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Vam Kampen diagrams and tilings

After cancelation, we get a planar graph with boundary label w :

Thus the word problem is a tiling problem
The direct part of van Kampen lemma: If w = 1 in G , then
there is a van Kampen diagram ∆ over the presentation of G with
boundary label w .
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The solution

The (counterclockwise) boundary of P has label
W = a7b7a−1ba−7b−7ab. Every domino can be placed either
vertically or horizontally. In the first case its boundary label is
ab2a−1b−2, and in the second case its boundary label is
a2ba−2b−1. Consider the group G with the presentation
〈a, b | ab2a−1b−2 = 1, a2ba−2b−1 = 1〉 (the Conway tiling group).
The word W is equal to 1 in G . Consider the 6-element symmetric
group S3 and two permutations α = (1, 2), β = (2, 3) in it. The
map a 7→ α, b 7→ β extends to a homomorphism G → S3.
W (α, β) = (αβ)4 = αβ = (1, 3, 2) which is not trivial. Hence W

is not equal to 1 in G , a contradiction.
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Lemma (A. Olshanskii, S.) Let ∆ be a van Kampen diagram
over a presentation 〈X | R〉. Let w be the boundary label of ∆.
Then w is equal in the free group to a word of the form
u1r1u2r2...umrdum+1 where:
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|ui | ≤ 4e where e is the number of edges of ∆.

In particular, w = 1 in G .

Thus the size of a van Kampen diagram is approximately equal to
the number of cells plus the length of W .

The non-deterministic complexity of the word problem in G

is at most the Dehn function of G , i.e. the function f (n)
which is the maximal area of van Kampen diagram with
boundary length at most n

In particular the word problem is decidable if and only if the Dehn
function is bounded by a recursive function.
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A characterization of groups with word problem in NP

If G < H, then we can tile discs with boundary labels from G by
relations of H. So if H has polynomial Dehn function, then the
word problem in G is in NP.

Theorem (Birget, Olshanskii, Rips, S., Ann. of Math. 2002)
The word problem of a finitely generated group G is in NP if and
only if G is embedded into a finitely presented group with
polynomial Dehn function.
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Theorem (Gromov, Bridson): If a group G acts properly
co-compactly on a simply connected Riemannian manifold with
isoperimetric function f , then the Dehn function of G is equivalent
to f .
Hence the co-compact lattices in semi-simple Lie groups of rank
> 1 have quadratic Dehn function.

Non-uniform lattices are harder to deal with.

Theorem (R. Young, solving a conjecture of Thurston): The
group SL(n,Z) has quadratic Dehn function if n ≥ 5.
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Nilpotent groups

Theorem (Gromov, Gersten+Riley): The Dehn function of a
nilpotent group of class c is at most nc+1.

Theorem (Alcock, Olshanskii+S., R. Young): The Dehn
functions of higher dimensional Heisenberg groups are quadratic.

Theorem (S. Wenger): There are nilpotent groups with Dehn
functions not of the form nk for any k (bigger than n2 and smaller
than n2 log n.
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Connections with asymptotic cones

Finitely generated groups are metric spaces. dist(a, b) = |a−1b|.

If (X , dist) is a metric space, o ∈ X , dn → ∞, and ω is an
ultrafilter, we can consider the limit Conω(X , (dn), o)

Examples. The asymptotic cone of Zn is Rn with the l1-metric.
The asymptotic cone of a nilpotent group is a nilpotent Lie group.
The asymptotic cone of a (non-elementary) hyperbolic group is a
real tree of degree continuum at each point The asymptotic cone
of a co-compact lattice in a Lie group is a building, etc.

Theorem (Gromov): If all asymptotic cones of G are simply
connected, then G is finitely presented and its Dehn function is
polynomial.

Question: Is it true that every NP-group is inside a group with
simply connected asymptotic cones?
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Quadratic Dehn functions

Theorem (Gromov, Papasoglu). Quadratic Dehn function
implies simply connected asymptotic cones.

Examples: SLn(Z), n ≥ 5, the CAT(0)-groups, automatic groups,
the R. Thompson group, etc.
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Theorem (Gromov, Olshanskii, Papasoglu, Bowditch,

Wenger) If the Dehn function is smaller than n2

4π
, then the group

is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of
the form na for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time
function T of a non-deterministic Turing machine, there exists a
finitely presented group with Dehn function equivalent to T 4.

Theorem (S., Birget, Rips): Let α be a number > 4 computable
in time at most 22

n

. Then there exists a finitely presented group
with Dehn function nα. If nα is equivalent to the Dehn function of
a finitely presented group, then α is computable in time at most

22
2
α

.

Examples. π + e, any algebraic number > 4, etc.



Some weird Dehn functions

Theorem (Olshanskii, S.) There exists a finitely presented group
with non-recursive word problem and almost quadratic Dehn
function.



Thank you!
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