GEOMETRY OF GROUPS AND COMPUTATIONAL COMPLEXITY

Mark V. Sapir

Prague, June 17, 2010

The word problem

Let $G=\langle X \mid R\rangle$ be a finitely presented group; $G=F(X) / N$.

The word problem

Let $G=\langle X \mid R\rangle$ be a finitely presented group; $G=F(X) / N$.
The word problem: Given a word $w \in F(X)$, decide if $w \in N$,

The word problem

Let $G=\langle X \mid R\rangle$ be a finitely presented group; $G=F(X) / N$.
The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if $w=1$ in G,

The word problem

Let $G=\langle X \mid R\rangle$ be a finitely presented group; $G=F(X) / N$.
The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if $w=1$ in G,i.e. $w=\prod_{i=1}^{m} s_{i} r_{i} s_{i}^{-1}$ where $s_{i} \in F(X), r_{i} \in R$.

The word problem

Let $G=\langle X \mid R\rangle$ be a finitely presented group; $G=F(X) / N$.
The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if $w=1$ in G,i.e. $w=\prod_{i=1}^{m} s_{i} r_{i} s_{i}^{-1}$ where $s_{i} \in F(X), r_{i} \in R$.

Vam Kampen diagrams and tilings

After cancelation, we get a planar graph with boundary label w :

Vam Kampen diagrams and tilings

After cancelation, we get a planar graph with boundary label w :

Vam Kampen diagrams and tilings

After cancelation, we get a planar graph with boundary label w :

Thus the word problem is a tiling problem

Vam Kampen diagrams and tilings

After cancelation, we get a planar graph with boundary label w :

Thus the word problem is a tiling problem
The direct part of van Kampen lemma: If $w=1$ in G, then there is a van Kampen diagram Δ over the presentation of G with boundary label w.

An elementary problem and non-elementary solution

Let P be the standard 8×8 chess board with two opposite squares removed. Prove that P cannot be tiled by the standard 2×1 dominos.

An elementary problem and non-elementary solution

 Let P be the standard 8×8 chess board with two opposite squares removed. Prove that P cannot be tiled by the standard 2×1 dominos.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$. Consider the group G with the presentation $\left\langle a, b \mid a b^{2} a^{-1} b^{-2}=1, a^{2} b a^{-2} b^{-1}=1\right\rangle$ (the Conway tiling group).

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$. Consider the group G with the presentation $\left\langle a, b \mid a b^{2} a^{-1} b^{-2}=1, a^{2} b a^{-2} b^{-1}=1\right\rangle$ (the Conway tiling group). The word W is equal to 1 in G.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$. Consider the group G with the presentation $\left\langle a, b \mid a b^{2} a^{-1} b^{-2}=1, a^{2} b a^{-2} b^{-1}=1\right\rangle$ (the Conway tiling group). The word W is equal to 1 in G. Consider the 6 -element symmetric group S_{3} and two permutations $\alpha=(1,2), \beta=(2,3)$ in it.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$. Consider the group G with the presentation $\left\langle a, b \mid a b^{2} a^{-1} b^{-2}=1, a^{2} b a^{-2} b^{-1}=1\right\rangle$ (the Conway tiling group). The word W is equal to 1 in G. Consider the 6 -element symmetric group S_{3} and two permutations $\alpha=(1,2), \beta=(2,3)$ in it. The map $a \mapsto \alpha, b \mapsto \beta$ extends to a homomorphism $G \rightarrow S_{3}$.

The solution

The (counterclockwise) boundary of P has label $W=a^{7} b^{7} a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $a b^{2} a^{-1} b^{-2}$, and in the second case its boundary label is $a^{2} b a^{-2} b^{-1}$. Consider the group G with the presentation $\left\langle a, b \mid a b^{2} a^{-1} b^{-2}=1, a^{2} b a^{-2} b^{-1}=1\right\rangle$ (the Conway tiling group). The word W is equal to 1 in G. Consider the 6 -element symmetric group S_{3} and two permutations $\alpha=(1,2), \beta=(2,3)$ in it. The map $a \mapsto \alpha, b \mapsto \beta$ extends to a homomorphism $G \rightarrow S_{3}$. $W(\alpha, \beta)=(\alpha \beta)^{4}=\alpha \beta=(1,3,2)$ which is not trivial. Hence W is not equal to 1 in G, a contradiction.

