjoint open intervals (ai, bi) ⊂ [0,1] (prove it!). Let J = supp(f) ∪ supp(g).
Then J is a union of finitely many disjoint intervals Jk = (ak, bk), 0 ≤ k ≤ m
(why?). Moreover, for every h ∈ H, and every k, h(ak) = ak, h(bk) = bk and

10Recall that by Corollary 1.8.29 a free group cannot contain non-cyclic commutative sub-
groups, so the second part of the statement of the theorem implies the first part.
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so h(Jk) = Jk. Let f1, g1 be two non-commuting elements of H which are not
identity on the least possible number of intervals Jk.

By our assumption, [f1, g1] ≠ 1 in F. Then on some of intervals J1, . . . ,
Jm our function [f1, g1] is not the identity (because [f1, g1] is not the identity
function, but it must be identity on the complement [0,1] ∖ J).

We claim that for any x, y ∈ J0, where x < y, there exists a function w ∈ H
such that w(x) > y. Indeed, let z be the least upper bound for the set X ={h(x) ∣ h ∈ H}. We need to show that z > y. Suppose that z ≤ y < b0. Note
that, by definition, J is a union of supports of f and g. Hence either f(z) ≠ z or
g(z) ≠ z. Then one of the numbers f±1(z) or g±1(z) is greater than z. Therefore
(by continuity of functions from H) there exists x′ ∈ X with f±1(x′) > z or
g±1(x′) > z but that contradicts the definition of z as a upper bound for X since
all f±1(x′), g±1(x′) belong to X (why?).

This implies that acting by some element of H one can make the image of
every x ∈ J0 as close to b0 as one wishes.

Now consider the commutator h0 = [f1, g1]. Since both f1 and g1 map each
interval (ai, bi) (1 ≤ i ≤ m) onto itself, h0 = [f1, g1] does the same. Let Ji be
one of the intervals where h0 acts non-identically. By renaming the intervals
if necessary, we can assume that i = 0. Since both f1 and g1 fix a0, in a little
interval [a0, a0 + ǫ1], f1(x) has the form α(x − a0) + a0 and g1(x) has the form
β(x − a0) + a0 (by the definition of F ). Then for some ǫ2 < ǫ1, the function
h0 acts on the interval [a0, a0 + ǫ2] as an identity (why?). Similarly for some
small ǫ3, the function [f1, g1] is the identity on the interval [b0 − ǫ3, b0]. Hence
the intersection of support of [f1, g1] with the interval (a0, b0) is inside (c0, d0)
where a0 < c0 < d0 < b0. By our claim, there exists w ∈H such that d0 < w(c0) <
b0. We will show that w and h0 generate a copy of Z ≀ Z. For any n ≥ 0, let
cn = wn(c0), dn = wn(d0), hn = hwn

0 . We have c0 < d0 < c1 < d1 < . . . , and
supp(hn) ∩ J0 ⊆ [cn, dn] (since every function in F is increasing). Therefore, for
any i, j ≥ 0, the commutator [hi, hj] is identical on J0 (since the supports of hi

and hj on J0 are disjoint if i ≠ j). By the minimality assumption in our choice
of f1, g1, we conclude that hi and hj commute for every i, j.

Note that hw
n = hn+1 for all n ≥ 0 by definition. Defining hn as hwn

0 for
negative n ∈ Z also we see that hn, n ∈ Z and w satisfy the relations of Z ≀Z from
Exercise 1.8.25 (check it!). Thus there exists a homomorphism φ from Z ≀Z onto
gp⟨f, g ⟩ taking t to w and xn, n ∈ Z to hn.

Exercise 5.6.40. Prove that the homomorphism φ is injective by showing
that no nontrivial canonical word of the Church–Rosser presentation in Exercise
1.8.25 is mapped to the identity function.

�

5.6.10. Two Church–Rosser presentations of F . The next two theo-
rems give Church–Rosser presentations of the Thompson group F with respect
to the infinite generating set (5.6.2) and another with respect to the two gener-
ators x0, x1 (see [136]).
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Theorem 5.6.41. The following monoid presentation with infinite set of
generators xi, x̄i, i ∈ N defines the R. Thompson group F :

(1) xix̄i = 1 for all i ≥ 0;
(2) x̄ixi = 1 for all i ≥ 0;
(3) xjxi = xixj+1 for all i < j;
(4) x̄jxi = xix̄j+1 for all i < j;
(5) xj+1x̄i = x̄ixj for all i < j;
(6) x̄j+1x̄i = x̄ix̄j for all i < j.
This rewriting system is Church–Rosser.

It is not difficult to read the canonical form of an element g (in this rewriting
system) off the diagram ∆ representing the element. Here is the procedure (we
give it without a proof). Divide ∆ into the positive and negative parts ∆+ and
∆− as before.

Let us number the cells of ∆+ by numbers 1,2, . . . , k by taking every time the
“rightmost” cell, that is, the cell which is to the right of any other cell attached
to the bottom path of the diagram formed by the previous cells. The first cell
is attached to the top path of ∆+ (= top(∆)). The ith cell in this sequence of
cells corresponds to an edge of the Squier complex Γ(P), which has the form(xℓi , x → x2, xri), where ℓi is the length of the path from the initial vertex of
the diagram to the initial vertex of the cell (resp. ri is the length of the path
from the terminal vertex of the cell to the terminal vertex of the diagram), and
contained in the bottom path of the diagram formed by the first i − 1 cells. If
ℓi = 0 then we label this cell by 1. If ℓi ≠ 0 then we label this cell by the element
xri

of F. Multiplying the labels of all cells, we get the “positive” part of the
canonical form.

In order to find the “negative” part of the normal form, consider (∆−)−1,
number its cells as above and label them as above. To get the canonical form of
∆, just multiply the “positive part” by the “negative part”.

For example, consider the diagram on Figure 5.41.
The “positive part” of the canonical form is equal to x0x

2
2x4x5 (cells 1 and

3 are labeled by the identity element). The negative part is (x1x
2
3x4)−1 (cells 1,

2, 4 are labeled by 1). So the canonical form is x0x
2
2x4x5x

−1
4 x−2

3 x−1
1 .

Theorem 5.6.42. The following monoid presentation with four generators
x0, x1, x̄0, x̄1 defines F and is Church–Rosser.

(1) x0x̄0 = 1,
(2) x̄0x0 = 1,
(3) x1x̄1 = 1,
(4) x̄1x1 = 1,
(5) x1x

i
0x1 = xi

0x1x̄
i+1
0 x1x

i+1
0 ,

(6) x̄1x
i
0x1 = xi

0x1x̄
i+1
0 x̄1x

i+1
0 ,

(7) x1x
i+1
0 x̄1 = xi+1

0 x̄1x̄
i
0x1x

i
0,

(8) x̄1x
i+1
0 x̄1 = xi+1

0 x̄1x̄
i
0x̄1x

i
0

(here i is an arbitrary positive integer).

Exercise 5.6.43. Prove Theorems 5.6.41 and 5.6.42.

261



1

2

3 4

567

1

2

3

4
5

67

Figure 5.41. An element of F

Corollary 5.6.44. Every group word in the alphabet {x0, x1, . . .} is equal
in the group F to a unique word of the form

xa1

i1
xa2

i2
. . . xam

im

where m ≥ 0, i1, . . . , im ≥ 0, a1, . . . , am = ±1 such that for any j, 1 ≤ j <m one of
the following three conditions hold:

● ij < ij+1;
● ij = ij+1, aj = aj+1;
● ij = ij+1 + 1, aj+1 = −1.

Proof. Indeed the words of the form given in the formulation of Corollary
5.6.44 are precisely the words not containing the left parts of the rewriting rules
from Theorem 5.6.41. �

Another set of canonical words in the alphabet {x0, x1, . . .} is the following
(see [63]):

Exercise 5.6.45. Prove that every word in {x0, x1, . . .} is equal in F to a
unique word of the form

xb0

0 x
b1

1 . . . xbn
n x
−an
n . . . x−a1

1 x−a0

0

where n,a0, . . . , an, b0, . . . bn are nonnegative integers such that (1) exactly one
of an, bn is not equal to 0, and (2) if ak > 0 and bk > 0 for some k < n, then
ak+1 > 0 or bk+1 > 0. Find a Church–Rosser presentation of F with this set of
canonical words.

Exercise 5.6.46. Check that the language of left-hand sides of the relations
from Theorem 5.6.42 is rational by drawing an automaton for that language.
Deduce, using Lemma 1.8.17 that the language of canonical words for this pre-
sentation is also rational.
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The following problem is one of several outstanding problems about the
Thompson group F.

Problem 5.6.47. Does F admit a finite Church–Rosser presentation?

For other problems about F see [63, 137, 281].

5.7. Growth of groups

The study of growth functions in groups was greatly stimulated by Milnor’s
problem [234] about existence of groups whose growth function is intermediate,
i.e., higher than any polynomial and smaller than any exponential function. It
was proved by Wolf [332] that nilpotent groups have polynomial growth func-
tions. Moreover, if a finitely generated group G has a nilpotent normal sub-
group H of finite index, then the growth function of G is also polynomial. In
his famous paper [128], Gromov proved that there are no other groups with
growth functions bounded by polynomials. Milnor’s problem was solved in the
affirmative by Grigorchuk [123]. The goal of this section is to prove the the-
orem of Bass and Guivarc’h giving exact polynomial upper and lower bounds
for the growth function of a finitely generated nilpotent group (it turned out
to be the same as the lower bound in [332]), and present a short proof (due to
Bartholdi) that Grigorchuk’s group has intermediate growth. Proving Gromov’s
theorem would require much more topology than we can afford, and would take
us too far into semantics. Fortunately, there are detailed proofs of his results in
[322, 219, 91, 181] (the proof in [128] is not long and is not that hard to read
also).

5.7.1. Similar groups have similar growth. We start with the following
theorem

Theorem 5.7.1. (1) Let G be a finitely generated group and H be a normal
subgroup of G of finite index. Then H is finitely generated and the growth
functions of G and H are equivalent.

(2) Let G be a finitely generated group and H be a finite normal subgroup of
G. Then the growth functions of G and G/H are equivalent.

Proof. (1) Let X be a generating set of G. For every element p of G/H
add to X one x ∈ G whose image in G/H is p. Let us denote the resulting finite
generating set of G by Y. For every a, b ∈ Y , there exists an element c(a, b) ∈ Y
and an element h(a, b) ∈ H such that ab = c(a, b)h(a, b) (why?). Let Z be the
union of Y ∩H and the finite set of all h(a, b), a, b ∈ Y. Then H is generated by
Z. Indeed, let h ∈ H. Then h = y1y2⋯ys, yi ∈ Y since h ∈ G. If s = 1, then h ∈ Z.
So assume that s ≥ 2. Then

(5.7.1) h = y1⋯yn−2c(yn−1, yn)h(yn−1, yn) = ⋅ ⋅ ⋅ = h(y1,∗)h(y2,∗)⋯h(yn−1, yn)
where ∗ denotes elements of Y. Thus we can represent h as a word in Z, so Z
generates H and H is finitely generated.

Now we can increase Y by including Z and consider the generating set Y ∪Z
of G (recall that by Exercise 1.5.1 the growth function of a finitely generated
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group does not depend (up to the equivalence from Section 1.5) on a choice of a
finite generating set). The set of elements of H represented by words of length
at most n in Z is then a subset of elements of G represented by words of length
at most n in Y ∪Z. Hence the growth function fH(n) of the group H does not
exceed the growth function fG(n) of G.

To complete the proof, we need to prove the opposite inequality. Consider
all elements g1, . . . , gm of G represented by words of length at most n in G. Then
at least m

∣G/H ∣ of them have the same image in G/H. Let it be elements g1, . . . , gs.

Then elements 1, g−1
1 g2, . . . , g

−1
1 gs belong to H (why?) and are all different. Each

of these elements can be represented by a word of length at most 2n. Therefore
fH(2n) ≥ fG(n)/∣G/H ∣. Therefore the functions fH and fG are equivalent.

(2) Let H be a finite normal subgroup of G, X be a finite generating set of
G. By Exercise 3.7.3 the growth function fG/H(n) does not exceed the growth
function fG(n). To prove the opposite inequality, consider the set g1, . . . , gm of
elements in G represented by words of length at most n. If the images of gi

and gj in G/H are the same, then gi = gjh for some h ∈ H. Therefore at least
m/∣H ∣ of these elements have pairwise different images in G/H (why?). Thus

fG/H(n) ≥ fG(n)
∣H ∣ . �

5.7.2. Commutative groups. In this section we shall consider the growth
of finitely generated commutative groups.

5.7.2.1. Free commutative groups. Recall (Exercise 1.8.24) that the free com-
mutative group An (i.e., the free group in the variety of commutative groups)
with n free generators is isomorphic to the direct product of n copies of the
infinite cyclic group Z.

Exercise 5.7.2. Prove that the growth function f(x) of the free commu-
tative group with n free generators is equivalent to xn. Hint: Compare with
Example 3.7.1. Use canonical words of the Church–Rosser presentation from
Exercise 1.8.24.

5.7.2.2. Arbitrary finitely generated commutative groups. The results of this
subsection easily follow from the classification of finitely generated commutative
groups (that every finitely generated commutative group is a direct product of
finitely many cyclic groups). Nevertheless proving the classification first and
then applying it here would take too long. Instead we are using some basic
properties of growth functions. So those who know the classification of finitely
generated commutative groups can view this subsection as an illustration of the
usefulness of growth functions.

Theorem 5.7.3. Let G be a finitely generated commutative group. Then G

has a subgroup H of finite index which is a finitely generated free commutative
group.

Proof. Let us proceed by induction on the minimal number n of generators
of G. If n = 0 there is nothing to prove. Suppose that n > 0. If G is free commuta-
tive, there is also nothing to prove. Otherwise suppose that G = gp⟨x1, . . . , xn ⟩
and there exists a nontrivial relation x

p1

1 . . . x
pn
n = 1 where some pi ≠ 0. Without
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loss of generality we can assume that i = 1. Then x
p1

1 belongs to the subgroup
G1 = gp⟨x2, . . . , xn ⟩. Therefore G/G1 is a finite cyclic group (prove it!). By
induction, G1 contains a finitely generated free commutative subgroup H with
G1/H finite. Then G/H is also finite (why?). �

Combining Theorem 5.7.3 with Exercise 5.7.2 and Theorem 5.7.1, we finally
obtain.

Theorem 5.7.4. The growth function f(x) of any finitely generated com-
mutative group G is equivalent to xn where n is the number of free generators
of a free commutative subgroup H < G of finite index.

Note that this theorem implies that all free commutative subgroups H of G
of finite index have the same number of free generators. That number is called
the free rank of the group G.

Lemma 5.7.5. Let G be a commutative group generated by a finite set X.
Then the free rank of G does not exceed ∣X ∣.

Proof. Indeed, G is a homomorphic image of the free commutative group
with n = ∣X ∣ generators. Hence by Exercises 3.7.3 and 5.7.2, the growth function
of G does not exceed xn. Hence by Theorem 5.7.4, the free rank of G does not
exceed n. �

Exercise 5.7.6. Let G be a commutative group generated by a finite number
of elements of finite exponents. Then G is finite. Hint: If x1, . . . , xn are the
generators, then every element is represented by a word xm1

1 . . . xmn
n where each

mi is a nonnegative number not exceeding the exponent of xi.

Lemma 5.7.7. Let G be a finitely generated commutative group of free rank
r and let T be a generating set of G. Then T contains r elements that generate
a subgroup C of finite index and free rank r.

Proof. Induction on the free rank. If G has free rank 0, there is nothing
to prove. Suppose that G has free rank r > 0, and x1, . . . , xn is a generating set
of G. We can assume without loss of generality that all subsets of {x1, . . . , xn}
generate subgroups of free ranks < r. If n = r, there is nothing to prove. Let
n > r. By Exercise 5.7.6, there exists a generator (without loss of generality let
it be x1) which generates an infinite cyclic subgroup A ≤ G. The subgroup B

generated by x2, . . . , xn has free rank d ≤ r − 1. By the induction assumption,
there are d elements generating a subgroup C of B of free rank d, and C/B
is finite. Without loss of generality let these elements be x2, . . . , xd+1. Then
consider the subgroup C1 generated by x1, x2, . . . , xd+1. We claim that G/C1 is
finite. Indeed, G/C1 is generated by the images of x2, . . . , xn, and C1 ≥ C by
definition. Therefore the image of each xi, i ≥ 2 has finite exponent in G/C1 and
by Exercise 5.7.6 G/C1 is finite. Since the free rank of C1 cannot be bigger than
the number of generators of C1 (by Lemma 5.7.5), and d < r, we conclude that
d + 1 = r and x1, x2, . . . , xr is the required set of generators. �

Theorem 5.7.8. Let G be a finitely generated commutative group of free rank
r and let T = {t1, . . . , ts} be a generating set of G, so that {t1, . . . , tr} generate a

265



subgroup C of finite index and free rank r (it exists by Lemma 5.7.7). Then T

can be extended to a possibly bigger finite generating set {t1, . . . , ts, ts+1, . . . , tp}
such that for every i, j > s, titj = tkg where g ∈ C.

Proof. Since G/C is finite, there exists a finite subset ts+1, . . . , tp ∈ G such
that every element of G/C is the image of one of the ti in G/C. It suffices to add
this subset to the generating set of G. �

5.7.3. Nilpotent groups. Here we prove that every finitely generated
nilpotent group has polynomial growth (it was first proved by Wolf [332]), and
find a precise growth function (up to the equivalence from Section 1.5) - a result
obtained by Bass [25] and Guivarc’h [140, 141] (they proved that the upper
bound of the growth function coincides, up to equivalence, with the lower bound
found by Wolf).

5.7.3.1. Some basic properties of nilpotent groups. We have defined nilpotent
groups using upper central series (see Section 3.6.2): a groupG is called nilpotent
of class n if G is equal to the n-th member of its upper central series. Here it
is more convenient to use an alternative definition in terms of the lower central
series.

