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By words we learn thoughts,
and by thoughts we learn life.

(Jean Baptiste Girard)
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The Novikov-Adian theorem

We present a “road map” for Olshanskii’s proof of a version of
Novikov-Adian’s theorem for sufficiently large odd exponents.

Theorem.(Novikov-Adian, Olshanskii) The 2-generated free
Burnside group B2,n is infinite for sufficiently large odd n (say,
n > 1010).
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where G0 is the free group F2, and Ci is the smallest word which
has infinite order in Gi−1, for every i ≥ 1.
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The basic rough idea

Order the cyclically reduced words in the free group F2 = 〈 a, b 〉:
u1 < u2 < . . .. Consider the following sequence of groups Gi with
group presentations

PBi = 〈 a, b | Cn
1 = 1,Cn

2 = 1, . . . ,Cn
i = 1 〉

where G0 is the free group F2, and Ci is the smallest word which
has infinite order in Gi−1, for every i ≥ 1.

Theorem. The group Gi is infinite for every i ≥ 0. In fact all
cube-free words in the alphabet {a, b} are pairwise different in Gi .

The group B2,n is given by

PB = 〈 a, b | rni = 1, i ≥ 1 〉.

The theorem implies that B2,n is infinite.
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j-pairs

The index i of Gi and Cn
i is called the rank.

We also define the type of a van Kampen (or annular) diagram ∆
over PB as the sequence of ranks of its cells arranged in the
non-increasing order (s1, s2, . . . ). We order types lexicographically.
We can remove j-pairs reducing the type:

p

π π′

p′

p′′−→

w w−1 w
w−1

We call a van Kampen or annular diagram of rank i reduced if it
does no contain j-pairs for any j ≤ i .
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The crown of lemmas

The proof consists of several lemmas proved by a simultaneous
induction on the type of a diagram over PB. It means that proving
every lemma, we can assume that all other lemmas are already
proved for diagrams of smaller type.

In the proof, we often use the phrase that some quantity a (length
of a path, or weight of a cell, etc.) is “much smaller” than the
other quantity b. This usually mean that a ≤ µb for some very
small parameter µ.



Contiguity subdiagrams.

Contiguity subdiagrams connect a cell π or a boundary arc p with
another cell π′ or a boundary arc p′ in a diagram.



Contiguity subdiagrams.

Contiguity subdiagrams connect a cell π or a boundary arc p with
another cell π′ or a boundary arc p′ in a diagram.
∂(Ψ) = p1q1p

−1
2 q−1

2 .



Contiguity subdiagrams.

Contiguity subdiagrams connect a cell π or a boundary arc p with
another cell π′ or a boundary arc p′ in a diagram.
∂(Ψ) = p1q1p

−1
2 q−1

2 . The quotient |q1|
|∂(π1)|

is called the degree of
contiguity of π1 to π2 via Ψ. The role of this quantity is similar to
the λ in C ′(λ), i.e. labels of p1 and p2 play the role of “pieces” of
relations.



Contiguity subdiagrams.

Contiguity subdiagrams connect a cell π or a boundary arc p with
another cell π′ or a boundary arc p′ in a diagram.
∂(Ψ) = p1q1p

−1
2 q−1

2 . The quotient |q1|
|∂(π1)|

is called the degree of
contiguity of π1 to π2 via Ψ. The role of this quantity is similar to
the λ in C ′(λ), i.e. labels of p1 and p2 play the role of “pieces” of
relations.

π1 π2

p1

q1

p2

q2
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Contiguity subdiagrams

bb
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Π2q1 q2

p1

p2
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Boundary arcs: smooth, almost geodesic, compatible with

a cell

nπ
π′
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Ψ



Boundary arcs: smooth, almost geodesic, compatible with

a cell

nπ
π′

q

Ψ

Smooth: no compatible cells, geodesic: cannot be shortened by
homotopy inside the diagram.
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A good system of contiguity subdiagrams

Good: A system of contiguity subdiagrams which covers all edges
and has minimal possible number of contiguity subdiagrams . Let
Σ be a good collection of contiguity subdiagrams. Then all cells
are divided into special (the main cells of the bands of bonds),
concealed (inside the contiguity subdiagrams), and ordinary)
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θ-cells
Goal: Find a cell that sticks out.

π

∆

u

u′

v

∆′
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Weights

We assume that every diagram is normal. This means that the
rank of a contiguity subdiagram is always less than the ranks of
the cells or boundary arcs which this subdiagram connects.
Use weights instead of lengths. The weight of an edge from ∂(π)
is |∂(π)|−1/3, the weight of π is |∂(π)|2/3.Bigger cells weight more,
edges of bigger cells weight less.
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A lemma about weighted graphs

Lemma. Let S be a circle with at most distinguished points
O1,O2, . . . ,Ol (l ≤ 4).Let Φ be a planar graph drawn inside S ,
and let every vertex of Φ be connected by an edge with at most
one of Oi so that the graph Φ̄ obtained by adding these edges to Φ
is also planar. Further suppose that every vertex v ∈ Φ and every
edge e of Φ̄ are equipped with finite weights ν(v), ν(e), and the
weights of Oi are assumed infinite, so that
ν(e) ≤ amin{ν(e−), ν(e+)} Then N2 ≤ 7aN1 where N1,N2 are the
sums of weights of vertices in Φ and edges of Φ̄ respectively.
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Three lemmas about contiguity subdiagrams

Let Ψ be a contiguity subdiagram connecting π and Π.

