GEOMETRY OF GROUPS AND COMPUTATIONAL COMPLEXITY

Mark V. Sapir

Prague, June 17, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let $G = \langle X | R \rangle$ be a finitely presented group; G = F(X)/N.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Let $G = \langle X | R \rangle$ be a finitely presented group; G = F(X)/N.

The word problem: Given a word $w \in F(X)$, decide if $w \in N$,

Let $G = \langle X | R \rangle$ be a finitely presented group; G = F(X)/N.

The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if w = 1 in G,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $G = \langle X | R \rangle$ be a finitely presented group; G = F(X)/N.

The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if w = 1 in *G*, i.e. $w = \prod_{i=1}^{m} s_i r_i s_i^{-1}$ where $s_i \in F(X)$, $r_i \in R$.

Let $G = \langle X | R \rangle$ be a finitely presented group; G = F(X)/N.

The word problem: Given a word $w \in F(X)$, decide if $w \in N$, i.e. if w = 1 in *G*, i.e. $w = \prod_{i=1}^{m} s_i r_i s_i^{-1}$ where $s_i \in F(X)$, $r_i \in R$.

After cancelation, we get a planar graph with boundary label w:

After cancelation, we get a planar graph with boundary label w:

・ロト ・聞ト ・ヨト ・ヨト

- 2

After cancelation, we get a planar graph with boundary label w:

Thus the word problem is a tiling problem

After cancelation, we get a planar graph with boundary label w:

Thus the word problem is a tiling problem **The direct part of van Kampen lemma:** If w = 1 in *G*, then there is a van Kampen diagram Δ over the presentation of *G* with boundary label *w*. An elementary problem and non-elementary solution

Let P be the standard 8×8 chess board with two opposite squares removed. Prove that P cannot be tiled by the standard 2×1 dominos.

An elementary problem and non-elementary solution

Let P be the standard 8×8 chess board with two opposite squares removed. Prove that P cannot be tiled by the standard 2×1 dominos.

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$.

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2 a^{-1}b^{-2}$, and in the second case its boundary label is $a^2 b a^{-2} b^{-1}$.

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2 a^{-1} b^{-2}$, and in the second case its boundary label is $a^2 b a^{-2} b^{-1}$. Consider the group *G* with the presentation $\langle a, b \mid ab^2 a^{-1} b^{-2} = 1, a^2 b a^{-2} b^{-1} = 1 \rangle$ (the *Conway tiling group*).

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2 a^{-1} b^{-2}$, and in the second case its boundary label is $a^2 b a^{-2} b^{-1}$. Consider the group *G* with the presentation $\langle a, b \mid ab^2 a^{-1} b^{-2} = 1, a^2 b a^{-2} b^{-1} = 1 \rangle$ (the *Conway tiling group*). The word *W* is equal to 1 in *G*.

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2a^{-1}b^{-2}$, and in the second case its boundary label is $a^2ba^{-2}b^{-1}$. Consider the group *G* with the presentation $\langle a, b \mid ab^2a^{-1}b^{-2} = 1, a^2ba^{-2}b^{-1} = 1 \rangle$ (the *Conway tiling group*). The word *W* is equal to 1 in *G*. Consider the 6-element symmetric group *S*₃ and two permutations $\alpha = (1, 2), \beta = (2, 3)$ in it.

The (counterclockwise) boundary of *P* has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2 a^{-1} b^{-2}$, and in the second case its boundary label is $a^2 b a^{-2} b^{-1}$. Consider the group *G* with the presentation $\langle a, b \mid ab^2 a^{-1} b^{-2} = 1, a^2 b a^{-2} b^{-1} = 1 \rangle$ (the *Conway tiling group*). The word *W* is equal to 1 in *G*. Consider the 6-element symmetric group *S*₃ and two permutations $\alpha = (1, 2), \beta = (2, 3)$ in it. The map $a \mapsto \alpha, b \mapsto \beta$ extends to a homomorphism $G \to S_3$.