Recall that the triple commutator [x, y, z] is an abbreviation for [[x, y], z].
More generally, for each integer n > 2, the iterated commutator of length n is
defined as [x1, . . . , xn−1, xn] = [[x1, . . . , xn−1], xn]. If G is a group, we denote
by γn(G) the subgroup generated by the iterated commutators [g1, . . . , gn−1, gn]
where g1, . . . , gn−1, gn run over G. (In particular, γ2(G) = G′, the derived sub-
group of G). It is convenient to set γ1(G) = G. The decreasing series of subgroups

G = γ1(G) ≥ γ2(G) ≥ ⋅ ⋅ ⋅ ≥ γn(G) ≥ . . .
is called the lower central series of G.

The following exercise can be proved by induction on the length of an iterated
commutator using Exercise 1.4.1 and will be used several times later.

Exercise 5.7.9. Let x1, . . . , xn ∈ G and for some i = 1, . . . , n, xi = yizi, where
yi, zi ∈ G. Prove that [x1, . . . , xi, . . . , xn] is equal to

[x1, . . . , yi, . . . , xn][x1, . . . , zi, . . . , xn]
times a product of commutators of x1, . . . , xn, yi, zi of length > n, and their
inverses. Using the fact that xix

−1
i = 1 and the iterated commutator of x1, . . . , xn

is 1 provided one of the xis is 1, deduce that [x1, . . . , xi, . . . , xn]−1 is equal to[x1, . . . , x
−1
i , . . . , xn] times a product of commutators of bigger length.

Exercise 5.7.10. (1) Prove that every γn(G) is a normal subgroup of G.
(2) Prove that γn−1(G)/γn(G) is contained in the center of the factor-group

G/γn(G).
(3) Prove that if x = [x1, x2, . . . , xn], then

xm ≡ [xm
1 , x2, . . . , xn] ≡ [x1, x

m
2 , . . . , xn] ≡ ⋅ ⋅ ⋅ ≡ [x1, x2, . . . , x

m
n ] (mod γn+1(G))

for every m,n.
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(4) Prove that for every x1, . . . , xn ∈ G, a ∈ γ2(G),
[x1a,x2, . . . , xn] ≡ [x1, x2a, . . . , xn] ≡ ⋅ ⋅ ⋅ ≡ [x1, . . . , xna] ≡ [x1, . . . , xn]

modulo γn+1(G).
(5) Prove that [γi(G), γj(G)] ⊆ γi+j(G) for every i, j. Hint: Use induction on

i. Applying the group analog of the Jacobi identity and the anti-commutativity
law for group commutators (Exercise 1.4.1) show that

[γi(G), γj(G)] = [[γi−1(G), γ1(G)], γj(G)]
is inside the subgroup generated by the product of two subgroups:

[[γj(G), γ1(G)], γi−1(G)]
and [[γj(G), γi−1(G)], γ1(G)],
then use the induction assumption to show that both subgroups are inside
γi+j(G).

Part (5) of Exercise 5.7.10 means that the subgroups γi(G), i = 1,2, . . . , form
a filtration of G.

Lemma 5.7.11. Let X be a subset of G, such that the image X̄ of X in
G/γ2(G) generates a free commutative subgroup of finite index. Let n ≥ 2. Then
the set Xn of commutators [x1, x2, . . . , xn], xi ∈ X, belongs to γn(G) (by the
definition of γn(G)). We claim that the image X̄n of Xn in γn(G)/γn+1(G)
generates a subgroup Hn of finite index.

Proof. Let H be the subgroup of G/γ2(G) generated by X̄. Let N be the
size of the finite factor-group (G/γ2(G))/H. Then by Exercise 1.8.10 for every
g ∈ G/γ2(G), gN ∈ H. Take a finite generating set X ′ ⊇ X of G. By definition,
γn(G) is generated by all iterated commutators of length n of elements of X ′.
These commutators commute modulo γn+1(G). Take a product p of several such
commutators. Then by part 3 of Exercise 5.7.10 pNn

is a product of commutators
of the form [xN

1 , . . . , x
N
n ] modulo γn+1(G). Since xN

i ∈H modulo γ2(G), each xN
i

is a product of elements of X modulo γ2(G). Then pNn

is a product of iterated
commutators of length n of elements of X. Thus every element of γn(G)/γn+1(G)
to the power Nn belongs to Hn. By Exercise 5.7.6 then Hn has finite index in
γn(G)/γn+1(G). �

The following exercise explains why nilpotency can be defined in terms of
lower central series.

Exercise 5.7.12. Let G be a group and suppose a series of its normal sub-
groups

G = G1 ≥ G2 ≥ ⋅ ⋅ ⋅ ≥Gc+1 = {1}
has the property that Gi−1/Gi is contained in the center of the group G/Gi for
each i = 2, . . . , c+1. Prove that then for i = 1, . . . , c, the subgroup Gi is contained
in the (c − i + 1)-th member of the upper central series of G and contains the
i-th member of the lower central series of G. In particular, the s-th member
of the upper central series is equal to G if and only if s + 1-th member of the
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lower central series is equal to 1. Thus G is nilpotent of class c if and only if
γc+1(G) = {1}

5.7.3.2. Distorted cyclic subgroups of nilpotent groups. Let G be a group
generated by a finite set X, and h ∈ G. Then let ∣h∣X be the length of a shortest
word in X representing h in G.

We can define the distortion function of the element h as

δh(n) = ∣hn∣X .
Exercise 5.7.13. Show that the distortion function δh(n), up to equivalence

from Section 1.5, does not depend on the choice of the finite generating set X.

Exercise 5.7.14. Show that δg(n) and δgk(n) are equivalent for every k ≠ 0.

Exercise 5.7.15. Show that the distortion function δh(n) is subadditive that
is

δh(m + n) ≤ δh(m) + δh(n).
The following exercise belongs to an elementary calculus book. Since this is

not a calculus book, we provide a hint.

Exercise 5.7.16. Let δ∶N → N be a subadditive function and for some c,
δ(nc) ≤ Cn where C is a constant. Show that there exists a constant C ′ > C
such that δ(m) ≤ C ′ c

√
m for every m. Hint: If m is a perfect cth power, there

is nothing to prove. Otherwise for some n ≈ c
√
m we have nc < m < (n + 1)c.

Then m = nc +m′ where m′ ≤ C1n
c−1 (use the Newton binominal formula from

Exercise 1.4.12). Apply the subadditivity: δ(m) ≤ δ(nc) + δ(m′) ≤ Cn + δ(m′)
and use induction on m.

The following exercise is an analog of Theorem 5.7.1 (the proof is also simi-
lar).

Exercise 5.7.17. Let G be a finitely generated group and H be a normal
subgroup of G of finite index. Let g ∈H. Then the distortion function of g in H
is equivalent to the distortion function of g in G.

We shall call a function f ∶N → N linear if it is equivalent to the identity
function n↦ n.

Exercise 5.7.18. Show that in the free commutative group Zn the distortion
function of every non-identity element is linear.

Lemma 5.7.19. For every element g of a finitely generated commutative
group G, if g is not of finite exponent, then δg(n) is linear.

Proof. By Lemma 5.7.7, G contains a finitely generated free commutative
subgroup H of finite index. Let k be the size of the factor-group G/H. Then
gk ∈H by Exercise 1.8.10. By Exercise 5.7.18 the distortion function of gk in H
is linear. Since g is not of finite exponent gk ≠ 1. Hence by Exercise 5.7.17, the
distortion function of gk in G is linear. Hence by Exercise 5.7.14, the distortion
function δg(n) in G is linear. �
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Exercise 5.7.20. Show that in the free group, the distortion function of
every non-identity element is linear. Hint. Show that the distortion functions
of conjugate words are equivalent. Then take a cyclically reduced word u and
show that δu(n) = n∣u∣.

Exercise 5.7.21. Show that the distortion function of an element in a group-
generating an infinite cyclic subgroup cannot be smaller than lnn. Hint: If
δu(n) is much smaller than lnn, then the number of different powers uk which
can be represented by words of length ≤ n in a finite alphabet, would be super-
exponential in n while the number of words of length ≤ n is exponential in n.

Exercise 5.7.22. Show that in the Baumslag–Solitar group BS1,2 = gp⟨a, b ∣
b−1ab = a2 ⟩, the distortion function of the element a is equivalent lnn. Hint:

The element a2n

is represented by the word b−nabn of length 2n + 1.

One of the key features of nilpotent groups is that the distortion functions of
commutators in a nilpotent group are much smaller than linear but much bigger
than logarithm.

Lemma 5.7.23. Let G be a nilpotent group of class 2 generated by a set X,
a, b ∈X. Then δ[a,b](n) does not exceed C

√
n for some constant C. 11

Proof. Note that by Exercise 5.7.9 and the fact that G satisfies the identity[x, y, z] = 1, we have [a, b]m2 = [am, bm], and the length of the right-hand side of
this equality is 4m. Hence δ[a,b](m2) ≤ 4m. Now we can apply Exercise 5.7.16.

�

The following lemma generalizes Lemma 5.7.23 to nilpotent groups of arbi-
trary class.

Lemma 5.7.24. Let G be a nilpotent group of class c generated by a set X.
Let X1 =X, and for every i > 1, Xi be the union of sets [Xj ,Xi−j], j = 1, . . . , i−1
(where by definition [A,B] = {[a, b] ∣ a ∈ A,b ∈ B}). Let h ∈ Xc. Then δh(n) does
not exceed C c

√
n for some constant C depending only on c.

Proof. Induction on c. For c = 2 we can apply Lemma 5.7.23. Let c > 2,
h = [h1, h2] where h1 ∈ Xi, h2 ∈ Xc−i, 1 ≤ i ≤ c − 1. Then by Exercise 5.7.9,

hmc = [hmi

1 , hmc−i

2 ]. By the induction hypothesis, hmi

1 can be represented, modulo

γi+1(G), by a word of length at most C1m, and hmc−i

2 can be represented, modulo
γc−i+1(G) by a word of length at most C2m where C1,C2 are constants. Since[γj(G), γc+1−j(G)] = 1 for every j > 0 (by part 5 of Exercise 5.7.10), we conclude

that hmc

can be expressed as a word in X of length at most 2(C1+C2)m. Hence
δh(mc) ≤ C3m for some constant C3. It remains to apply Exercise 5.7.16. �

It turns out that the distortion function δh(n), h ∈ Xc, is in fact equivalent
to c
√
n provided h is not of finite exponent.

Theorem 5.7.25. Let G be a finitely generated nilpotent group with filtration
G =G1 > G2 > ⋅ ⋅ ⋅ > Gc+1 = {1}. Let h ∈ Gc and h does not have a finite exponent.
Then δh(n), up to the equivalence, exceeds c

√
n.

11In fact one can take C = 8.
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Proof. We need to show that if hn is represented by a word w of length
r in the generators of G, then it is represented by a word of length at most rc

in the generators of Gc (since Gc is a finitely generated commutative group, we
then can use Lemma 5.7.19).

If c = 1, G is commutative, so the statement follows from Lemma 5.7.19.
Let c ≥ 2. Consider the finitely generated commutative group G/G2. Let r1 be
the free rank of this group. By Lemma 5.7.7 it contains a free commutative
subgroup A1 of free rank r1 and finite index. Let H1 be the preimage of A in
G. Then H1 has finite index in G (prove it!). The group H1 has a filtration
H1 > G2 > ⋅ ⋅ ⋅ > Gc+1 = {1} and H1/G2 is isomorphic to A1. By Exercise 1.8.10 if
a natural number k > 0 is divisible by the size of G/H1 (which depends only on
G but not on g), then gk ∈H1. Then by Exercise 5.7.17, the distortion functions
of gk in H1 and in G are equivalent. So we can consider H1 instead of G and gk

instead of g (by Exercise 5.7.14). Eventually we shall demand that k is divisible
by some finitely many other numbers (all of which will not depend on g).

By Exercise 5.7.13, we can choose a finite generating set of H1 as we want.
Since all iterated commutators in H1 of sufficiently large length are equal to 1, we
can choose a finite generating set X of H1 which is closed under taking inverses
and commutators. Moreover, we can add a finite number of elements to X and
assume that X ∩Gi generates Gi for every i. Even moreover since commutators
of any two elements of H1 are in G2, we can assume that the images of the first
r1 elements x1, . . . , xr1

of X in A1 =H1/G2 form a free generating set of A1.

Then we denote Xi = X ∩ Gi, i = 1, . . . , c, X ′i = X ∖Xi. Let w be a word

in X representing gkn for some n > 1. Thus X1 ∖ X2 = {x±1
1 , . . . , x±1

r1
}. Then

the X-multilength of w is a vector (n1, n2, . . . , nc) where ni is the number of
occurrences of letters from X ′i and their inverses in w. Thus X =X ′c+1.

Now let us do some string rewriting. Pick one of the letters among x1, . . . , xr1
,

say, x1. The rewriting rules are

(5.7.2) xα
i x

β
1 → x

β
1x

α
i xk

where α,β ∈ {−1,1}, xk is a generator from X that is equal to the commutator[xα
i , x

β
1 ], j ≤ r1. Using these rules, we can move all occurrences of letters xα

1 ,
α ∈ {−1,1} to the left. The resulting word has the form x

q1

1 w1 where w1 does

not have letters from {x1, x
−1
1 }.

Let us estimate the multilength (n′1, n′2, . . . , n′c) of w1. It contains all the
letters of w minus letters from {x1, x

−1
1 } plus new letters introduced during the

rewriting. Every time we apply a rule (5.7.2) with xi ∈ X ′e, we add a new letter
from X ′e+1, keeping the letter xi. Thus, in particular, n′1 is at most n1 − q where
q is the number of occurrences of x±1

1 in w. In general we have:

Exercise 5.7.26. Prove the following “binomial inequality”

n′i ≤ ni + (q
1
)ni−1 + (q

2
)ni−2 + ⋅ ⋅ ⋅ =

i

∑
s=0
(q
s
)ni−s

Hint: Use induction on q. If q ≤ 1, the inequality was established above. If q > 1,
then moving one occurrence of x±1

1 all the way to the left increases each ni by
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at most ni−1. Then use the Pascal triangle equality (q−1
j
) + (q−1

j−1
) = (q

j
) (Exercise

1.1.4).

We shall continue moving letters x1, . . . , xr1
to the left until no such letters

remain in w′. Our goal is to show that the last component of the multilength of
w′ never exceeds some constant times rc where r is the length of w. It is easier to
show a stronger result that the i-th coordinate of the multilength never exceeds
Cri (for some constant i). Suppose that we already have ni ≤ Cri. Since q ≤ r,
we have (q

i
) ≤ ri. Therefore Exercise 5.7.26 implies n′i ≤ ∑Crsri−s = C1r

i for
some constant C1 which does not depend on r or w. Thus by moving all letters
x±1

1 , . . . , x±1
r1

to the left, we deduce that gkn is represented by a word of the form

x
p1

1 . . . x
pr1

r1
wr1

where the word wr1
does not contain letters from X ′1, and its

multilength in H1 does not exceed (0,Cr1
r2, . . . ,Cr1

rc) for some constant Cr1
.

Note that the element of G represented by wr1
is in G2. Since g ∈ Gc ⊆ G2, the

image of xp1

1 . . . x
pr1

r1
is equal to 1 in A1. Since the images of x1, . . . , xr1

in A1 are
free generators, we conclude that p1 = ⋅ ⋅ ⋅ = pr1

= 0.
Now we have to consider wr1

which is a word in X2 representing gkn. By
the choice of X, we have that X2 generates G2. We will apply to G2 the same
procedure we applied to G. First find a finite index subgroup H2 ≤ G2 containing
G3 such that A2 =H2/G3 is a free commutative group of free rank r2. In order to
make sure gk belongs to H2, we demand now that k is divisible by the product∣G/H1∣∣G2/H2∣. Then make X2 a bit smaller so that the images of the first r2

elements of t1, . . . , tr2
of the new generating set T of H2 in H2/G3 are free

generators of A2. By both replacing G2 with a finite index subgroup H2 and by
making X2 smaller, we increase the multilength of the word representing gkn.

But the increase is only by a constant multiple (why?). Thus we can still assume
that a word w in the alphabet T , represents gkn and has multilength (in G2)
at most (Cr2, . . . ,Crc) for some constant C. As before let us move the letters
from T1 = T ∖G3 to the left in w. Since T ⊂ G2, by the definition of filtration,
the “binomial inequality” now looks as follows:

n′i ≤ ni + (q
1
)ni−2 + (q

2
)ni−4 + . . .

where q < Cr2 is the number of occurrences of letters from T1 in w′, (n2, . . . , nc) is
the multilength of w and (n′2, . . . , n′c) is the multilength of the word obtained by
moving all occurrences of t±1

1 to the left. Now since q < Cr2 we get (q
j
) ≤ C1r

2j.

Since ni−2j ≤ Cri−2j, we get inequality n′i ≤ C2r
i for some constant C2. As

before, after moving all letters t±1
1 , . . . , t±1

r2
to the left of w, we obtain a word

of the form ts1

1 . . . t
sr2

r2
wr2

where wr2
does not contain letters from {t±1

1 , . . . , t±1
r2
}.

Since the images of t1, . . . , tr2
in H2/G3 are free generators of A2, we conclude

that s1 = s2 = ⋅ ⋅ ⋅ = sr2
= 0.

Now we can proceed with considering wr2
and G3 instead of G2, etc.

Exercise 5.7.27. Complete the proof of Theorem 5.7.25

�
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5.7.3.3. The theorem of Bass and Guivarc’h. Now we fix a finitely generated
nilpotent group G with lower central series

G = γ1(G) ≥ γ2(G) ≥ ⋅ ⋅ ⋅ ≥ γp(G) ≥ γp+1(G) = 1.

By Exercise 5.7.10, for each h = 1, . . . , p, the group γh(G)/γh+1(G) is finitely
generated and commutative. Let rh be the free rank of γh(G)/γh+1(G) and let
d(G) = ∑p

h=1 hrh.