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$.

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$. Let w be the boundary label of Δ. Then w is equal in the free group to a word of the form $u_{1} r_{1} u_{2} r_{2} \ldots u_{m} r_{d} u_{m+1}$ where:

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$. Let w be the boundary label of Δ. Then w is equal in the free group to a word of the form $u_{1} r_{1} u_{2} r_{2} \ldots u_{m} r_{d} u_{m+1}$ where:

1. $r_{i} \in R ; u_{1} u_{2} \ldots u_{m+1}=1$ in the free group;
2. $\sum_{i=1}^{m+1}\left|u_{i}\right| \leq 4 e$ where e is the number of edges of Δ.

In particular, $w=1$ in G.

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$. Let w be the boundary label of Δ. Then w is equal in the free group to a word of the form $u_{1} r_{1} u_{2} r_{2} \ldots u_{m} r_{d} u_{m+1}$ where:

1. $r_{i} \in R ; u_{1} u_{2} \ldots u_{m+1}=1$ in the free group;
2. $\sum_{i=1}^{m+1}\left|u_{i}\right| \leq 4 e$ where e is the number of edges of Δ.

In particular, $w=1$ in G.
Thus the size of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$. Let w be the boundary label of Δ. Then w is equal in the free group to a word of the form $u_{1} r_{1} u_{2} r_{2} \ldots u_{m} r_{d} u_{m+1}$ where:

1. $r_{i} \in R ; u_{1} u_{2} \ldots u_{m+1}=1$ in the free group;
2. $\sum_{i=1}^{m+1}\left|u_{i}\right| \leq 4 e$ where e is the number of edges of Δ.

In particular, $w=1$ in G.
Thus the size of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

The non-deterministic complexity of the word problem in G is at most the Dehn function of G, i.e. the function $f(n)$ which is the maximal area of van Kampen diagram with boundary length at most n

The converse part of the van Kampen lemma

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R\rangle$. Let w be the boundary label of Δ. Then w is equal in the free group to a word of the form $u_{1} r_{1} u_{2} r_{2} \ldots u_{m} r_{d} u_{m+1}$ where:

1. $r_{i} \in R ; u_{1} u_{2} \ldots u_{m+1}=1$ in the free group;
2. $\sum_{i=1}^{m+1}\left|u_{i}\right| \leq 4 e$ where e is the number of edges of Δ.

In particular, $w=1$ in G.
Thus the size of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

The non-deterministic complexity of the word problem in G is at most the Dehn function of G, i.e. the function $f(n)$ which is the maximal area of van Kampen diagram with boundary length at most n

In particular the word problem is decidable if and only if the Dehn function is bounded by a recursive function.

The Baumslag-Solitar group, its Dehn function.

$$
B S(1,2)=\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle
$$

The Baumslag-Solitar group, its Dehn function.

$$
B S(1,2)=\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle
$$

A characterization of groups with word problem in NP

If $G<H$, then we can tile discs with boundary labels from G by relations of H.

A characterization of groups with word problem in NP

If $G<H$, then we can tile discs with boundary labels from G by relations of H. So if H has polynomial Dehn function, then the word problem in G is in NP.

A characterization of groups with word problem in NP

If $G<H$, then we can tile discs with boundary labels from G by relations of H. So if H has polynomial Dehn function, then the word problem in G is in NP.

Theorem (Birget, Olshanskii, Rips, S., Ann. of Math. 2002)
The word problem of a finitely generated group G is in NP if and only if G is embedded into a finitely presented group with polynomial Dehn function.

A connection with the classical isoperimetric problem for manifolds

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.