The (counterclockwise) boundary of P has label $W = a^7 b^7 a^{-1} b a^{-7} b^{-7} a b$. Every domino can be placed either vertically or horizontally. In the first case its boundary label is $ab^2a^{-1}b^{-2}$, and in the second case its boundary label is $a^2ba^{-2}b^{-1}$. Consider the group G with the presentation $(a, b \mid ab^2 a^{-1} b^{-2} = 1, a^2 b a^{-2} b^{-1} = 1)$ (the Conway tiling group). The word W is equal to 1 in G. Consider the 6-element symmetric group S_3 and two permutations $\alpha = (1, 2), \beta = (2, 3)$ in it. The map $a \mapsto \alpha$, $b \mapsto \beta$ extends to a homomorphism $G \to S_3$. $W(\alpha,\beta) = (\alpha\beta)^4 = \alpha\beta = (1,3,2)$ which is not trivial. Hence W is not equal to 1 in G, a contradiction.

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X \mid R \rangle$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X | R \rangle$. Let *w* be the boundary label of Δ . Then *w* is equal in the free group to a word of the form $u_1r_1u_2r_2...u_mr_du_{m+1}$ where:

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X | R \rangle$. Let w be the boundary label of Δ . Then w is equal in the free group to a word of the form $u_1r_1u_2r_2...u_mr_du_{m+1}$ where: 1. $r_i \in R$; $u_1u_2...u_{m+1} = 1$ in the free group; 2. $\sum_{i=1}^{m+1} |u_i| \le 4e$ where e is the number of edges of Δ . In particular, w = 1 in G.

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X | R \rangle$. Let w be the boundary label of Δ . Then w is equal in the free group to a word of the form $u_1r_1u_2r_2...u_mr_du_{m+1}$ where: 1. $r_i \in R$; $u_1u_2...u_{m+1} = 1$ in the free group; 2. $\sum_{i=1}^{m+1} |u_i| \le 4e$ where e is the number of edges of Δ .

In particular, w = 1 in G.

Thus the *size* of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X | R \rangle$. Let w be the boundary label of Δ . Then w is equal in the free group to a word of the form $u_1r_1u_2r_2...u_mr_du_{m+1}$ where: 1. $r_i \in R$; $u_1u_2...u_{m+1} = 1$ in the free group; 2. $\sum_{i=1}^{m+1} |u_i| \le 4e$ where e is the number of edges of Δ . In particular, w = 1 in G.

Thus the *size* of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

The non-deterministic complexity of the word problem in G is at most the Dehn function of G, i.e. the function f(n) which is the maximal area of van Kampen diagram with boundary length at most n

Lemma (A. Olshanskii, S.) Let Δ be a van Kampen diagram over a presentation $\langle X | R \rangle$. Let w be the boundary label of Δ . Then w is equal in the free group to a word of the form $u_1r_1u_2r_2...u_mr_du_{m+1}$ where: 1. $r_i \in R$; $u_1u_2...u_{m+1} = 1$ in the free group; 2. $\sum_{i=1}^{m+1} |u_i| \le 4e$ where e is the number of edges of Δ . In particular, w = 1 in G.

Thus the *size* of a van Kampen diagram is approximately equal to the number of cells plus the length of W.

The non-deterministic complexity of the word problem in G is at most the Dehn function of G, i.e. the function f(n) which is the maximal area of van Kampen diagram with boundary length at most n

In particular the word problem is decidable if and only if the Dehn function is bounded by a recursive function.

The Baumslag-Solitar group, its Dehn function.

 $BS(1,2) = \langle a, b \mid b^{-1}ab = a^2 \rangle$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

The Baumslag-Solitar group, its Dehn function.

- イロト イヨト イヨト - ヨー のへ

A characterization of groups with word problem in NP

If G < H, then we can tile discs with boundary labels from G by relations of H.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A characterization of groups with word problem in NP

If G < H, then we can tile discs with boundary labels from G by relations of H. So if H has polynomial Dehn function, then the word problem in G is in NP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A characterization of groups with word problem in NP

If G < H, then we can tile discs with boundary labels from G by relations of H. So if H has polynomial Dehn function, then the word problem in G is in NP.

Theorem (Birget, Olshanskii, Rips, S., Ann. of Math. 2002) The word problem of a finitely generated group G is in NP if and only if G is embedded into a finitely presented group with polynomial Dehn function.

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.

Hence the co-compact lattices in semi-simple Lie groups of rank $>1\ {\rm have}\ {\rm quadratic}\ {\rm Dehn}\ {\rm function}.$

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.