Theorem 5.7.28 (Bass [25], Guivarc’h [140, 141]). The growth function

f(x) of a finitely generated nilpotent group G is equivalent to xd(G).
5.7.3.4. The lower bound. Let A = G/γ2(G). Then A is a finitely generated

commutative group. Hence it has a finitely generated free commutative subgroup
B such that A/B is finite (by Theorem 5.7.3). Let T̄1 be a free generating set of
B, for each element t̄ ∈ T̄1 pick one element t ∈ G whose image in A is t̄. Denote
the (finite) set of all these t by T1.

Let us define sets T2, T3, . . . by induction: Th+1 = [Th, T1]. Then Th ⊂ γh(G)
by the definition of γh(G). By Lemma 5.7.11, the image of Th in γh(G)/γh+1(G)
generates a commutative subgroup of free rank rh. Let T = ∪Th, it is a finite
subset of G. By Theorem 5.7.8, there are rc elements g1, . . . , grc of Tc which
generate a free commutative subgroup of free rank rc.

Let us use induction on pairs (c, d(G)) ordered lexicographically. For c = 1
and any d(G), the statement follows from Theorem 5.7.4. Let c > 1. If rc = 0,
then γc(G) is finite, by Theorem 5.7.1 the growth function of G is equivalent to
the growth function of G/γc(G) which is nilpotent of class c − 1 and we can use
the induction assumption.

Suppose that rc > 0. Then g = gc,1 generates an infinite cyclic subgroup H.

Since H is in the center of G (why?), H is normal in G and we can consider the
factor-group G′ = G/H. The lower central series of G′ is γ1(G)/H,. . . , γc(G)/H
(prove it!). Since γi(G′)/γi+1(G′) = (γi(G)/H)/(γi+1(G)/H) is isomorphic to
γi(G)/γi+1(G) for i = 1, . . . , c − 1 (why?) and γc(G′) = γc(G)/H, we have that
d(G′) = d(G) − c. Therefore we can use the induction assumption for G′ and

conclude that for every n, G′ contains at least m = Cnd(G′) = Cnd(G)−c elements
represented by words of length at most n. Let ū1, . . . , ūm be these elements in
G′ = G/H and u1, . . . , um be the elements represented by the same words in G

(so that ūi is the image of ui in G/H). Note that the element gk for k between 1
and nc can be represented by a word of length at most C1n for some constant C1

by Lemma 5.7.24. Therefore the elements uig
j where i = 1, . . . ,m, j = 1, . . . , nc

can be represented by words of length at most n +C1n. All these elements are
different. Indeed, if uig

j = ukg
l, then ūi = ūk in G′, hence ui = uk. Canceling ui,

we get gj = gl which implies j = l since H is infinite cyclic (i.e., isomorphic to Z,
and Z does not have two equal numbers). The number of these elements uig

j

is then mnc = nd(G′)+c = nd(G), hence the growth function f(n) of G satisfies

f(n +C1n) ≥ nd(G) which implies the required lower bound.
5.7.3.5. The upper bound. Consider a finite generating set T of a nilpotent

group G of class c. Then find the elements gi,j as in Section 5.7.3.4. Again use
induction on (c, d(G)). If rc = 0, then the growth functions of G and G/γc(G) are
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equivalent by Part (2) of Theorem 5.7.1 and we can use the induction assumption
because the nilpotency class of G/γc(G) is c − 1. So suppose that rc > 0, so that
the subgroup H generated by g = gc,1 is infinite cyclic. By induction, the growth

function of G′ = G/H does not exceed Cnd(G′) = Cnd(G)−c. Let u be an element
in G which can be represented by a word of length ≤ n. Then the image of u in G′

can be represented by a word of length at most n, and there are at most Cnd(G′)
such images. If two elements u, v which can be represented by words of length
≤ n have the same image in G′, then u = vgs where gs can be represented by a
word of length at most 2n (why?). By Theorem 5.7.25 there are at most C1n

c

such numbers s for some constant C1. Therefore the growth function f(n) of

G with respect to the generating set T cannot exceed Cnd(G′)C1n
c = CC1n

d(G)
which implies the desired upper bound.

5.7.4. Grigorchuk’s group of intermediate growth. We will start with
a Mealy automaton G. Its alphabet X is {0,1}.

The automaton G is on Figure 5.42, it has five vertices labeled by a, b, c, d,1.
Let us denote the transformations of the free monoid X∗ corresponding to these
vertices by the same letters.

a

s

b

c d

(0,0)
(1,1)

(0,0)

(1,1)

(1,1)

(0,1) (1,0)
(0,0)(1,1)

(0,0)

Figure 5.42. The Mealy automaton defining the Grigorchuk group

Then for every word u in the alphabet {0,1} we have
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(5.7.3)

1(u) = u,
a(0u) = 1u, a(1u) = 0u,
b(0u) = 0a(u), b(1u) = 1c(u),
c(0u) = 0a(u), c(1u) = 1d(u),
d(0u) = 0u, d(1u) = 1b(u).

Exercise 5.7.29. Prove formulas (5.7.3).

Note that G acts by automorphisms on the vertices of the infinite rooted
binary tree T (see Figure 1.14), which is the Cayley graph of the free semigroup
with two generators 0,1. Thus there exists a natural homomorphism from G into
the group Aut(T ) of all automorphisms of the tree T. That homomorphism is
injective (why?), so every element of G can be viewed as an automorphism of T.

Exercise 5.7.30. By (5.7.3) the transformation 1 is the identity element of
Aut(T ). Prove that

(1) a2 = b2 = c2 = d2 = 1, in particular each transformation a, b, c, d is a
bijection.

(2) b, c, d pairwise commute and the product of any two of these transforma-
tions is the third: bc = d, cd = b, db = c.

By Exercise 5.7.30, the transformations a, b, c, d are bijections, and so they
generate a group which we shall denote by G. That group was first discovered
by Grigorchuk [121, 123, 125] (using a different notation). The fact that it
is generated by the Mealy automaton G was observed by Merzlyakov [230] and
appeared in the third edition of [170].

It was first established by Grigorchuk [121] that G is a periodic group (later
proved to have unbounded exponent) thus giving one more example of an infinite
finitely generated periodic group (see Section 4.4.6).

Later, in [123, 125], Grigorchuk proved that G has intermediate growth.

Theorem 5.7.31. The group G is infinite, periodic of unbounded exponent,
and has intermediate growth.

There are many proofs of this important theorem. Here we basically follow
Bartholdi’s paper [22].

Let H be the normal subgroup generated by the subgroup V = {1, b, c, d}.
Exercise 5.7.32. Show that H = gp⟨ b, c, d, ba, ca, da ⟩ and ∣G/H ∣ = 2. More-

over for every u ∈ X∗ and every g ∈ H, g(u) and u have the same first letters.
Hint: Show that H has index 2 in G. One coset of H is H itself. What is the
representative of the other coset? The fact that in every group every subgroup
of index 2 is normal is a standard abstract algebra exercise.

There is a map ψ from H into the direct square of the group Aut(T ): ψ(g) =(g0, g1), so that g(0u) = 0g0(u), g(1u) = 1g1(u). Note that ψ is injective (prove
it!). By Exercise 5.7.32, the map ψ can be defined explicitly:
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(5.7.4) ψ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
b ↦ (a, c), ba ↦ (c, a);
c↦ (a, d), ca ↦ (d, a);
d↦ (1, b), da ↦ (b,1).

Thus in fact ψ(H) ⊆ G ×G.
Note also that ψ is a homomorphism (check it!). Moreover if we compose ψ

with the projection onto the first (second) coordinate, then we obtain a homo-
morphism ψi∶g ↦ gi into G (i = 0,1), and its image contains all generators of G
(see (5.7.4)). Thus ψ0 is a surjective homomorphism from a proper subgroup H
of G onto G. Therefore G is infinite.

Exercise 5.7.33. Show that for every g ∈H, if ψ(g) = (g0, g1), then ψ(aga) =(g1, g0).
We will also consider a map from the free monoid F =mn⟨a, b, c, d ⟩ to F ×F

given by the formulas (5.7.4). We shall denote that map also by ψ. Note that if
a word w represents an element g ∈ H, then the components of the pair ψ(w)
represent the corresponding components of ψ(g) (why?).

The crucial idea of Bartholdi’s proof is assigning different weights to different
generators of G. Let η ≈ .811 be the real root of the polynomial x3 + x2 + x − 2.
Let us assign the following weights ω to the generators of G:

ω(a) = 1 − η3, ω(b) = η3, ω(c) = 1 − η2, ω(d) = 1 − η.
It should become clear why such (strange on the first glance) weights are

assigned to the generators of G. As usual, the weight of a word is the sum
of weights of its letters, and the weight of an element g of G, denoted ω(g),
is the minimal weight of a word that represents this element (note that since
every generator squared is 1, we only need to consider positive words), and the
weighted growth function: fω(n) is the number of elements of G of weight at
most n.

Exercise 5.7.34. Show that the weighted growth function fω of G is equiv-
alent to its (usual) growth function.

Lemma 5.7.35. Every g ∈ G is represented by a minimal weight word of the
form

(5.7.5) [∗]a ∗ a ⋅ ⋅ ⋅ ∗ a[∗]
where ∗ ∈ {b, c, d} and the first and the last *’s are optional.

Proof. Indeed, if a word representing g has two consecutive letters from{b, c, d}, then their product can be replaced either by 1 (if the letters are equal)
or by the third letter from {b, c, d}. The number η is chosen in such a way that
for any permutation (x, y, z) of {b, c, d} we have ω(x) ≤ ω(y) + ω(z). Thus the
substitution of z for xy will not increase the weight of the word. �

Note that the property of η used in the proof of Lemma 5.7.35 is not the main
reason we choose this number. Many weight functions ω satisfy this property, in
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particular, any constant function. Thus Lemma 5.7.35 is still true if we replace
“minimal weight” by “minimal length”.

The next lemma shows that if ψ(g) = (g0, g1), then the total weight of g0

and g1 is usually smaller than the weight of g. Thus although g0, g1 encode
g, they weigh less. Basically this is the property that makes the growth of G
intermediate. A version of it was used in most other proofs of Theorem 5.7.31
including the original proof in [125].

Lemma 5.7.36. Let g ∈H with ψ(g) = (g0, g1). Then

η(ω(g) + ω(a)) ≥ ω(g0) + ω(g1).
Proof. Let w be a minimal weight word of the form (5.7.5) representing g

in G. Thus the number of *’s in w is at most the number of a’s plus one. Let
ψ(w) = (w0,w1), so that w0 represents g0, w1 represents g1. Note that

(5.7.6)
η(ω(a) + ω(b)) = ω(a) + ω(c),
η(ω(a) + ω(c)) = ω(a) + ω(d),
η(ω(a) + ω(d)) = 0 + ω(b).

(Check it! These formulas are the first significant reason for the choice of η
and the weight function ω.) Since ψ(b) = (a, c) and ψ(aba) = ψ(ba) = (c, a) (see
Exercise 5.7.33), each b in w contributes ω(a) + ω(c) to the total weight of w0

and w1; a similar argument applies to c and d. After we subdivide w into letters
from {b, c, d} and subwords from {aba, aca, ada}, we may have just one letter,
a, left. Therefore ηω(g) is a sum of left-hand terms in (5.7.6) possibly minus
ηω(a) while ω(g0) + ω(g1) is bounded by the sum of the corresponding right-
hand terms (it is not necessarily an equality because w0,w1 may be not minimal
weight words representing g0, g1). �

The idea to count the number of elements of G of weight not exceeding n

is to represent elements of G by finite full binary trees introduced in Section
1.4.1.1. Recall that a full binary tree is a tree drawn on a plane where every
vertex has out-degree either 2 or 0 (and in-degree 1 or 0).

Exercise 5.7.37. Prove that the number of full binary trees with n+1 leaves
(i.e., the Catalan number Cn) does not exceed n! ≤ nn = 2n log2(n). Hint. From
every tree with n leaves one can get n trees with n + 1 leaves: the tree number
i is obtained by adding two “children” to the leaf number i. 12

We need two more real numbers: α = ln 2

ln 2

η

≈ .767 and ζ = ω(a)
2

η
−1
≈ .319.

Lemma 5.7.38. Let K > ζ. For every natural n let Ln be the maximal of two
numbers: 1 and the smallest integer exceeding

(2 n − ζ
K − ζ )

α

− 1.

12Some of these trees are the same. The precise formula is Cn = 1

n+1
(2n

n
) which is much

smaller than n!, see [308], but we will not use that formula.
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Then the weighted growth function fω(n) satisfies

(5.7.7) fω(n) ≤ CLn−12Ln−1fω(K)Ln .

Hence fω(n) ≤ 2cn.8

for some c > 0.

Proof. We construct an injective map τ from G into the set of labeled
binary rooted trees each of whose leaves is labeled by an element of G of weight
at most K and each non-leaf vertex is labeled by a or 1. The tree τ(g) will
be called the picture of g. It is constructed as follows. If ω(g) ≤ K, then the
picture of g is a one-vertex tree with the vertex labeled by g. Let ω(g) > K.
Since ∣G/H ∣ = 2 (Exercise 5.7.32) and a /∈ H (why?), either g ∈ H or ga ∈ H.
Accordingly, denote by h either 1 or a. Let ψ(gh) = (g0, g1). By Lemma 5.7.36,
ω(gi) ≤ ηω(g) (prove it!), So by induction on the weight, we can assume that
the tree pictures T0 and T1 of g0 and g1 are already known. Connect each of
these trees to a new root vertex by an edge to obtain a new binary rooted tree
T with T0 being to the left of T1. Label the root of T by h. The resulting tree is
the picture τ(g) of g.

Let us prove that τ is injective. Let T be a tree in the image of τ. If T
consists of just one vertex labeled by g, then τ−1(T ) = g. Suppose that T has
more than one vertex. Let h ∈ {a,1} be the label of the root of T , and T0, T1 be
the two disjoint subtrees obtained by removing the root and the adjacent edges
. Then, by induction, we can assume that there is at most one gi (i = 0,1) such
that τ(gi) = Ti. Since ψ is injective, there exists unique g ∈ G with gh ∈ H and
ψ(gh) = (g0, g1). Hence τ−1(T ) = g.

We next prove by induction on n that if ω(g) ≤ n, then its picture has at
most Ln leaves. Indeed, if ω(g) ≤ K, then the picture of g is a single vertex
tree, hence has one leaf, and L1 = 1. Otherwise the picture of g consists of a root
connected to the pictures of g0 and g1. Suppose that ω(g0) = l, ω(g1) =m. Then
by Lemma 5.7.36 we have l +m ≤ η(n +ω(a)). By induction, these two pictures
have at most Ll and Lm leaves. Since α < 1, we have Ll +Lm ≤ 2L(l+m)/2 for all
m, l (check it!). By direct computation L η

2
(n+ω(a)) = ⌊Ln/2⌋ (prove it! – this is

the place in the proof where ζ is used), so the number of leaves of the picture
of g is at most

Ll +Lm ≤ 2L(l+m)/2 ≤ 2L η

2
(n+ω(a)) ≤ Ln

(check this!)
Thus fω(n) is bounded by the number of pictures with Ln leaves. There

are CLn−1 full binary trees with Ln leaves, 2 choices for labels of each of the (at
most Ln − 1 by Exercise 1.3.11) non-leave vertices (the labels are a and 1) and
at most fω(K) choices for labels of each of the leaves. This gives us (5.7.7).

It remains to note that, by Exercise 5.7.37, for some constants c1, c > 0 and

every α′ > α, we have CLn−1 ≤ 2c1Ln lnLn ≤ 2c2nα ln n ≤ 2cn.8

for all n (here we
used the fact that for every ǫ > 0, we have lnn < nǫ for all sufficiently large
n). �

Thus the growth function of G is at most (up to the equivalence from Section

1.5) 2n.8

. Note that by using the precise formula for Catalan numbers, we would
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obtain the upper estimate for the growth 2nα

which is currently the best known
upper estimate for the growth function of G.

Let us prove that G is periodic. Here we basically follow the book by de la
Harpe [82, Chapter VIII]

Let g ∈ G. We shall prove, by induction on the length ∣g∣, that g2m = 1 for
some m. For the generators of G, the statement is obvious: all generators have
exponent 2. By Lemma 5.7.35 (using length instead of weight) a minimal length
word w representing g has the form [∗]a ∗ a ⋅ ⋅ ⋅ ∗ a[∗] as in that lemma. Let n
be the length of that word. If w starts and ends with a or with ∗, we consider
a cyclic shift of w moving the first letter to the last position. Applying one of
the reductions a2 → 1, bc → d,. . . , we get an element of length at most n − 1
representing a conjugate of g. It has exponent 2m for some m. Hence g has the
same exponent. Thus we can assume that (up to a cyclic shift) w = au1a . . . ul,
and n = 2l is even, ui ∈ {b, c, d}.

Suppose that l is even. Then g ∈H. We can represent

ψ(w) = ψ(au1a)ψ(u2)ψ(au3a) . . . ψ(ul) = (w0,w1)
where the length of each of w0,w1 is at most n/2 (check it!). By induction, the
elements g0, g1 represented by w0,w1 have exponents 2m0 and 2m1 respectively
for some m0,m1. Since ψ is injective on H, we have g2m = 1 where m is the
maximum of m0 and m1.

Finally suppose that l is odd so that n = 4s−2 for some s ≥ 2. Then consider

ww = (au1a)u2 . . . u2m−2(au2m−1a)u1(au2a) . . . (au2m−2a)u2m−1.

The length of ww is 8s−4, so, as in the previous case ψ(ww) = (w′,w′′) for some
words w′,w′′ of length at most 4s − 2 (i.e., at most the length of w). We show
that the exponents of elements g′, g′′ are finite powers of 2.

Consider three cases.
Case 1. If one of the ui is d then we have ψ(auia) = (b,1) and ψ(ui) = (1, b),

thus w′ and w′′ are of length at most 4s−3, and we can apply induction on length.
Case 2. If one of ui is c, then ψ(auia) = (d, a), ψ(ui) = (a, d) (Exercise

5.7.33). Hence both w′ and w′′ contain d and the previous case applies.
Case 3. Finally if none of ui is d or c, then w = (ab)l. But ab has exponent

8 (check it!), so g has exponent dividing 8.
Since G is infinite, finitely generated and periodic, it cannot be an extension

of a nilpotent group by a finite group by Corollary 3.4.2. Hence by Gromov’s
polynomial growth theorem [128] the growth of G is super-polynomial. In fact
Gromov’s polynomial growth theorem is not necessary here. Grigorchuk [125]
gave a purely combinatorial proof that the growth function f(n) of G is not

smaller (with respect to the partial order ≺ from Section 3.7.1) than 2
√

n. The

biggest known lower estimate is due to Bartholdi [23] and is ≈ 2n.5157

.