A connection with the classical isoperimetric problem for manifolds

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.
Hence the co-compact lattices in semi-simple Lie groups of rank >1 have quadratic Dehn function.

A connection with the classical isoperimetric problem for manifolds

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.
Hence the co-compact lattices in semi-simple Lie groups of rank >1 have quadratic Dehn function.

Non-uniform lattices are harder to deal with.

A connection with the classical isoperimetric problem for manifolds

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.
Hence the co-compact lattices in semi-simple Lie groups of rank >1 have quadratic Dehn function.

Non-uniform lattices are harder to deal with.
Theorem (R. Young, solving a conjecture of Thurston): The group $S L(n, \mathbb{Z})$ has quadratic Dehn function if $n \geq 5$.

Nilpotent groups

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1}.

Nilpotent groups

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1}.

Theorem (Alcock, Olshanskii+S., R. Young): The Dehn functions of higher dimensional Heisenberg groups are quadratic.

Nilpotent groups

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1}.

Theorem (Alcock, Olshanskii+S., R. Young): The Dehn functions of higher dimensional Heisenberg groups are quadratic.

Theorem (S. Wenger): There are nilpotent groups with Dehn functions not of the form n^{k} for any k (bigger than n^{2} and smaller than $n^{2} \log n$.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If (X, dist $)$ is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If (X, dist) is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the l_{1}-metric.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If (X, dist) is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the I_{1}-metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If $(X, d i s t)$ is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the I_{1}-metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If (X, dist) is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the I_{1}-metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If (X, dist) is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the I_{1}-metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Theorem (Gromov): If all asymptotic cones of G are simply connected, then G is finitely presented and its Dehn function is polynomial.

Connections with asymptotic cones

Finitely generated groups are metric spaces. $\operatorname{dist}(a, b)=\left|a^{-1} b\right|$.
If $(X, d i s t)$ is a metric space, $o \in X, d_{n} \rightarrow \infty$, and ω is an ultrafilter, we can consider the limit $\operatorname{Con}^{\omega}\left(X,\left(d_{n}\right), o\right)$

Examples. The asymptotic cone of \mathbb{Z}^{n} is \mathbb{R}^{n} with the I_{1}-metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Theorem (Gromov): If all asymptotic cones of G are simply connected, then G is finitely presented and its Dehn function is polynomial.

Question: Is it true that every NP-group is inside a group with simply connected asymptotic cones?

Quadratic Dehn functions

Theorem (Gromov, Papasoglu). Quadratic Dehn function implies simply connected asymptotic cones.

Quadratic Dehn functions

Theorem (Gromov, Papasoglu). Quadratic Dehn function implies simply connected asymptotic cones.

Examples: $S L_{n}(\mathbb{Z}), n \geq 5$, the CAT(0)-groups, automatic groups, the R . Thompson group, etc.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch,
Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch,
Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^{a} for some transcendental a.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^{a} for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^{4}.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^{a} for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^{4}.

Theorem (S., Birget, Rips): Let α be a number >4 computable in time at most $2^{2^{n}}$. Then there exists a finitely presented group with Dehn function n^{α}.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^{a} for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^{4}.

Theorem (S., Birget, Rips): Let α be a number >4 computable in time at most $2^{2^{n}}$. Then there exists a finitely presented group with Dehn function n^{α}. If n^{α} is equivalent to the Dehn function of a finitely presented group, then α is computable in time at most $2^{2^{2^{\alpha}}}$.

The set of Dehn functions

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^{2}}{4 \pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^{a} for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^{4}.

Theorem (S., Birget, Rips): Let α be a number >4 computable in time at most $2^{2^{n}}$. Then there exists a finitely presented group with Dehn function n^{α}. If n^{α} is equivalent to the Dehn function of a finitely presented group, then α is computable in time at most $2^{2^{2^{\alpha}}}$.

Examples. $\pi+e$, any algebraic number >4, etc.

Some weird Dehn functions

Theorem (Olshanskii, S.) There exists a finitely presented group with non-recursive word problem and almost quadratic Dehn function.

Thank you!