Hence the co-compact lattices in semi-simple Lie groups of rank > 1 have quadratic Dehn function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-uniform lattices are harder to deal with.

Theorem (Gromov, Bridson): If a group G acts properly co-compactly on a simply connected Riemannian manifold with isoperimetric function f, then the Dehn function of G is equivalent to f.

Hence the co-compact lattices in semi-simple Lie groups of rank > 1 have quadratic Dehn function.

Non-uniform lattices are harder to deal with.

Theorem (R. Young, solving a conjecture of Thurston): The group $SL(n, \mathbb{Z})$ has quadratic Dehn function if $n \ge 5$.

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1} .

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1} .

Theorem (Alcock, Olshanskii+S., R. Young): The Dehn functions of higher dimensional Heisenberg groups are quadratic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Gromov, Gersten+Riley): The Dehn function of a nilpotent group of class c is at most n^{c+1} .

Theorem (Alcock, Olshanskii+S., R. Young): The Dehn functions of higher dimensional Heisenberg groups are quadratic.

Theorem (S. Wenger): There are nilpotent groups with Dehn functions not of the form n^k for any k (bigger than n^2 and smaller than $n^2 \log n$.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Theorem (Gromov): If all asymptotic cones of G are simply connected, then G is finitely presented and its Dehn function is polynomial.

Finitely generated groups are metric spaces. $dist(a, b) = |a^{-1}b|$.

If (X, dist) is a metric space, $o \in X$, $d_n \to \infty$, and ω is an ultrafilter, we can consider the limit $Con^{\omega}(X, (d_n), o)$

Examples. The asymptotic cone of \mathbb{Z}^n is \mathbb{R}^n with the l_1 -metric. The asymptotic cone of a nilpotent group is a nilpotent Lie group. The asymptotic cone of a (non-elementary) hyperbolic group is a real tree of degree continuum at each point The asymptotic cone of a co-compact lattice in a Lie group is a building, etc.

Theorem (Gromov): If all asymptotic cones of G are simply connected, then G is finitely presented and its Dehn function is polynomial.

Question: Is it true that every NP-group is inside a group with simply connected asymptotic cones?

Quadratic Dehn functions

Theorem (Gromov, Papasoglu). Quadratic Dehn function implies simply connected asymptotic cones.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem (Gromov, Papasoglu). Quadratic Dehn function implies simply connected asymptotic cones.

Examples: $SL_n(\mathbb{Z})$, $n \ge 5$, the CAT(0)-groups, automatic groups, the R. Thompson group, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^a for some transcendental a.

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^a for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^4 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^a for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^4 .

Theorem (S., Birget, Rips): Let α be a number > 4 computable in time at most 2^{2^n} . Then there exists a finitely presented group with Dehn function n^{α} .

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^a for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^4 .

Theorem (S., Birget, Rips): Let α be a number > 4 computable in time at most 2^{2^n} . Then there exists a finitely presented group with Dehn function n^{α} . If n^{α} is equivalent to the Dehn function of a finitely presented group, then α is computable in time at most $2^{2^{\alpha}}$.

Theorem (Gromov, Olshanskii, Papasoglu, Bowditch, Wenger) If the Dehn function is smaller than $\frac{n^2}{4\pi}$, then the group is hyperbolic and its Dehn function is linear.

Theorem (Bridson, Brady, etc.): There are Dehn functions of the form n^a for some transcendental a.

Theorem (S., Birget, Rips): For every superadditive time function T of a non-deterministic Turing machine, there exists a finitely presented group with Dehn function equivalent to T^4 .

Theorem (S., Birget, Rips): Let α be a number > 4 computable in time at most 2^{2^n} . Then there exists a finitely presented group with Dehn function n^{α} . If n^{α} is equivalent to the Dehn function of a finitely presented group, then α is computable in time at most $2^{2^{\alpha}}$.

Examples. $\pi + e$, any algebraic number > 4, etc.

Some weird Dehn functions

Theorem (Olshanskii, S.) There exists a finitely presented group with non-recursive word problem and almost quadratic Dehn function.

THANK YOU!

◆□ → ◆□ → ▲目 → ▲目 → ● ● ● ●