It remains to prove that G does not have bounded exponent. That easily
follows from Zel’manov’s solution of the restricted Burnside problem [333, 334].
Indeed, suppose that G has exponent m. For every element g ≠ 1 in G, g must
act non-identically on some vertex vg of T. Recall that vertices of T are words
in {0,1}∗. Let n be the length of the word vg. Consider the (finite) set Dn of
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all words of length n. Then G (and in fact the whole Aut(T )) permutes Dn

(why?). Thus there exists a homomorphism ψn from G into a finite group Gn

of permutations of Dn (this homomorphism simply restricts every g ∈ G on Dn).
Note that ψn(g) ≠ 1. Therefore the orders of finite groups Gn cannot be bounded
independently on n (why?). But each Gn is generated by 4 elements (images
of a, b, c, d) and has exponent ≤ n. That contradicts Zel’manov’s Theorem [333,

334].
Of course this is an extremely non-geodesic proof.
An idea of a short syntactic, proof was communicated to us by Laurent

Bartholdi. Denote by w3 the word abab. The element of G represented by w3

has order 8 (prove it!). Denote by σ the substitution a↦ aca, b ↦ d, d ↦ c, c ↦ b.

Then set wn+1 = aσ(wn).
Problem 5.7.39. Is it true that the order of wn, n = 3,4, ..., can be arbitrary

large?

In fact, a much stronger statement than unboundedness of the exponent of
G follows from Abért’s Theorem 5.4.1. One can show that the action of G on
the set of all infinite binary words satisfies Abért’s criterium. Hence we deduce
that G is lawless (similar to the R. Thompson group F , see Theorem 5.6.37).

Theorem 5.7.40 (Abért, [1]). G does not satisfy any non-trivial group iden-
tity.

Proof. To apply Abért Theorem 5.4.1, we need to prove the following state-
ment.

Claim. For every finite set of infinite binary words w1,w2, ...,wk+1, there
exists an element g ∈ G which fixes w1, ...,wk and does not fix wk+1.

We will prove it in the case when k = 1 leaving the general case for the reader
(see [1]). Suppose first that w1,w2 start with different letters. Then there exists
an element h of G such that h(w2) starts with the word 100 (prove it!). Then
h(w1) must start with 0 (why?). Therefore d(h(w2)) ≠ w2 because d(h(w2))
starts with 101 (check it!) but d(h(w1)) = h(w1) because d fixes every word
that starts with 0. Thus we can take g = hd.

Now suppose that w1 and w2 have a common prefix and let w be the longest
common prefix of w1 and w2 so that w1 ≡ ww′1, w2 ≡ ww′2 and w′1,w

′
2 start with

different letters. Then, as we just proved, there exists an element g′ such that
g′(w′1) = w′1 but g′(w′2) ≠ w′2.

Consider a sequence of subgroups of G: H1 =H, Hi+1 is a preimage of Hi×Hi

under ψ, i ≥ 1.

Exercise 5.7.41. Show that Hm is the stabilizer in G of the set of all vertices
of the infinite binary rooted tree T at distance m from the root.

For every binary word v of length m there exists a homomorphism ψv from
Hm to G. This is just a composition of homomorphisms ψj1

, ..., ψji
where jk ∈{0,1} and w ≡ j1j2...ji. Since, as we showed before, ψ0(H) = ψ1(H) = G, by

induction on m it is easy to show that ψv(Hm) = G (prove it!).
In particular, there exists an element g in H∣w∣ such that ψw(g) = g′. By

Exercise 5.7.41 g(w1) ≡ wg′(w′1) ≡ w1 and g(w2) ≡ wg′(w′2) /≡ w2.
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Exercise 5.7.42. Prove the above Claim for k ≥ 2.

�

The proof of Theorem 5.7.31 is complete.

Remark 5.7.43. As for semigroups of intermediate growth considered in
Section 3.7.2, the Grigorchuk group G has a syntactic description also. It was
found by Lysenok [212]. Let X = {a, b, c, d}, and σ∶X →X+ be the substitution
a ↦ aca, b ↦ d, c ↦ b, d ↦ c. Then the group G has the following monoid
presentation mn⟨a, b, c, d ∣ a2 = 1, b2 = 1, c2 = 1, d2 = 1, bcd = 1, σn((ad)4) =
1, σn((adacac)4) = 1, n = 0,1,2, . . . ⟩.

5.8. Amenable groups

Amenability and related notions are an extremely important part of group
theory now, with many applications beyond algebra: in geometry, functional
analysis, operator algebras, dynamical systems, probability, and so on. It all
started with Hausdorff’s theorem that one can cut a sphere S2 minus a countable
set of points Z into a finite number of pieces, rearrange the pieces using rotations
of R3 and obtain two copies of S2 ∖ Z. Later Banach and Tarski proved that
there is no need to remove a countable set of points: one can double the sphere
S2 itself. Analysing Hausdorff’s proof, von Neumann observed that the reason
for Hausdorff’s phenomenon is the fact that the group of rotations of R3, the
special orthogonal group SO(3,R) (see Exercise 1.4.2), contains a free subgroup
with two generators. For example, if we allow only translations Tp⃗∶ v⃗ ↦ p⃗ + v⃗
instead of rotations, we won’t be able to double the sphere (by Corollary 5.8.36
below). Thus he defined a class of groups (he called these groups measurable,
now these groups are called amenable) which cannot be used to double sets on
which these groups act. In this section, we give several definitions of amenable
groups, examples of amenable and non-amenable groups and some properties of
amenable groups. For more information see books [329, 119] or [83].

5.8.1. The free groups of orthogonal matrices and the Hausdorff–

Banach–Tarski paradox.

5.8.1.1. A free subgroup of SO(3,R). Exercise 1.8.32 shows that the group
SL(2,R) contains an isomorphic copy of the free group F2 with 2 generators.
Now we show that SO(3,R) also contains a copy of F2.

Exercise 5.8.1 (Requires some knowledge of Linear Algebra). (1) Show
that SO(2,R) is commutative and so F2 is not a subgroup of SO(2,R).

(2) Show that every matrix A ∈ SO(3,R) is similar to an (orthogonal) matrix
of the form ⎛⎜⎝

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0
0 0 1

⎞⎟⎠
for some φ. That is, A is the matrix of a rotation of R3 about a line containing(0,0,0) through the angle φ. Hint: Show that A has a real eigenvalue (since
the degree of the characteristic polynomial is odd). Consider an orthonormal
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basis B of R3 containing an eigenvector of A and the matrix B of the linear
transformation v⃗ ↦ Av⃗ in that basis. Show that B is also an orthogonal matrix
(since the transition matrix from the standard basis of R3 to B is orthogonal).

An easy proof of the fact that SO(3,R) contains an isomorphic copy of F2

was found by Świerczkowski [311].

Exercise 5.8.2 (see [311]). Show that the subgroup of SO(3,R) generated
by the two orthogonal matrices

A =
⎛⎜⎜⎝

1
3
−2
√

2
3

0
2
√

2
3

1
3

0
0 0 1

⎞⎟⎟⎠ ,B =
⎛⎜⎜⎝

1 0 0

0 1
3
−2
√

2
3

0 2
√

2
3

1
3

⎞⎟⎟⎠
is isomorphic to F2. Hint: Let w be a reduced word in A,B. You need to show
that w(A,B) is not the identity matrix. Clearly if w is of length 1, the matrix
w(A,B) is not the identity. Let ∣w∣ = k ≥ 2. Show that it is enough to consider
the case when w starts with A or B. Consider the first column of the matrix
w(A,B), i.e., the vector

w(A,B)⎛⎜⎝
1
0
0

⎞⎟⎠
and prove by induction that it has the form ( a

3k ,
b
√

2
3k ,

c
3k ) for some integers

a, b, c, moreover b /≡ 0 mod 3 (hence the matrix w(A,B) is not the identity).
To prove the second of this assertions, you need to represent the word w as
uv where u ≡ xy is of length 2 (here x ∈ {A,B}, y ∈ {A±1,B±1}), assume that
the assertion is true for the word yv, and then consider all possibilities for u
(AA,AB,AB−1,BA,BB,BA−1).

5.8.1.2. The Hausdorff–Banach–Tarski paradox. Consider a sphere S2 of ra-
dius r > 0 in R3. Since every orthogonal matrix A is the matrix of a rotation
φA of R3 about some line lA (see Exercise 5.8.1, Part (2)), the group SO(3,R)
acts on S2. So we will identify the group of matrices SO(3,R) with the group of
rotations of S2. Each rotation C ∈ SO(3,R) fixes exactly two points pC , qC on
S2 - these are the intersection points of the line lC with S2.

The Hausdorff–Banach–Tarski paradox is contained in the following

Theorem 5.8.3. The sphere S2 contains four disjoint subsets U1, . . . ,U4,
such that by rotating these subsets we can compose two spheres of the same
radius.

To prove Theorem 5.8.3. take any free subgroup gp⟨A,B⟩ in SO(3,R),
say, the one from Exercise 5.8.2. We shall denote this subgroup F̂2. Since F̂2 is
free, its elements are both rotations of S2 and words in A,B,A−1,B−1. Thus we
shall refer to elements of F̂2 as rotations and as words.

Let us start with cutting the group F̂2 into disjoint pieces.

Definition 5.8.4. We say that a group G and its subset X are equidecom-
posable of degree k if X is a disjoint union of k subsets X1,X2, . . . ,Xk and there
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exist k elements g1, . . . , gk ∈ G (called the translating elements, such that G is
the union of translations X1g1, . . . ,Xkgk.

Remark 5.8.5. Note that since Gg = G for every g ∈ G, if {g1, . . . , gk} is a set
of translating elements, then {g1g, . . . , gkg} is also a set of translating elements.
Therefore we can always assume that the set of translating elements contains 1.

Notice that F̂2 contains 2 disjoint subsets Wa and Wb where Wa consists of
reduced words that end with A±1 and Wb consists of reduced words that end
with B±1. Moreover Wa is the union of disjoint subsets WA (words that end
with A) and WA−1 (words that end with A−1. Similarly Wb is the union of two

disjoint subsets WB and WB−1 . Note also that F̂2 is the disjoint union of subsets
WA and WA−1A, and also the disjoint union of WB and WB−1B. Thus F̂2 is
equidecomposable of degree 2 with Wa (translating elements 1 and A) and with
Wb (translating elements 1 and B.

Now let us cut S2. Let U be the set of points pC , qC ,C ∈ F̂2.

Exercise 5.8.6. Show that Û ⋅ F̂2 = U.

Note that U is a countable set because F̂2 is countable. Therefore there
exists a point z ∈ S2 which does not belong to U. Moreover S2 is the union of
U and all orbits z ⋅ F̂2 for z /∈ U. Consider the set Y of all orbits z ⋅ F̂2, z /∈ U.
Two distinct orbits in Y do not intersect (why?), hence S2 is a disjoint union of
U and orbits from Y. Pick one point z in each orbit Y ∈ Y. Let Z be the set of
these points z. Note that then S2 is a disjoint union of U and Z ⋅ F2.

Note that S2 is the disjoint union of U , Z, Z ⋅WA, WA−1 ⋅ Z, WB ⋅ Z and
WB−1 ⋅Z. Then S2 ∖U is a disjoint union of W̄A = Z ⋅WA, W̄B = Z ⋅WB , W̄A−1 =
Z ⋅WA−1 , W̄B−1 = Z ⋅WB−1 and Z, and also a union of Z ⋅WA,Z ⋅WA−1A and of
Z ⋅WB , Z ⋅WB−1B (why?). Thus the sphere S2 without a countable set of points
is equidecomposable of degree 2 with two disjoint subsets.

It remains to take care of the countable set U. We shall increase the sets
W̄A, W̄B , W̄A−1 , W̄B−1 by adding some points from U .

We have already cut every orbit of F̂2 that is not contained in U . Let us cut
orbits which are contained in U . Let x ∈ U , and consider the orbit O = x ⋅ F̂2.
Let w be a shortest word from F̂2 fixing an element in O. We can assume that
x is a point of O fixed by w.

The point x is on the axis ℓ of rotation w. Consider the stabilizer Sx of x
in F̂2, i.e., all the subgroup of all rotations in F̂2 that fix x. Let L be the big
circle of the sphere S2 that is perpendicular to ℓ. All rotations from Sx take
L to L (why?) and different rotations from Sx induce different rotations of L.
Therefore Sx is isomorphic to a subgroup of the group of rotations of the circle
L. That group is commutative (we have used this fact in the second proof of

Theorem 1.2.9). Thus Sx is a commutative subgroup of the free group F̂2. Let

v ∈ Sx. Then wv = vw in the free group F̂2. By Theorem 1.8.28 then w and v

are powers of some other word u ∈ F̂2: w = um, v = un for some m,n. Since the
length of w is minimal possible, we have n ≥ m. Therefore n = km + r for some
0 ≤ r < m. Since both x ⋅ w = x,x ⋅ v = x we have x ⋅ ur = x which can happen
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only if r = 0 (again because of the minimality of w). Therefore v is a power of
w. Thus Sx is the cyclic group generated by w.

Let C ∈ {A,B,A−1,B−1} be the last letter of w. Note that w cannot start
with C−1 because otherwise CwC−1 would be a shorter word fixing a point in
O, namely the point x ⋅C−1 (why?).

For every y ∈ x ⋅F̂2 let us pick a nice word vy such that x ⋅vy = y. By “nice” we
shall mean a word that does not start with C−1 or with w. Let v be a shortest
word from F̂2 such that y = x ⋅ v. Then v cannot start with w (why?). If v does
not start with C−1, then let vy ≡ v. If v starts with C−1, then let vy = wv (i.e., v
is the reduced word that is freely equal to the concatenation wv′). In both cases
vy starts neither with C−1 nor with w. Then vy is determined uniquely by the
point y. Indeed if y = x ⋅ v1, y = x ⋅ v2, v1 ≠ v2 and both v1 and v2 are nice, then
x = x ⋅ v1v

−1
2 . Hence v1v

−1
2 ∈ Sx. Therefore v1v

−1
2 = wn for some n ≠ 0. We can

assume that n > 0 (why?). Since v1 = wnv2 and v2 does not start with C−1, the
word wnv2 starts with w. This contradicts the assumption that v1 is nice.

Now for every point y = x ⋅ vy from O, we add y to W̄D (where D ∈{A,B,A−1,B−1}) provided vy ∈WD. The new sets will be denoted by W̃D.

Exercise 5.8.7. Show that the sets W̃D are pairwise disjoint and S2 =
W̃A ∪ W̃A−1 ⋅A = W̃B ∪ W̃B−1 ⋅B.

�

In Section 5.8.1.2, we essentially proved the following.

Exercise 5.8.8. Suppose that G is a group which is equidecomposable with
two of its disjoint subsets A,B. Suppose that G acts (on the right) on a set
X so that x ⋅ g ≠ x for every x ∈ X (i.e., the action is free). Prove that then
there exist disjoint subsets X1, . . . ,Xn, Y1, . . . Yk−n of X (n < k) and k elements
g1, . . . gn, h1, . . . , hk−n of G such that X = ⋃Xi ⋅gi = ⋃Yi ⋅hi. Thus we can double
X by cutting it into a number of pieces and rearranging the pieces using elements
of the group G. Hint: Replace in the proof of Theorem 5.8.3, F̂2 by G, S2∖Z by
X, and sets Wa,Wb by the two disjoint subsets of G which are equidecomposable
with G.

5.8.1.3. The full formulation of the Banach–Tarski paradox. Encouraged by
the success of doubling a sphere, Banach and Tarski started cutting other things
(see [21, 329]).

Their most impressive achievement is the following remarkable theorem

Theorem 5.8.9 (See Wagoner[329]). Let M,M ′ be two bounded subsets of
R3, each containing an open ball. Then one can cut M into a finite number of
pieces, and rearrange the pieces using rotations and translations to obtain M ′.

Thus we can cut a ball from R3 into a finite number of pieces, rearrange
the pieces and obtain two balls of the same radius. We can cut a chicken into a
finite number of pieces, rearrange the pieces and obtain a dog. Or 101 dogs. Or
a cow. The opportunities are endless.
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Note that the main cause of all that madness is the trivial syntactic fact
that two freely reduced words that start with different letters represent different
elements in the free group.

Another cause, first noticed by von Neumann (see [328, 329]) is the group of
transformations that we use to rearrange pieces of the partition. For example,
the group of translations (consisting of maps φa⃗∶ ∶ v⃗ → v⃗ + a⃗) is commutative,
hence amenable (Corollary 5.8.36). Therefore if we use translations instead of
rotations, we would not be able to double a sphere.

And yet another cause is that we allow ourselves to consider a set Z that
has exactly one element in common with each orbit F2 ⋅z. The ability to use this
seemingly innocent operation is in fact equivalent to the Axiom of Choice (for
collections of subsets of, say, R), and is independent from the usual Zermelo–
Fraenkel axioms of set theory [329]. In truth, Zorn’s Lemma 1.1.7 is also equiv-
alent to the Axiom of Choice. Thus if we declare Axiom of Choice false in order
to not allow turning chicken into cows, we would also loose the Zorn lemma,
which would be a big loss for the whole mathematics (say, we have used Zorn’s
lemma in this book: Theorem 1.6.2, Proposition 4.4.25).

5.8.2. The first two definitions of amenability.

5.8.2.1. Paradoxical decompositions and invariant means. Probably the eas-
iest way to define amenable groups is by using equidecomposable sets (see Def-
inition 5.8.4).

Definition 5.8.10. A group G is called amenable if G does not contain two
disjoint subsets each of which is equidecomposable with G.

Definition 5.8.11. Suppose that a group G is not amenable. Then the
smallest number k such that G contains two disjoint subsets X, Y such that G
and X are equidecomposable of degree n < k, G and Y are equidecomposable of
degree k − n (for some n) is called the Tarski number of the group G.

Thus in Section 5.8.1.2, we showed that the free group with two generators
is not amenable and its Tarski number is at most 4.

Exercise 5.8.12. Show that no group has Tarski number ≤ 3, so the Tarski
number of the free group F2 is equal to 4.

The following theorem gives many more examples of non-amenable groups.

Theorem 5.8.13. Let H be a non-amenable subgroup of a group G. Then G
is not amenable. Moreover, the Tarski number of G does not exceed the Tarski
number of H.

Proof. Indeed, suppose that H is equidecomposable with its disjoint sub-
sets A,B, that is A is a disjoint union of sets A1, . . . ,An, B is a disjoint union
of sets B1, . . . ,Bk−n so that H = ⋃n

i=1Aigi = ⋃k−n
j=1 Bjhj . The group G is a dis-

joint union of left cosets gH,g ∈ X (X is a set containing one representative
of each coset of H). Then G is equidecomposable with Ā = ⋃g∈X Ag and with

B̄ = ⋃g∈X Bg. Indeed, Ā is a disjoint union of subsets Āi = ⋃g∈X Aig, i = 1, . . . , n,
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B̄ is a disjoint union of subsets B̄i = ⋃g∈X Big, and

G =
n

⋃
i=1
Āigi =

k−n

⋃
j=1

B̄jhj .

Hence if k is the Tarski number of H, then the Tarski number of G does not
exceed k. �

Corollary 5.8.14. Every group containing a copy of the free group F2 is
non-amenable with Tarski number 4.

The next theorem is in some sense a converse of Theorem 5.8.13.

Theorem 5.8.15. Suppose that a group G is non-amenable with Tarski num-
ber k. Then G contains a k-generated non-amenable subgroup.

Proof. Let G contain a disjoint union of subsets X1,X2, . . . ,Xn, Y1, Y2

. . . Yk−n and g1, g2, . . . , gn, h1, h2, . . . , hk−n be the translating elements from G

such that G = ⋃Xigi = ⋃Yjhj . Let H be the k-generated subgroup of G gen-
erated by g1, g2, . . . , gn, h1, h2, . . . , hk−n. Then H is equidecomposable with its
two disjoint subsets H ∩⋃Xi and H ∩⋃Yj (why?). �

Another easy consequence of the definition of amenability in terms of de-
compositions is the following

Theorem 5.8.16. If G is an amenable group, then any homomorphic image
Ḡ of G is amenable. Moreover, if Ḡ is non-amenable with Tarski number k,
then the Tarski number of G does not exceed k.

Proof. Indeed, let G be an amenable group, φ∶G → H be a surjective
homomorphism. Suppose that H is not amenable and A,B are disjoint subsets
of H each of which is equidecomposable with H. Then the preimages φ−1(A),
φ−1(B) are subsets of G each of which is equidecomposable with G (prove that!).

�

One of the main properties of non-amenable groups is that we cannot assign
weights to its subsets in an invariant way so that the weight of the whole group
is finite. Indeed, then the weight of each of the two disjoint subsets which are
equidecomposable with the whole group should be at least as large as the weight
of the whole group which is impossible if the weight satisfies some obviously
natural assumptions. More precisely,

Definition 5.8.17. Let G be a group. An invariant mean on G is a function
µ that assigns a nonnegative number to each subset of G so that

(1) µ(G) = 1,
(2) If A and B are disjoint subsets of G, then µ(A ∪B) = µ(A) + µ(B).
(3) For every A ⊆ G,g ∈ G, we have µ(Ag) = µ(A).

Remark 5.8.18. It is not necessary to assume that µ(G) = 1 in Definition
5.8.17. It is enough to assume that 0 < µ(G) < ∞. Indeed, if µ(G) = a > 0,
and conditions (2) and (3) are satisfied, then 1

a
µ satisfies all three conditions of

Definition 5.8.17 (prove it!).

285
























Note that an invariant mean satisfies conditions (1) and (2) of a good measure
(see Definition 3.9.12) but it is additive only for finite unions of disjoint subsets.

Thus if G has an invariant mean, then G is amenable. Tarski showed that
the converse is true too.

Theorem 5.8.19 (Tarski, for the proof see [329]). A group is amenable if
and only if it has an invariant mean.

5.8.3. Følner sets. Every finite group is amenable. Indeed, if G is finite,

we can assign to each subset X ⊆ G the number µ(X) = ∣X ∣∣G∣ .
Exercise 5.8.20. Show that this µ is an invariant mean on G.

It is less trivial to prove the following

Theorem 5.8.21. The cyclic group Z is amenable.

Proof. Indeed, suppose that Z has disjoint subsetsX1, . . . ,Xk and elements
g1, . . . , gk such that Z = ⋃n

i=1(gi+Xi) = ⋃k
i=n+1(gi+Xi) for some n < k. Consider a

very long interval of integers F = {1,2, . . . ,L}. If L is very large, then for a very
small ǫ > 0 and all but at most ǫL numbers p ∈ F , we have −gi+p ∈ F for all i. The
larger L the closer ǫ is to 0. Therefore the numbers ∣(gi +Xi) ∩ F ∣ and ∣Xi ∩ F ∣
differ by at most 2ǫL. Therefore the numbers L = ∣F ∣ = ∣⋃n

i=1((gi + Xi) ∩ F )∣
and ∣⋃n

i=1(Xi ∩ F )∣ differ by at most 2nǫL. Similarly the numbers L = ∣F ∣ =∣⋃k
i=n+1((gi +Xi) ∩F )∣ and ∣⋃k

i=n+1(Xi ∩F )∣ differ by at most 2(k −n)ǫL. Since
F contains the disjoint union of Xi ∩F (i = 1, . . . , k), we get that 2L differs from
L by at most 2kǫL which is impossible for small enough ǫ. �

Remark 5.8.22. To appreciate Tarski’s Theorem 5.8.19, try finding an in-
variant mean on Z. The reader is referred to a discussion of this on Mathoverflow
[223].

One can generalize the proof of Theorem 5.8.21 to other groups.

Theorem 5.8.23 (Følner condition). Suppose that G is a group and the
following property holds.

(F) For every finite subset U ⊆ G and every ǫ > 0 there exists a finite set
F = F (ǫ,U) (called a Følner set) such that

∣FU ∖ F ∣ < ǫ∣F ∣.
Then the group G is amenable.

Exercise 5.8.24. Prove Theorem 5.8.23. Hint: Follow the proof of Theo-
rem 5.8.21.

5.8.3.1. The marriage lemma for polygamists. We shall need the following
classical combinatorial statement. Suppose that we have m males and a number
of females. Every male likes some females and does not like others. Suppose
that we want to arrange marriages so that each male marries k females which he
likes and none of the females marries two different males. The next lemma by
Ph. Hall gives a solution. This lemma is one of the most important statements
in combinatorics and has numerous applications in many areas of mathematics
(see [273, 287, 9]).
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Lemma 5.8.25 (Hall’s lemma). Let C = {A1, . . . ,Am} be a collection of sub-
sets of a finite set A = {a1, . . . , an}, k ≥ 1 be a natural number. Suppose that for
every J ⊆ {1, . . . ,m}, the number of elements in ⋃i∈J Ai is at least k∣J ∣. Then
one can choose a k-element subset Bi in each Ai such that Bi ∩Bj = ∅ if i ≠ j.

Remark 5.8.26. Clearly the condition of the lemma is also necessary.

Rado’s proof [273]. Induction on k. Let k = 1. Suppose that C satisfies
the conditions of the lemma. Clearly each Ai contains at least one element. If
each Ai contains one elements, then Ai ∩Aj = ∅ for every i ≠ j and we are done.
So suppose that, say, A1 contains a1, a2. Let B1 = A1 ∖ {a1}, B2 = A1 ∖ {a2}. We
show that either {B1,A2, . . . ,Am} or {B2,A2, . . . ,Am} satisfies the condition of
the lemma (with k = 1). Indeed, otherwise there exist subsets J,K ⊆ {2, . . . ,m}
such that

∣J ∣ ≥ ∣B1 ∪AJ ∣,
∣K ∣ ≥ ∣B2 ∪AK ∣.

where AJ = ⋃i∈J Ai. Let S = B1 ∪AJ , T = B2 ∪AK . Then

S ∪ T = A1 ∪AJ∪K .

By the assumptions of the lemma, we get

∣S ∪ T ∣ ≥ 1 + ∣J ∪K ∣.
Now consider S ∩ T. We have

S ∩ T ⊇ AJ ∩AK ⊇ AJ∩K .

Therefore (by the condition of the lemma)

∣S ∩ T ∣ ≥ ∣J ∩K ∣.
Combining the inequalities obtained above, yields

∣J ∣ + ∣K ∣ ≥ ∣S∣ + ∣T ∣ = ∣S ∪ T ∣ + ∣S ∩ T ∣ ≥ (1 + ∣J ∪K ∣) + ∣J ∩K ∣ = 1 + ∣J ∣ + ∣K ∣,
a contradiction. The proof can be finished by induction on the number ∑m

i=1 ∣Ai∣.
Now suppose that k > 1. Since the assumption of the lemma for k = 1 also

holds, we can choose one element bi in each Ai, bi ≠ bj if i ≠ j. Consider the sets
A′i = Ai ∖ {bi}. These sets satisfy the assumptions of the lemma for k − 1 (why)?
By induction on k we can choose a k − 1-element subset B′i in each A′i so that
B′i ∩B′j = ∅ if i ≠ j. It remains to take Bi = B′i ∪ {bi}. �

Here is a useful infinite version of Hall’s lemma.

Lemma 5.8.27. Let X be a countable set, and Ai, i ∈ N, be a collection of
finite subsets of X and k ∈ N . Suppose that for every finite subset I ⊆ N, we
have ∣⋃

i∈I
Si∣ ≥ k∣I ∣.
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Then one can choose a k-element subset Bi in each Ai such that Bi ∩Bj = ∅ if
i ≠ j.

Proof. Notice that for every finite subset I ⊆ N the collection of subsets
Ai, i ∈ I of the finite set ⋃i∈I Ai satisfies the conditions of Hall’s Lemma 5.8.25.
Notice also that if I ⊆ J , then every “proper” (i.e., as in Lemma 5.8.25) choice of
subsets Bi ⊆ Ai, i ∈ J , gives us a “proper” choice of subsets Bi ⊆ Ai, i ∈ I. Since
given a finite I ⊂ N, there are only finitely many “proper” choices of subsets
Bi ⊆ Ai, i ∈ I, we can use a compactness argument (Remark 3.3.10) similar to
the one used in Section 3.3.1 �

Exercise 5.8.28. Complete the proof of Lemma 5.8.27.

5.8.3.2. Amenable groups satisfy the Følner condition (F). The following
theorem together with Theorem 5.8.23 shows that property (F) is equivalent to
amenability.

Theorem 5.8.29. If a group G is amenable, then it satisfies Følner’s prop-
erty (F) from Theorem 5.8.23.

Proof. Indeed, suppose that (F) does not hold. Then there exists a finite
subset U ⊆ G and a number ǫ such that for every finite subset F ⊆ G, ∣UF ∖F ∣ ≥
ǫ∣F ∣, that is

(5.8.1) ∣F ∪ FU ∣ = ∣FU ∖F ∣ + ∣F ∣ ≥ (1 + ǫ)∣F ∣.
We can always replace U by a bigger finite set (why?), so we will assume that
U contains 1. Thus F ∪FU = FU

Using FU instead of F , we get

∣FU2∣ ≥ (1 + ǫ)∣FU ∣ ≥ (1 + ǫ)2∣F ∣.
By induction, ∣FUn∣ ≥ (1+ǫ)n∣F ∣. Since ǫ > 0, there exists n such that (1+ǫ)n > 2.
Let V be the set Un, that is V consists of all elements of G representable by
words of length ≤ n in the alphabet U . Then

(5.8.2) ∣FV ∣ ≥ 2∣F ∣
for every finite set F ⊆ G.

Consider the subgroup H of G generated by V . Note that H is finitely
generated, hence countable. Now for every x ∈ H consider the finite set Sx =
xV . Property (5.8.2) implies that the collection of sets Sx, x ∈ H, satisfies the
condition of Lemma 5.8.27 for k = 2. Therefore we can “marry” each x ∈ H
with two elements ax = xgx, bx = xhx from Sx, where gx, hx ∈ V so that the sets{ax, bx} and {ay, by} are disjoint provided x ≠ y.13 Now let A = {ax, x ∈ H},
B = {bx, x ∈ H}. The subsets A and B of H are disjoint (why?). Let us show
that both A and B are equidecomposable with H. Indeed for every g ∈ V let
Ag ⊆ A be the set of all ax such that gax = x. Then

13Note that in this infinite “marriage ceremony”, it is not clear how to distinguish males
from females. We hope, though, that the reader is progressive enough and will not be bothered
by this.
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(1) The sets Ag are disjoint and cover the whole A.
(2) The set ⋃g∈V Agg coincides with H.

Exercise 5.8.30. Prove (1) and (2).

Thus A is equidecomposable with H. A similar argument proves that B is
also equidecomposable with H. Hence H is not amenable. Therefore G is also
not amenable by Theorem 5.8.13.

Using Følner sets, one can prove amenability of many groups. We shall give
two such statements.

5.8.3.3. Amenability and group extensions.

Theorem 5.8.31. Suppose that a group G contains an amenable normal
subgroup N such that G/N is amenable. Then G is amenable.

Proof. Indeed, pick a finite subset U = {u1, . . . , um} ⊆ G and a number
ǫ > 0. Since G/N is amenable, there exists a subset F = {Ng1, . . . ,Ngn} such
that ∣FU ∖ F ∣ < ǫn. This means that “for almost every” i ∈ {1, . . . ,m}, j ∈{1, . . . , n}, Ngjui is in F , that is there exists s ∈ {1, . . . , n} and ni,j ∈ N such
that gjui = ni,jgs. Let U ′ ⊆ N be the (finite) set of all ni,j. By Theorem 5.8.23
there exists a finite subset F ′ ⊆ N such that ∣F ′U ′ ∖ F ′∣ < ǫ∣F ′∣. Let F ′′ ⊆ G be
the set ⋃n

i=1 F
′gi.

Exercise 5.8.32. Show that ∣F ′′U ∖F ′′∣ < µ∣F ′′∣ for some µ = µ(ǫ) such that
limǫ→0 µ = 0.

�

Exercise 5.8.33. Suppose that a group G has an amenable subgroup H of
finite index. Prove that G is amenable. Hint: The group G acts on the finite
set X of right cosets of H (we have considered this action in Section 1.8.10):
Hx ⋅g =Hxg. This gives a homomorphism from G to the group of permutations
of X. The group G is an extension of the kernel of that homomorphism, which
is amenable, by a finite group which is also amenable by Exercise 5.8.20.

Exercise 5.8.34. Let G be an amenable group, H be a subgroup of G which
is isomorphic to G, and let φ be an isomorphism G → H. Show that the HNN
extension HNNφ(G) is amenable. Hint: Consider the homomorphism γ from
HNNφ(G) to the cyclic group Z that sends G to {0} and the free letter t to 1.
Prove that the kernel N of γ is an increasing union of subgroups tnGt−n which
are isomorphic to G. Using Theorem 5.8.15, prove that N is amenable. Then
apply Theorem 5.8.31.

5.8.3.4. Growth and amenability.

Theorem 5.8.35. Suppose that a finitely generated group G has subexponen-
tial growth function. Then G is amenable.

Proof. Let U be a finite subset of G. Then the subgroup H generated
by U also has a subexponential growth by Exercise 1.5.1 (indeed, consider a
finite generating set of G containing a generating set of H). Without loss of
generality we can assume that U is symmetric, that is U−1 = U . Pick a number
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ǫ > 0. Let Bn be the set of all elements in H represented by words of length
≤ n in U . Suppose that for every n we have ∣BnU ∖Bn∣ > ǫ∣Bn∣. Then ∣Bn+1∣ =∣Bn∣ + ∣UBn ∖Bn∣ > (1 + ǫ)∣Bn∣ for every n. Therefore the growth function of H
with respect to the generating set U is at least (1 + ǫ)n, hence exponential, a
contradiction. �

Theorems 5.8.31, 5.8.35 apply to many groups. For example, using Theorems
5.7.25 and 5.7.31, we deduce the following

Corollary 5.8.36. Every nilpotent group and the Grigorchuk group from
Section 5.7.4 are amenable.

Remark 5.8.37. One can construct a finitely presented amenable group con-
taining the Grigorchuk group G. Indeed the substitution σ from Remark 5.7.43
induces an injective homomorphuism φ∶G → G [212]. The corresponding HNN
extension HNNφ(G) is amenable by Exercise 5.8.34 and has a finite presentation

gp⟨a, b, c, d, t ∣ a2 = 1, b2 = 1, c2 = 1, d2 = 1, bcd = 1, (ad)4 = 1, (adacac)4 = 1, at =
aca, bt = d, ct = b, dt = c ⟩ (prove that!).

Corollary 5.8.38. Every solvable group is amenable.

Proof. Indeed, by definition, a solvable group G has a chain of normal
subgroups G0 = {1} < G1 < . . . < Gm = G such that Gi+1/Gi is commutative for
every i = 0, . . . ,m. Since each Gi+1/Gi are amenable by Corollary 5.8.36, G is
amenable by Theorem 5.8.31. �

Note that the growth function of any solvable group which does not have
nilpotent subgroups of finite index is exponential by a result of Wolf [332]. This
is illustrated by the following exercise.

Exercise 5.8.39. Show that the groups BS1,2 from Exercise 5.7.22 and Z ≀Z
from Exercise 1.8.25 are solvable but do not have polynomial growth functions.
In particular, these groups do not have nilpotent subgroups of finite index. Hint:

In the group BS1,2 = gp⟨a, b ∣ b−1ab = a2 ⟩ the elements a, ba generate a free
subsemigroup. To prove that consider any positive word w(x, y) and using the
relation ab = ba2 transform w(a, ba) into a word of the form bkal. Show that if
w /≡ w′, then w(a, ab) and w′(a, ab) are different elements of BS1,2. For this use

a homomorphism φ∶a ↦ ( 1 0
0 2

) , b ↦ ( 1 1
0 1

) from BS1,2 into GL(2,R). For

Z ≀Z, use the fact from Exercise 1.8.25 that it contains free commutative groups
of arbitrary rank, and Exercise 5.7.2, or find a free subsemigroup of rank 2.

Therefore there exist amenable groups with exponential growth functions.

5.8.4. Groups with Tarski number 4. The following Theorem was proved
by Jónsson and Dekker (see [329] or [83]).

Theorem 5.8.40. A group G has Tarski number 4 if and only if it contains
a copy of the free group F2.
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Proof. The “if” statement is Corollary 5.8.14. Suppose that the Tarski
number of G is 4. Then there exist four disjoint subsets A1,A2,B1,B2 and
two 2-element sets of translating elements {1, g}, {1, h}: the first set translates
subsets A1,A2, the second set translates B1,B2 (recall that by Remark 5.8.5 we
can always assume that each of the two sets of translating elements contains 1).
We will use the ping-pong Theorem 1.8.31 to prove that the subgroup generated
by g,h is isomorphic to the free group F2. The parts of the ping-pong table are
A1 ∪A2, B1 ∪B2. We have

G = A1 ∪A2g.

Therefore

A1 ⊇ G ∖A2g ⊇ (A1 ∪A2 ∪B1 ∪B2)g ∖A2g = (A1 ∪B1 ∪B2)g.
Hence A1 ⊃ A1g

m ⊃ (B1 ∪B2)gm+1 for every m ≥ 0.

Exercise 5.8.41. Show that (B1 ∪ B2)gm ⊆ A2 for every m < 0, and that(A1 ∪A2)hm ⊆ B1 ∪B2 for every integer m ≠ 0. Thus, indeed, the sets A1 ∪A2

and B1∪B2 form a ping-pong table for g,h and by Theorem 1.8.31, the subgroup⟨g,h ⟩ is free.

�

5.8.5. Co-growth and the von Neumann–Day conjecture. The goal
of this subsection is to prove that existence of free non-cyclic subgroups is not
equivalent to non-amenability.

5.8.5.1. Co-growth and amenability. The following characterization of ame-
nable groups was found by Kesten [175] in terms of random walks. Its purely
syntactic reformulation was announced by Grigorchuk in[124]. For a full proof
in English see [122]), different and easier proofs can be found in [70, 312, 331].

Let N be a normal subgroup of a free group FX , ∣X ∣ = k ≥ 1. Let LN be the
language of all (not necessarily reduced) words in X∪X−1 representing elements
in N . Let s(n) be the spherical growth function of LN . For any word u in the
alphabet X ∪X−1 the word uu−1 is in LN since N contains 1. This implies the
inequality

(5.8.3) s(n) ≥ (2k)n/2.
On the other hand, s(n) does not exceed the number of all words in the alphabet
X ∪X−1 of length n. Therefore

(5.8.4) s(n) ≤ (2k)n.
The cogrowth in the sense of Kesten CK of N is the exponential rate of growth
of the function s(n). As in Section 3.7.1, it is defined as the following limit:

CK = lim sup
n→∞

n
√
s(n)

Inequalities (5.8.3) and (5.8.4) show that

(2k) 1

2 ≤ CK ≤ 2k.
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Remark 5.8.42. It is often more convenient to consider the language L′N
of all reduced words in N . The exponential rate of growth of that language is
called the cogrowth in the sense of Grigorchuk and will be denoted by CG. One
can deduce from Exercise 1.8.27 that (2k − 1)1/2 ≤ CG ≤ 2k − 1 provided N is
nontrivial.

If P = gp⟨X ∣ R ⟩ is a nontrivial group presentation of a group G, X is finite,
and N is the normal subgroup of the free group FX generated (as a normal
subgroup) by R, then the cogrowth of G (more precisely of the presentation P)
is, by definition, the cogrowth of N .

Now we can formulate

Theorem 5.8.43 (Kesten [175], Grigorchuk [122]). A group G = Fk/N is
amenable if and only if its cogrowth in the sense of Kesten is maximal possible,
i.e., CK = 2k, and, provided N is nontrivial, if and only if the cogrowth in the
sense of Grigorchuk is maximal possible, i.e., CG = 2k − 1.

We shall not prove this theorem, referring the reader to [122], [70]

Example 5.8.44. We know that the infinite cyclic group G = gp⟨a ⟩ is
amenable (Theorem 5.8.21). Let us show directly that G has the maximal possi-
ble cogrowth in the sense of Kesten for 1-generated groups, i.e., 2 (the co-growth
in the sense of Grigorchuk is 0: the normal subgroup N in that case is {1}).
Indeed, a word in {a, a−1} is equal to 1 in G if and only if it is of even length,
say, 2n, and contains exactly n occurrences of a and exactly n occurrences of
a−1 (why?). Therefore the number of words of length m which are equal to 1
in G is 0 if m is odd. If m = 2n is even, then the number of words of length m

which are equal to 1 in G is the number of possibilities to place n occurrences of
the letter a in a word of length 2n. Thus it is equal to (2n

n
), the middle binomial

coefficient in the expansion of (x + y)2n. By Exercise 3.7.6

(2n
n
) ≥ 4n

2n + 1
.

Therefore

CK = lim sup
n→∞

(2n
n
) 1

2n

≥ lim
n→∞

( 4n

2n + 1
)

1

2n

= 2,

as required.

5.8.5.2. The von Neumann–Day conjecture. Recall that von Neumann [328,

329] discovered that the cause of Hausdorff’s paradox is a free non-cyclic sub-
group in SO(3,R), and introduced amenable groups. The next natural question
to ask was whether every non-amenable group contains a free non-cyclic sub-
group. That question was first formulated explicitly by Day in [80]. A negative
answer was found by Olshanskii [257]. His example was a Tarski monster (see
Section 5.9.1 below). Then Adian [4] proved that the free Burnside groups
B(m,n) of odd exponents ≥ 665 with at least 2 generators are non-amenable.
Since every element of B(m,n) has finite order, B(m,n) cannot contain non-
trivial free subgroups.

Below we shall explain some of the ideas of Adian’s proof.
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5.8.5.3. Nonamenability of groups with Dehn presentations. Adian’s proof
uses the fact that Burnside groups have nice infinite Dehn presentations (see
Section 5.2.3.15). It starts with the following general result about groups ad-
mitting Dehn presentations.

Let P = gp⟨X ∣ R ⟩ be a Dehn presentation of a group G, X ∩X−1 = ∅, ∣X ∣ =
m. We shall, as usual, assume that R is closed under cyclic shifts and taking
inverses. Then by the definition of Dehn presentation every reduced word w in
the alphabet X ∪X−1 that is equal to 1 in G contains more than a half of a
relator r ∈ R. Thus w ≡ pEwq, r = Ewvw ∈ R and ∣Ew∣ > ∣vw∣. We shall assume
that Ew is the largest possible such subword in w. Let us denote the smallest
difference ∣Ew ∣ − ∣vw∣ (for all w which are equal to 1 in G) by δP and call it

the speed of the Dehn presentation P. The infimum of all quantities
∣Ew∣−∣vw ∣
∣r∣

is called the relative speed of P and is denoted by γP . We shall need also the
number βP which is the infimum of all numbers β such that the number of words
of length n in R is ≤ (2m − 1)βn for every n ≥ 1 (show that then (2m − 1)β is
the exponential rate of growth of the language L by the definition from Section
5.8.5.1!).

Theorem 5.8.45 (Adian, [4]). Suppose that a Dehn presentation P = gp⟨X ∣
R ⟩ as above has speed δ, relative speed γ and the exponential rate of growth

(2m − 1)β . Let α = 4
δ

log2m−1 (e(1 + δ
4γ
)) where e ≈ 2.71828... is the base of the

natural logarithm. Then the cogrowth in the sense of Grigorchuk of the group G
defined by P does not exceed

(2m − 1) 1

2
+

β

γ
+α
.

Remark 5.8.46. Thus if β
γ

is small enough, and δ is big enough, then the

cogrowth in the sense of Grigorchuk is smaller than 2m− 1 and the group given
by the presentation P is non-amenable by Theorem 5.8.43.

Proof of Theorem 5.8.45. We follow Adian’s proof from [4]. Let w be
any reduced word in the alphabet X ∪X−1 that is equal to 1 in G, ∣w∣ = x. Then
(by the definition of Dehn presentations), there exists a word r ∈ R represented
as r ≡ E1v1 such that E1 is the maximal subword of r which is contained in w,
and ∣E1∣ − ∣v1∣ ≥ δ. Replacing E1 by v−1

1 in w we get a word w1, ∣w∣ − ∣w1∣ ≥ δ.
Since w1 = 1 in G, we can continue the chain of words until we reach the empty
word:

w ≡ w0 → w1 → . . . → wλ ≡ ∅.
Then λ ≤ x

δ
. Let E1, v1, . . . ,Eλ, vλ be the corresponding parts of the relations

fromR. Note that by the maximality of Ei, if vi is not empty, then after replacing
Ei by v−1

i in wi−1 we get a reduced word (prove it!). If vi is empty, then after
replacing Ei by 1, some cancelations may be necessary. Thus each transition
from wi to wi−1 can be described as follows: represent wi as pziv

−1
i ⋅ z−1

i ⋅ q in the
free group where pziv

−1
i is a prefix of wi, z

−1
i q is a suffix of wi, zi is empty if vi

is not empty. Then

wi−1 ≡ pziEiz
−1
i q.
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We can also obtain wi−1 from wi by inserting ziEiviz
−1
i after p and then canceling

vi.
In order to minimize the number of possible substitutions, let us slightly

modify our chain of words. Consider the sequence of substitutions w′λ ≡ ∅ →
w′λ−1 → ... → w′0 ≡ w′ where at each step wi−1 → wi we insert (zi[Eivi]z−1

i )
without canceling vi. Thus we do not replace a part of a word from R by
another part of that word but insert the whole word. To specify different parts
of the inserted word, we use parentheses and square brackets. Thus each w′i is
equal to wi in the free group. In particular, w′ = w in the free group. The word
w′ will be called a companion of w. To simplify counting, we leave the brackets
in w′ but we do not count the brackets when we consider the length of w′. Note
that w is the unique reduced word (see Section 1.8.6) that is equal to w′ in the
free group, so w is uniquely determined by any of its companions.

Let us estimate from above the length of w′ in terms of the length x of w.
By the definition of speed and relative speed, we have that for every i ≥ 0,

∣wi∣ − ∣wi+1∣ ≥ 2∣zi∣ + ∣Ei∣ − ∣vi∣ ≥ 2∣zi∣ + δ.
∣wi∣ − ∣wi+1∣ ≥ 2∣zi∣ + γ∣Eivi∣.

Summing these equalities for all i gives

∣w∣ ≥ 2
λ

∑
i=1
∣zi∣ + λδ,

∣w∣ ≥ 2
λ

∑
i=1
∣zi∣ + γ λ

∑
i=1
∣Eivi∣.

Since by the definition of the companion w̄ we have

∣w̄∣ = 2
λ

∑
i=1
∣zi∣ + λ

∑
i=1
∣Eivi∣

we deduce

(5.8.5) ∣w∣ ≤ ∣w̄∣ ≤ x
γ
.

Now let us estimate the number N(x,h) of companion words w̄ of length h

of reduced words w of length x as above. One can obtain w̄ as follows.

● Start with the word 123 . . . h of length h.
● Place in that word 2λ pairs of parentheses and square brackets.
● Repeat 2λ times the following steps until all pairs of corresponding

brackets are used.
– Pick a new pair of corresponding parentheses or square brackets,

and the subword V bounded by that pair.
– Remove all proper subwords from V bounded by square brackets

or parentheses. The remaining word V ′ is a product of some letters
from {1,2, . . . , h}.
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– Replace that word by a word of the same length ∣V ′∣ from R (if V
was bounded by square brackets) or ziz

−1
i (if V was bounded by

parentheses).
– Insert back the removed subwords from V (there is only one natural

way to do that).

The number of possible placements of 2λ pairs of square brackets and paren-
theses in the word 123 . . . h of length h can be (very roughly) estimated from
above as

(5.8.6) (h + 4λ

4λ
) ≤ (h + 4λ)4λ

(4λ)! = (4λ)4λ

(4λ)! (1 +
h

(4λ))
4λ

In order to further simplify that expression, we need the following fact from
Calculus.

Lemma 5.8.47. For every natural n ≥ 1 we have nn

n!
≤ en.

Proof. Integrating by parts the function lnx we get

∫
n

1
lnx = n lnn − n + 1.

Since lnx is an increasing function, we can estimate the integral ∫ n
1 lnxdx from

above by using the Darboux sums with step 1:

∫
n

1
lnx ≤ ln 2 + . . . + lnn = lnn!.

Thus n lnn − n + 1 ≤ lnn! or

n lnn − lnn! ≤ n − 1.

Taking exponents of both sides of this inequality yields the result. �

By Lemma 5.8.47 the expression (5.8.6) does not exceed

e4λ (1 + h

(4λ))
4λ

which does not exceed

(5.8.7) e4 x
δ (1 + x

γ(4x
δ
))

4 x
δ

= (2m − 1)xα

where (as in the formulation of the theorem)

α = 4

δ
log2m−1 (e(1 + δ

4γ
)) .

Here we used the fact that the function ℓ(p, q) = (1 + q
p
)p is increasing in both p

and q (check it!).
Fix the lengths k1, . . . , kλ of words from R and lengths t1, . . . , tλ of the words

zi used in the construction of w̄. Then the number of companion words of length
h = ∑λ

i=1 ki + 2∑λ
i=1 ti is bounded from above by
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(5.8.8)
λ

∏
i=1
(2m−1)βki

λ

∏
i=1
(2m−1)ti ≤ (2m−1)β∑λ

i=1
ki+∑

λ
i=1

ti ≤ (2m−1)βh+x
2 ≤ (2m−1)βx

γ
+x

2 .

Note that the last term of that sequence of inequalities does not depend
on ki or ti or even on the way the parentheses and square brackets are placed.
Note also that any placement of parentheses in the word 12 . . . h determines the
numbers k1, k2, . . . , t1, t2 . . . uniquely or does not correspond to any companion
word at all. Therefore multiplying the last term in (5.8.8) by (2m−1)xα gives us
an upper bound of N(x,h). Multiplying that further by the number of possible
values of h (1 ≤ h ≤ x

λ
), we get an upper bound of all companion words of reduced

words w of length x which are equal to 1 in G. That upper bound is equal to

x

γ
(2m − 1)x( 1

2
+

β

γ
+α)

hence the cogrowth in the sense of Grigorchuk does not exceed

(2m − 1)( 1

2
+

β

γ
+α)

as required. �

5.8.5.4. Non-cyclic Burnside groups of sufficiently large odd exponents are
not amenable. Let exponent n be sufficiently large and odd. In Section 5.2.3.15
we described a Dehn presentation Pi of the intermediate group Gi, i ≥ 1. By
definition Pi ⊆ Pi+1 for every i. Therefore P = ⋃Pi is a Dehn presentation of
the group B(2, n). It is easy to see (from Section 5.2.3.15) that the speed of this
presentation is at least cn for some constant c and the relative speed is close to 1.
Still we cannot immediately apply Theorem 5.8.45 because the exponential rate
of growth of that presentation is too large: P has “too many” relations. One can
trim the set Pi from Section 5.2.3.15, for example, by considering only contiguity
subdiagrams Ψ which do not contain cells that are attached to the boundary of ∆
with large contiguity degree. But estimating the number of possible subdiagrams
Ψ is not an easy task and would require a very detailed analysis of diagrams
over Pi. Instead we refer to Adian’s paper [4] where he constructs, using the
techniques from [251], a Dehn presentation of the Burnside group B(m,n) for
every odd n ≥ 665 and every m ≥ 2 with speed ≥ 228, relative speed 1

3
, the

exponential rate of growth ≤ (2m−1) 1

45 . Plugging these numbers in the formula
from Theorem 5.8.45, we conclude that the cogrowth in the sense of Grigorchuk

of B(m,n) does not exceed (2m − 1) 1

6 . Applying Theorem 5.8.43 we obtain

Theorem 5.8.48. The free Burnside group B(m,n) is non-amenable for
every m ≥ 2 and every odd n ≥ 665.

Note that B(m,n) was the first counterexample to the von Neumann-Day
conjecture that satisfied a nontrivial identity. As of today, the varieties of all
groups of exponent n (n big enough) are still the smallest known varieties of
groups containing non-amenable groups. But the free non-cyclic groups in the

296



non-commutative variety of groups where all finite groups are commutative con-
structed by Olshanskii [259] and in the non-commutative variety of groups where
all periodic groups are commutative constructed by Ivanov and Storozhev [158]
are probably non-amenable also.

5.9. Further reading and open problems

5.9.1. Further applications of Olshanskii’s method. The method out-
lined in Section 5.2.3, and its modifications, have been used to solve numerous
other famous group theory problems. Here is a very incomplete list of these
results. The first three and the fifth results can be found in [260], the fourth is
in [233], and the sixth is in [265] (for more see [260] and [282]).

(1) (Tarski monster of the first kind) There exists a finitely generated group
with all proper subgroups infinite cyclic.

(2) (Tarski monster of the second kind) There exists a nontrivial finitely
generated group with all proper subgroups cyclic of the same prime order.

(3) (Divisible group) There exists a nontrivial finitely generated group in
which every element a has a root of any degree (i.e., for every n ≥ 0 there
exists bn such that bn

n = a).
(4) (Verbally complete group) There exists a finitely generated nontrivial

group G such that for every a ∈ G and every word w which is not freely
trivial, a is a value of w in G.

(5) (Group with finitely many conjugacy classes) There exists an infinite
finitely generated periodic group G and an element a ∈ G such that every
element is conjugate to a power of a (in particular, G has only finitely
many conjugacy classes).

(6) (Group with two conjugacy classes) There exists an infinite finitely gen-
erated group where all non-identity elements are conjugate.

Each of these results answered a long standing problem in group theory
which were completely out of reach before Olshanskii’s method was developed.
Note that all these groups except the last one are inductive limits of hyper-
bolic groups. The last example is an inductive limit of the so-called relatively
hyperbolic groups. In each case a version of small cancelation theory based on
contiguity subdiagrams was developed.

5.9.2. Syntactic properties of hyperbolic groups. Hyperbolicity has
been studied in geometry since at least Lobachevsky, Bolyai and Poincare and,
under the name of small cancelation, by combinatorial group theorists since
Dehn. Gromov was first who noticed that groups that appear in hyperbolic
geometry and “abstract” small cancelation groups have many common features.
He formally defined and systematically studied hyperbolic groups in [129].14

The importance of [129] was understood immediately and by now the theory
of hyperbolic groups and their generalizations is one of the largest parts of the

14This is a very incomplete version of the history of hyperbolic groups. For more details see
[12, 112].
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theory of infinite groups called geometric group theory (one of the main goals of
the geometric group theory is to consider Cayley graphs of groups as geometries
and classify groups up to quasi-isometry which is a much weaker equivalence
than isomorphism: see the introduction to Druţu and Kapovich [91] and the
references therein). One of the most accessible presentation of the foundations
of the theory of hyperbolic groups can be found in [12] and [112]. Here we
survey only a very few, more syntactic, results about hyperbolic groups.

5.9.2.1. Almost all groups are hyperbolic. This means that if we pick a finite
group presentation “at random”, it defines a hyperbolic group with probability
close to 1. Of course to make that statement precise, we need to explain what
does it mean to pick a presentation at random. There are several different ways
to do that, one can read about it in my survey [282, Section 3.1.H].

5.9.2.2. Dehn functions of hyperbolic groups. The Dehn function of a finitely
presented group G = gp⟨X ∣ R ⟩ is a function f ∶N → N such that every word
w ∈ (X ∪X−1)∗ which is equal to 1 in G labels the boundary of a van Kampen
diagram with at most f(∣w∣) cells. The Dehn function (up to the equivalence
from Section 1.5) does not depend on the presentation of a group, and is an
almost as important invariant of a group as the growth function (see [282]).

Since hyperbolic groups have Dehn presentations, every hyperbolic group
has linear Dehn function: in Section 5.8.5.3 we essentially proved that the Dehn
function f(n) is bounded by n/δ where δ is the speed of the Dehn presentation.

It turned out [129, 261] that, conversely, all groups with linear, and even
subquadratic, Dehn functions are hyperbolic. Thus there is a gap between “lin-
ear” and “quadratic” in the set of Dehn functions (up to equivalence) as in the
set of growth functions in semigroups, rings and groups (Section 3.10.6.1).

5.9.2.3. The language of geodesic words in a hyperbolic group is rational.
This is true for every finite presentation of a hyperbolic group. That fact was
first proved by Cannon [62] for some groups that occur in hyperbolic geometry
and then for arbitrary hyperbolic groups by Gromov [129]. This implies that
the growth series for the language of geodesic words is a rational function (see
Section 1.8.9). In fact the growth series of any hyperbolic group G with respect
to any finite generating set X (when we count elements of G rather than geodesic
words that represent them) is also a rational function (see [98], [112, Chapter
1]) because there exists an automaton A = (Q,X) such that for every element g
of the group there exists a unique word wg recognized by A which represents g
in the group, the word wg is geodesic, and the language accepted by A consists
of the words wg.

5.9.2.4. The subshift of bi-infinite geodesics. Recall that in Section 3.3.1,
with every finitely generated semigroup S we associated the subshift D(S) con-
sisting of all bi-infinite geodesics. Let G = sg⟨A ∣R ⟩ be a hyperbolic group.

Theorem 5.9.1. There exists a subshift of finite type (X,T ) and a finite-
to-one homomorphism φ from (X,T ) onto D(G).

Proof. Let G be generated by a finite set A. By Section 5.9.2.3, there exists
a rooted automaton A = (Q,A) with input and output sets of vertices Q−,Q+
which recognizes the language of geodesic words in G. That means (see Section
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1.3.2) that the labels of paths from Q− to Q+ are precisely all the geodesic words
in G. Let us modify A by removing edges and vertices that do not belong to
paths in A from Q− to Q+. Clearly the new automaton A′ = (Q′,A) recognizes
the same language as A. Then the label of every path in A′ is a geodesic in G.

Indeed, every path p in A′ can be extended to a path p0pp1 where p0 starts at
a vertex from Q−, p1 ends at a vertex from Q+. Thus the label of every path
in A′ is a subword of a geodesic word in G, hence a geodesic word itself. We
conclude that the label of every bi-infinite path in A′ belongs to the subshift
D(G). Let D′ ⊆ AZ be the subshift generated by all labels of bi-infinite paths
in A′. Then the sets of finite subwords of D′ and D(G) coincide (both are the
sets of all geodesic words in G). Hence D′ =D(G).

Let (E,T ) be the edge subshift of the underlying graph of A′. It is a subshift
of finite type (see Section 1.6.2). There exists a homomorphism from (E,T ) to
D(G) which takes every bi-infinite path to its label. That homomorphism is
finite-to-one (in fact at most k-to-one where k is the number of vertices in A′).
Indeed, every bi-infinite path in A′ is completely determined by its label and the
vertex visited at time 0 (we have used that argument in the proof of Theorem
3.9.18). �

For more on the connections between subshifts and hyperbolic groups see
the book by Coornaert and Papadopoulos [74].

5.9.3. Some semantic properties of small cancelation groups. Novi-
kov–Adian theorem and results of Olshanskii and others (see [260] and Section
5.9.1) changed the way we think about infinite groups. A similar change is
happening now with small cancelation groups (and the whole geometric group
theory). One of the strongest results about small cancelation groups has been
obtained recently by Ian Agol [10] (based on the work of Daniel Wise [330]).
Here is one of the corollaries of the result.

Theorem 5.9.2. Every group satisfying C ′(1
6
) embeds into the group SL(n,Z)

of n × n-matrices with integer entries and determinant 1 for some n.

Not every hyperbolic group has this property.

Theorem 5.9.3 (M. Kapovich [169]). There is a hyperbolic group that does
not embed into any (multiplicative) group of matrices over a commutative ring.

5.9.4. Open problems about hyperbolic group. There are many open
problems about hyperbolic (and related) groups (see Bestvina’s list [48] or
[281]). We mention only two of them here. Both problems were first formulated
by Gromov but are still far from being solved although many attempts have
been made.

Problem 5.9.4. Suppose that a hyperbolic group G does not have a free
subgroup of finite index. Is it true that G contains a subgroup isomorphic to a
surface group π1(Sg), g ≥ 2 ?

Problem 5.9.5. Is it true that every hyperbolic group has a homomorphism
onto a finite nontrivial group?
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This is true for groups satisfying the small cancelation property C ′(1/6)
which follows from Theorem 5.9.2.

5.9.5. The Hanna Neumann conjecture. The Hanna Neumann conjec-
ture formulated in Section 5.5.2.2 can be reformulated as follows. Let r be the
rank of a subgroup H of a free group. Then let us denote r̄ =max(r−1,0). This
number is called the reduced rank of H.

Conjecture 5.9.6 (Hanna Neumann [246]). Let H1,H2 be subgroups of
reduced ranks r̄1, r̄2 of a free group. Then the reduced rank r̄ of the intersection
H1 ∩H2 satisfies

r̄ ≤ r̄1r̄2.

That conjecture has been strengthened by Walter Neumann in the 80s:

Conjecture 5.9.7 (Walter Neumann [249]). Let H1,H2 be subgroups of
reduced ranks r̄1, r̄2 of a free group Fk. Then the sum of reduced ranks of distinct
intersections Hg

1 ∩H2, g ∈ Fk, does not exceed r̄1r̄2.

Note that although the number of intersections Hg
1 ∩ H2, g ∈ Fk, is infi-

nite it can be proved (using Theorem 5.5.9) that only finite number of these
intersections are distinct.

After more than 50 years of attempts, both conjectures have been proved in
2011 almost simultaneously (papers using quite different sets of ideas appeared
in the arXiv one 5 days after the other) by Joel Friedman [106] and Igor Mineyev
[232]. Amazingly short modifications of both proofs were given by Warren Dicks
[86, 87]. Note that both Mineyev’s proof and Dicks’ version of it essentially use
the fact that there exists a total order ≤ on any free group which is compatible
with the product (Theorem 1.8.36).

5.9.6. Diagram groups. More information about diagram groups can be
found in Farley [101, 102] and Guba and Sapir [138, 139]. It turned out that
a diagram group can be defined as the fundamental group of the space of certain
paths in a directed 2-complex. Farley proved, in particular, that this space of
paths has nice geometric properties (its universal cover is CAT(0)). Some results
proved in [138, 139] are summarized in the next theorem.

Theorem 5.9.8 (Guba, Sapir [135, 138, 139]). (1) If a string rewriting sys-
tem P = sr⟨X ∣ R ⟩ is Church–Rosser, then presentations of the corresponding
diagram groups DG(P, u) can be explicitly found.

(2) The diagram group corresponding to the rewriting system sr⟨x ∣ x2 →

x,x → x ⟩ (and many other diagram groups) is universal, i.e., contains all other
countable diagram groups as subgroups. That group can be explicitly constructed
as an extension of a “nice” group by the R. Thompson group F.

(3) Every diagram group admits a total order compatible with the multipli-
cation.
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5.9.7. The R. Thompson group F . There are several characterizations
of R. Thompson group F which we have not mentioned before. One of these was
first discovered by F. Galvin and R. Thompson in [108] and then used by Higman
in [153]. They proved that the R. Thompson group F is the group of certain
“strong order preserving” automorphisms of the finitely generated relatively free
algebra in the Jónsson–Tarski variety defined in Section 1.4.4. The group V of
all automorphisms of that algebra turned out to be also interesting. That was
the first example of a finitely presented infinite simple group (for more on this
see [55] and [63]).

Many papers are devoted to the study of the R. Thompson group F. The
most difficult and unexpected result about that group was obtained by Victor
Guba

Theorem 5.9.9 (Guba, [132]). The Dehn function of the R. Thompson
group F is quadratic.

The growth function and growth series of F are also subject of intensive
study. Although by Theorem 5.6.42 and Exercise 5.6.46, the R. Thompson group
F admits a Church–Rosser presentation with a rational language of canonical
words, we cannot conclude that the growth series of F (say, with respect to the
generating set {x0, x1}) is represented by a rational function as in Section 1.8.9
because the canonical words are not geodesic. But Elder, Fusy and Rechnitzer
[96] formulated the following

Conjecture 5.9.10. The difference between the length of a “typical” canon-
ical word from Theorem 5.6.42 and the length of the element of F represented
by this word does not exceed a constant.

The word “typical” which should be intuitively clear, can be precisely defined
(see [168], for example).

Problem 5.9.11. Is it true that the growth series of F (with respect to the
generating set {x0, x1} or any other finite generating set) is a rational function?

José Burillo proved [60] that the answer is positive for the growth series of the

submonoid generated by x0, x1. This growth series is represented by 1−z2

1−2z−z2+z3 .

The exact values of the spherical growth function s(n) of F (with respect to{x0, x1}) are known for n ≤ 1500 [96]. This data implies that if the growth
series of F with respect to the generating set {x0, x1} is represented by a rational
function P /Q, then the degree of the polynomial Q must be at least 749.

The most famous open problem about R. Thompson group F is whether F is
amenable. That problem was first formulated by R. Thompson in around 1973
(unpublished) and it was then independently formulated by Geoghegan[110] in
1979. Recall that F does not contain free non-cyclic subgroups and is finitely
presented with two generators and two relations (see Section 5.6.6). Thus if
F was non-amenable, it would give an easy finitely presented counterexample
to the von Neumann–Day conjecture. At this time (the end of 2013) the only
published finitely presented counterexamples have about 10200 relations [264],
[157] (although see [204]). The best currently known result about amenability
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of the R. Thompson group F is the following statement showing that even if F
is amenable, it is “barely so” because its Følner sets are enormously large.

Theorem 5.9.12 (J. Moore [237]). Let U be any finite generating set of F .
Then for every n the smallest finite set satisfying the Følner condition (F) for

ǫ = 1
2n has at least 222...

elements (where the number of 2s is at least Cn for some
constant C > 0).

5.9.8. The finite basis problem for varieties of groups. Many results
and open problems about the finite basis problem for group varieties are surveyed
by Gupta and Krasilnikov in [143]. The following is one of the main open
problems in that area.

Problem 5.9.13 (Shmelkin). Is every group of matrices over a field finitely
based?

By the Tits alternative [313], every finitely generated group of matrices over
a field either satisfies no nontrivial identity or has a solvable subgroup of finite
index (the condition “finitely generated” can be removed if the characteristic
is 0). Solvable groups of matrices have been described by Lie, Kolchin and
Mal’cev (see [170]). Every such group G has a finite index subgroup H which is
nilpotent-by-commutative, i.e., H has a nilpotent normal subgroup N such that
H/N is commutative. Thus Problem 5.9.13 reduces to groups which have finite
index nilpotent-by-commutative subgroups.

The following theorem “almost” solves the problem.

Theorem 5.9.14 (Krasilnikov, [187]). Any nilpotent-by-commutative group
is finitely based.

We also know (Theorem 1.4.33) that every finite group is finitely based, but
all efforts to combine Theorems 5.9.14 and 1.4.33 failed so far.

5.9.9. Zel’manov words and inherently non-finitely based varieties

of groups. Since every finite group has finite basis of identities by Oates and
Powell (Theorem 1.4.33), there are no inherently non-finitely based finite groups.
It is quite possible that there are no inherently non-finitely based locally finite
group varieties at all. The main evidence for this is the following theorem of
Zel’manov where Zimin words reappear again, this time “dressed up” using group
commutators.

Let us define the Zel’manov word Zn by the following rule:

Z1 = x1, . . . ,Zn+1 = [Zn, xn+1,Zn]
where, as before, brackets denote the group commutator: [x, y] = x−1y−1xy,[x, y, z] = [[x, y], z]. One can easily see that the Zel’manov word is precisely
the Zimin word where the multiplication is replaced by the group commutator.
The following theorem is proved in [335] (it solved a long-standing problem by
B.H.Neumann [248] in the case of prime exponents).

Theorem 5.9.15 (Zel’manov, [335]). For every prime number p there exists
a natural number n such that a group of exponent p is locally finite if and only
if it satisfies the identity Zn = 1.
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As an immediate consequence of Theorem 5.9.15 and Theorem 1.4.37 we
obtain the following

Corollary 5.9.16. There are no inherently non-finitely based locally finite
varieties of groups of prime exponent.

For exponent 5, Corollary 5.9.16 was proved before by Endimioni [97].

Conjecture 5.9.17. The statement of Corollary 5.9.16 should remain true
if we replace there “prime” by “any finite”.

5.9.10. Amenable groups. The literature concerning amenability is very
large and fast growing (see, say, [83]). Here I will mention only a few recent
results (see also Section 5.9.7).

5.9.10.1. More counterexamples to the von Neumann-Day conjecture. Cur-
rently there are several classes of counterexamples obtained by completely dif-
ferent methods. Here we mention two of these methods.

Golod–Shafarevich groups. In Section 5.2.1 we constructed examples
of infinite periodic groups using associative algebras given by “sparse” sets of
relations (from Section 4.4.6). Let us call these Golod groups. Similar groups
can be constructed directly, by using group presentations.

Definition 5.9.18. Consider a free group Fd, d > 1. Let Fd > γ1(Fd) > . . . be
the lower central series of Fd. For every i, n let γn

i (Fd) be the (normal) subgroup
generated by all n-th powers of elements of γi(Fd). Pick a prime number p. For

every m ≥ 1 let Dm be the subgroup of Fd generated by subgroups γpj

i (Fd) for

ipj ≥ m. Then Fd ≥ D1 ≥ D2 ≥ . . . . It is possible to prove (using the Magnus
embedding of the free group from Section 1.8.8 where K is the field of integers
modulo p) that the intersection ⋂m≥0Dm = {1}. Then for every element r ∈ Fd

we can define its degree deg(r) as the maximal m such that r ∈ Dm.

For a set of elements R ⊆ Fd, we define the series

HR(t) = ∑
r∈R

tdeg(r).

Then consider the Golod–Shafarevich function GSR(t) = 1−dt+HR(t). A group
G is called Golod–Shafarevich if it has a presentation gp⟨x1, . . . , xd ∣ R ⟩ such
that for some t > 0, GSR(t) < 0.

The following two properties make this definition immediately useful:

● Every Golod–Shafarevich group is infinite.
● If G is a group given by a Golod–Shafarevich presentation gp⟨X ∣ R ⟩,

then adding a relation r = 1 to R with r of high enough degree, we
obtain a Golod–Shafarevich quotient of G. Indeed, if a number z is
negative, t < 1, then we can add to z a small positive number tdeg(r)
and keep the sum negative.

Using the second property one can construct Golod–Shafarevich groups as
inductive limits of finitely presented Golod–Shafarevich groups (similar to in-
ductive limits of hyperbolic groups used in Section 5.2.3). Golod–Shafarevich
groups have been used as a source of many examples (see the excellent survey by
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Ershov [99]). Say, pick any prime p and let w run over all reduced group words
in x, y. For each w choose iw so that the numbers iw grow very fast. Consider

the presentations P = gp⟨x, y ∣ R ⟩ where R consists of all relations wpiw = 1.

Since the degree of wpiw
is at least iw, the value GSR(t) will be negative for,

say, t = 1.5
d

as in Section 4.4.6. Therefore the group given by the presentation
P is infinite, finitely generated and periodic. The following theorem is more
complicated.

Theorem 5.9.19 (See Ershov, [99]). For every m ≥ 1 there exists a Golod
group and a Golod–Shafarevich group, each of which is m + 1-generated with all
m-generated subgroups finite.

For Golod groups, Theorem 5.9.19 was proved by Golod in [115], for Golod–
Shafarevich groups see [99]. (Compare this theorem and Theorem 5.9.15. This
shows an important difference between the bounded and unbounded versions of
the Burnside problem.)

Disproving a conjecture of Lubotzky and Zel’manov, Ershov proved the fol-
lowing

Theorem 5.9.20 (Ershov, [99]). Every Golod–Shafarevich group is non-
amenable.

Groups of piece-wise projective transformations of the circle. Let
R∗ be the real line with the infinity point ∞ adjoined, so that topologically R∗

is a circle. In the hint for Exercise 1.8.32, we defined an action of SL(2,R) on

the complex plane with infinity ∞ adjoined. Every invertible matrix [ p q

r s
]

acts as the Möbius transformation

z ↦
pz + q
rz + s .

Note that if z is a real number, then its image under the Möbius transformation
is also real (or∞). Thus SL(2,R) acts on the line with infinity point∞ adjoined,
R∗. Topologically R∗ is a circle, so SL(2,R) acts on a circle. Each Möbius map
is a continuous bijection R∗ → R∗.

Let A be a subring of R containing 1. Let G(A) be the group of all contin-
uous bijections φ∶R∗ → R∗ which are piecewise Möbius transformations of R∗

corresponding to matrices with coefficients from A. This means that there exists
a partition of the circle R∗ into a finite number of intervals; on each of these
intervals, φ acts as one of the Möbius transformations corresponding to some
matrix from SL(2,A), and φ is continuous and bijective. The definition of G is
similar to the definition of the R. Thompson group in terms of piecewise linear
functions.

Let H(A) be the subgroup of all elements φ of G(A) that fix∞, i.e., φ(∞) =
∞. By [63, Theorem 7.2] the R. Thompson group F is a subgroup of index 2 in
H(Z).

The following theorem of Monod is remarkable both for its strength and for
the simplicity of the proof
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Theorem 5.9.21 (Monod, [235]). For every ring A ≤ R containing 1, A ≠ Z,
the group H(A) is non-amenable and contains no free non-cyclic subgroups.

The fact that H(A) contains no free non-cyclic subgroups is proved almost
in the same way as the similar fact for F (see Theorem 5.6.39).

The group H(A) is not finitely generated. Moreover it is not countable. But
by Theorem 5.8.15, H(A) contains a finitely generated non-amenable subgroup
M which, of course, would not contain non-cyclic free subgroups. In fact such
a subgroup M was found explicitly by Lodha and J. Moore [204]. Moreover
they proved that the subgroup is finitely presented. It has a presentation with
3 generators and 9 relations (compare with 10200 relations in [264]). The group
is generated by an isomorphic copy of the R. Thompson group F and one extra
function. Note, though, that the group from [264] satisfies a nontrivial identity
([x, y]n = 1, n ≥ 1070, odd) while the group in [204] is lawless by Theorem 5.6.37.

5.9.10.2. Tarski numbers of groups. The paper [83] by de la Harpe, Grig-
orchuk and Ceccherini-Silberstein contains one of the first detailed studies of
possible Tarski numbers of non-amenable groups. Since groups containing a
non-cyclic free subgroup are precisely the groups with Tarski number 4 (by
Theorem 5.8.40), we need to restrict ourselves to groups without non-cyclic free
subgroups. It is proved in [83] that periodic non-amenable groups cannot have
Tarski number 5. Thus the Tarski number of the free Burnside group B(m,n),
m ≥ 2, n ≥ 665 odd, is at least 6. Theorem 56 in [83] relates the Tarski number
and cogrowth. Using this theorem and Adian’s estimate for cogrowth of B(m,n)
(Section 5.8.5.4), it is proved in [83] that the Tarski number of B(m,n), m,n
as above, is between 6 and 14. The exact value is not known. Nevertheless the
following result holds (it is my answer to a question of Ozawa on Mathoverflow).

Theorem 5.9.22. There are non-amenable periodic groups with arbitrarily
large Tarski numbers.

Proof. Indeed, by Theorem 5.9.19, for every m ≥ 1 there exists a Golod–
Shafarevich m+ 1-generated group G with all m-generated subgroups finite. By
Theorem 5.9.20, G is non-amenable, and by Theorem 5.8.15 the Tarski number
of G is at least m + 1. �

Problem 5.9.23. Can the Tarski number of the direct product G × G be
smaller than the Tarski number of G?

Problem 5.9.24. Is there a number ≥ 4 which is not the Tarski number of
some group? Is 5 the Tarski number of a group?

Remark 5.9.25. Gili Golan proved that if G is non-amenable, and Z is
any amenable normal subgroup of G, then G and G/Z have the same Tarski
numbers. This and other results about Tarski numbers of groups can be found
in [100]. In particular, it is proved in [100] that 6 is the Tarski number of a
group, and that for every sufficiently large n there exists a group with Tarski
number between n and 2n.
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mathématiques. Fundamenta Mathematicae, 3:76–108, 1922. (Not cited).

[190] E. N. Kuzmin. On the Nagata–Higman theorem. In: Mathematical Structures–
Computational Mathematics–Mathematical Modeling, Proceedings Dedicated to the 16th
Birthday of Academician L. Iliev, Sofia, 1975, 101–107. (Cited on page 168).

[191] G. Lallement. Semigroups and Combinatorial Applications. New York–Chichester–
Brisbane, John Wiley, 1979. (Cited on page 19).

[192] V. N. Latyshev. Finite basis property of identities of certain rings. Usp. Mat. Nauk,
32(4):259–260, 1977. (Cited on page 177).

[193] Mark V. Lawson. Finite automata. Chapman & Hall/CRC, Boca Raton, FL, 2004.
(Cited on pages 22 and 73).

[194] Philippe Le Chenadec. Canonical forms in finitely presented algebras. Research Notes in
Theoretical Computer Science. Pitman Publishing, Ltd., London; John Wiley & Sons,
Inc., New York, 1986. (Cited on page 65).

[195] Edmond W.H. Lee, Finite basis problem for semigroups of order five or less: general-
ization and revisitation. Studia Logica 101 (2013), no. 1, 95–115. (Cited on page 149).

[196] Edmond W. H. Lee, Jian Rong Li, and Wen Ting Zhang. Minimal non-finitely based
semigroups, Semigroup Forum, 85, 3 (2012), 577–580. (Cited on page 149).

[197] J. M. Lever. The Elizabethan Love Sonnet. Barnes & Noble: London, 1968. (Cited on
page 212).

[198] F. W. Levi. On semigroups. Bull. Calcutta Math. Soc., 36:141–146, 1944. (Cited on
page 62).

[199] A. A. Lavrik-Männlin. On some semigroups of intermediate growth. Internat. J. Algebra
Comput., 11(5):565–580, 2001. (Cited on page 128).

[200] T. H. Lenagan and A. Smoktunowicz. An infinite dimensional affine nil algebra with
finite Gelfand-Kirillov dimension. J. Amer. Math. Soc., 20(4):989–1001, 2007. (Cited on
page 172).

[201] J. Levitzki. Prime ideals and the lower radical. Amer. J. Math., 73(1):25–29, 1951.
(Cited on pages 80 and 173).

[202] J. Lewin. Subrings of finite index in finitely-generated rings. J. Algebra, 5:84–88, 1967.
(Cited on page 181).

[203] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, 1995. (Cited on pages 49, 143, 146, and 153).

[204] Yash Lodha and Justin Moore. A geometric solution to the von Neumann-Day problem
for finitely presented groups. arXiv:1308.4250, 2013. (Cited on pages 301 and 305).

[205] Artem A. Lopatin. On the nilpotency degree of the algebra with identity xn = 0. J.
Algebra 371 (2012), 350–366. (Cited on page 168).

[206] M. Lothaire. Combinatorics on Words. Volume 17 of Encyclopedia of Mathematics
and its Applications, Addison-Wesley Publishing Co., Reading, Mass., 1983. (Cited on
page 85).

[207] M. Lothaire. Algebraic combinatorics on words. Encyclopedia of Mathematics and its
Applications 90. Cambridge University Press, Cambridge, 2002. (Cited on pages 49
and 85).

[208] I. V. L’vov. Varieties of associative rings. I. Algebra i Logika, 12(3):269–297, 1973. (Cited
on pages 37 and 115).

[209] R. C. Lyndon. Identities in two-valued calculi. Trans. Amer. Math. Soc. 71:457–465,
1951. (Cited on page 40).

[210] R. C. Lyndon and P. E. Schupp. Combinatorial group theory. Springer–Verlag, 1977.
(Cited on pages 189, 198, and 200).

[211] R. C. Lyndon and M. P. Schützenberger. The equation aM = bN cP in a free group,
Michigan Math. J., 9 (1962), 289–298. (Cited on page 21).

315



[212] I. G. Lysenok. A system of deïňĄning relations for the Grigorchuk group. Mat. Zametki
38 (1985), 503–511. (Cited on pages 280 and 290).

[213] I. G. Lysenok. Infinite Burnside groups of even exponent. Izvestiya: Mathematics,
60(3):453–654, 1996. (Cited on page 228).

[214] J. H. Maclagan-Wedderburn. A theorem on finite algebras. Trans. Amer. Math. Soc. 6,
349–352 (1905). (Cited on page 174).

[215] W. Magnus. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math.
Ann. 111 (1935), 259–280 (Cited on page 68).

[216] W. Magnus. A connection between the Baker-Hausdorff formula and a problem of Burn-
side. Ann. Math., 52:11–26, 1950; Errata Ann. Math., 57:606, 1953. (Cited on page 147).

[217] A. I. Mal’cev. Nilpotent semigroups. Uch. Zap. Ivanovsk. Pedagog. Inst., 4:107–111,
1953. (Cited on page 95).

[218] A. I. Mal’cev. Algebraic systems. Springer–Verlag, 1973. (Cited on pages 33 and 34).
[219] Avinoam Mann. How groups grow. London Mathematical Society Lecture Note Series,

395. Cambridge University Press, Cambridge, 2012. (Cited on page 263).
[220] S. Margolis and J. Meakin. E-unitary inverse monoids and the Cayley graph of a group

presentation. J. Pure Appl. Algebra, 58:45–76 1989. (Cited on page 133).
[221] S. Margolis, J. Meakin, and M. Sapir. Algorithmic problems in groups, semigroups and

inverse semigroups. In: Semigroups, formal languages and groups (York, 1993), 147–214
(Cited on pages 134 and 243).

[222] G. I. Mashevitsky. On bases of completely simple semigroup identities. Semigroup Forum
30 (1984), no. 1, 67–76. (Cited on page 150).

[223] A Mathoverflow.net discussion # 60897 of invariant means on the group of inte-
gers, http://mathoverflow.net/questions/60897/invariant-means-on-the-integers (Cited
on page 286).

[224] N. H. McCoy. Prime ideals in general rings. Amer. J. Math., 71(4):823–833, 1949. (Cited
on page 173).

[225] R. McKenzie. Tarski’s finite basis problem is undecidable. Internat. J. Algebra Comput.,
6:49–104, 1996. (Cited on pages 38 and 40).

[226] Robert McNaughton and Seymour Papert, Counter-free automata. With an appendix by
William Henneman. M.I.T. Research Monograph, No. 65. The M.I.T. Press, Cambridge,
Mass.-London, 1971. (Cited on page 73).

[227] G.F. McNulty, Talks at the Twenty First Victorian Algebra Conference with Workshop
on Universal Algebraic Techniques in Semigroup Theory and Algebraic Logic, October,
2003. (Cited on page 86).

[228] G. F. McNulty and C. R. Shallon. Inherently non-finitely based finite algebras. In:
Universal Algebra and Lattice Theory (Puebla, 1982), volume 1004 of Lect. Notes Math.,
pages 206–231. Springer-Verlag, 1983. (Cited on page 40).

[229] I. L. Mel’nichuk. Existence of infinite finitely generated free semigroups in certain
varieties of semigroups. In: Algebraic systems with one action and relation, 74–83,
Leningrad. Gos. Ped. Inst., Leningrad, 1985. (Cited on page 86).

[230] Yu. I. Merzlyakov. Infinite finitely generated periodic groups. Dokl. Akad. Nauk SSSR
268 (1983), no. 4, 803–805. (Cited on pages 208 and 274).

[231] F. Mignosi and P. Séébold. If a D0L language is k-power free then it is circular, In:
Proc. 20th Int’l Conf. on Automata, Languages, and Programming (ICALP), Lecture
Notes in Comput. Sci., vol. 700, Springer-Verlag, 1993, pp. 507–518. (Cited on page 85).

[232] Igor Mineyev. Submultiplicativity and the Hanna Neumann conjecture. Ann. of Math.
(2) 175 (2012), no. 1, 393–414. (Cited on page 300).

[233] K.V. Mikhajlovskii and A. Yu. Olshanskii. Some constructions relating to hyperbolic
groups, In: Geometry and cohomology in group theory (Durham, 1994), 263–290, London
Math. Soc. Lecture Note Ser., 252, Cambridge Univ. Press, Cambridge, 1998. (Cited on
page 297).

[234] J. Milnor. Problem 5603, Amer. Math. Monthly 75 (1968), 685–686. (Cited on page 263).

316



[235] Nicolas Monod. Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci.
USA 110 (2013), no. 12, 4524–4527. (Cited on page 305).

[236] E. F. Moore. Gedanken experiments on sequential machines. In: C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 129–153. Princeton Universty Press,
1956. (Cited on page 135).

[237] Justin Moore. Fast growth in the Følner function for Thompson’s group F. Groups
Geom. Dyn. 7 (2013), no. 3, 633–651. (Cited on page 302).

[238] M. Morse and G. A. Hedlund. Symbolic dynamics. Amer. J. Math., 60:815–866, 1938.
(Cited on pages 46 and 76).

[239] M. Morse and G. A. Hedlund. Symbolic dynamics II. Sturmian trajectories. Amer. J.
Math., 62:1–42, 1940. (Cited on page 49).

[240] M. Morse and G. A. Hedlund. Unending chess, symbolic dynamics and a problem in
semigroups. Duke Math. J.. 11:1–7, 1944. (Cited on page 90).

[241] W. D. Munn. Free inverse semigroups. Proc. Lond. Math. Soc., 30:385–404, 1974. (Cited
on page 133).
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page 185).

[306] W. Specht. Gesetze in Ringen. I. Math. Z., 52:557–589, 1950. (Cited on page 182).
[307] Craig C. Squier. Word problems and a homological finiteness conditions for monoids. J.

Pure Appl. Algebra, 49:201–217, 1987. (Cited on page 245).
[308] R. P. Stanley. Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota

and appendix 1 by Sergey Fomin. Cambridge Studies in Advanced Mathematics, 62.
Cambridge University Press, Cambridge, 1999. (Cited on pages 126 and 276).

[309] V.I. Sushchansky. Periodic p-groups of permutations and the unrestricted Burnside
problem. Dokl. Akad. Nauk SSSR 247 (1979), no. 3, 557–561. (Cited on page 208).
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List of Notation

a ≡ b (mod N) elements a and b are equal modulo a normal subgroup (ideal)
N , page 28

α(m,n) the subword of a word α starting at the position number m and ending
at the position number n, page 42

ab b−1ab, a conjugated by b, page 24

a→
Γ
b object a can be rewritten into b using a positive move of a rewriting

system Γ, page 46

a
∗
→

Γ
b object a can be rewritten into b using a sequence of positive moves of a

rewriting system Γ, page 46

A2 the 5-element Rees–Sushkevich semigroup over the trivial group with

sandwich matrix ( 0 1
1 1

), page 102

bot(∆) the bottom path of a semigroup diagram ∆, page 225

B2 the 5-element Brandt semigroup, page 55[a, b] a−1b−1ab, the group commutator of a and b, page 24(a, b) ab − ba, the ring commutator of a and b, page 27

D(P, u) the diagram group corresponding to a semigroup presentation P and a
word u, page 227

ei,j a matrix unit, page 142

ε(u) the linear diagram corresponding to a word u, page 14

Fn the semigroup of all maps from an n-element set into itself, page 54

π1(X) the fundamental group of X, page 219

Fp the field of integers modulo prime p, page 26

G ∗A=A′ G′ the free product of groups G and G′ with amalgamated subgroups
A and A′, page 180

GL(n,R) the general linear group, page 25

gp⟨X ∣R ⟩ a group presentation, page 57

G ∗G′ the free product of groups G and G′, page 180

HNNφ(G),G∗φ the HNN extension of the group G corresponding to an isomor-
phism φ between two subgroups, page 178

ι(∆) the initial vertex of a diagram ∆, page 225

Lab(p) the label of a path p in an automaton, page 19

mn⟨X ∣R ⟩ a monoid presentation, page 57

Mn(R) the ring of n × n-matrices over a ring R, page 26
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M0(G,I,J,P ), M(G,I,J,P ) the Rees–Sushkevich semigroups over a group G

with sandwich matrix P , page 100(n
k
) a binomial coefficient (the number of k-element subsets in an n-element

set), page 11

v ⪯ u v is a subword of u, page 14

∂(∆) the boundary of a van Kampen diagram ∆, page 172

p− or ι(p) the tail of a path p, page 18

p+ or τ(p) the head of a path p, page 18(Q,A) an automaton with vertex set Q and alphabet A, page 19

Q, R, C fields of rational, real and complex numbers, page 26

Se the maximal subgroup with identity element e in a semigroup S, page 105

sg⟨X ∣R ⟩ a semigroup presentation, page 57

SL(n,R) the special linear group, page 25

Sn the symmetric group of n elements, page 54

SO(n,R) the special orthogonal group, page 25

S1 a semigroup S with identity element adjoint, page 28

sr⟨X ∣R ⟩ a string rewriting system, page 51

S0 a semigroup S with zero adjoint, page 81

τ(∆) the terminal vertex of a diagram ∆, page 225

top(∆) the top path of a semigroup diagram ∆, page 225[u,a]αβ the word u with a inserted between every two consecutive letters and
possibly at the beginning and at the end., page 75

u ≡ v words u, v are identical, page 13

X/σ the factor-set of a set X over an equivalence relation σ, page 12

Z the ring (group) of integers, page 26

Z ≀Z the wreath product of two infinite cyclic groups, page 59
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