Lemma 1. The sides of Ψ are very small comparing to the
perimeters of the cells.

Lemma 2. If π is attached essentially to Π, then the rank of π is
much smaller than the rank of Π, and the label of the contiguity
arc from ∂(Π) contains at most one and a little bit of the period of
that cell.

Lemma 3 The contiguity degree of π to Π cannot exceed a certain
parameter α which is only a little bigger than 1

2 .
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The total weight of special cells is small

The principal cell π1 of the band of bonds has (as we have
established above) weight that is much smaller than the weights of
both π and Π.

The two cells π2, π3 of the next to the maximal ranks of B have
weights which are much smaller (same scaling constant!) than the
perimeters of π1 and π (resp. π1 and Π).

Get a geometric progression, its sum is the weight of the
non-zero-cells in the band of bonds. It is at most δ times the sum
of weights of π and Π.

Auxiliary graph: the dual graph of the good collection Σ. Weight
of an edge Ψ: the sum of weights of the special cells in Ψ. Apply
the lemma.

Thus S < δ(S +O). Hence S = o(O).
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One of ordinary cells is a θ-cell.
Need to show that the total weight of internal contiguity arcs of
contiguity subdiagrams of ordinary cells of Σ is small.

A, weight of arcs of contiguity degree at most β, is small (small
cancelation)

Every ordinary cell has at most one arc of degree > β (the
minimality of Σ!).

B : the arcs of smaller weight in these contiguity subdiagrams , is
small.C : if the degree of p > β, it is smaller than, say 8/15 of the
degree of the cell, and there is at most one such per cell.

The external arcs of that cell cannot have degree > 4β. Thus the
weight of p is less than, say, 9/15 = 3/5 of the weight of internal
arcs of π.

Thus I ≤ A+ B + C where C ≤ 3
5 I and A,B are very small and so

C is small.

Thus E − I is large. Good in average implies existence of a good

individual.
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∆1 ∆3
π

q1

q2

q3

t1 t2 t3

Ψ1

Ψ2

The sides of the bond B are small.

∆1, ∆3 have smaller types than Ψ, so q1, q3 are almost geodesic
and their lengths don’t differ much from the lengths of t1 and t3
respectively.

The label of q2 contains at most one period plus a little bit. Hence
it is almost geodesic (in fact much more geodesic than the rest).

This implies that the length of q is almost the same as the length
of t as required.
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More results obtained by cutting

If A and C are simple words in Gi , i.e. not conjugated in Gi−1 to
powers of shorter words, and A is conjugated to a power of C in
Gi , A = X−1C lX , then l = ±1.

Every word that has finite order in Gi is conjugate in Gi with a
power of some word Ck , k ≤ i .

This, in particular, implies that the group given by the presentation
PB is indeed a group of exponent n.



Why do diagrams with small perimeters have small ranks?

Let ∆ be a reduced diagram with boundary q.



Why do diagrams with small perimeters have small ranks?

Let ∆ be a reduced diagram with boundary q. Let π be a cell from
∆ and ∆′ be the annular diagram obtained by removing π from ∆.



Why do diagrams with small perimeters have small ranks?

Let ∆ be a reduced diagram with boundary q. Let π be a cell from
∆ and ∆′ be the annular diagram obtained by removing π from ∆.
The boundary of π is smooth because ∆ is a reduced diagram.
Hence by the annular version of almost geodesicity, the length of
∂(π) cannot be much bigger than |q|. Thus the rank of π cannot
be large also.



Short cuts in annular diagrams

Lemma. Let ∆ be a reduced annular diagram over PB with
boundary components p, q. Then there are vertices o1 in p and o2
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Short cuts in annular diagrams

Lemma. Let ∆ be a reduced annular diagram over PB with
boundary components p, q. Then there are vertices o1 in p and o2
in q, and a path s connecting o1, o2 such that |s| is much smaller
than |p|+ |q| (say, |s| < 1

100(|p|+ |q|)).

This is a standard fact about hyperbolic groups.
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Fine-Wilf

We need to show that if one long side of a contiguity subdiagram
has many periods then the other long side cannot contain more
than 1 and a little bit of a period.

Lemma AC. Suppose that ∆ is a reduced diagram with
∂(∆) = p1q1p

−1
2 q−1

2 where p1 and p2 are very short comparing to
q1, q2 and the labels of u1, u2 of q1 and q2 are periodic words with
periods A and C which are simple in Gi , |A| ≥ |C |, and u1 contains
at least 1 + ǫ periods while u2 contains very large number of
periods. Then A is a conjugate to C±1 in Gi .

Lemma AA. Suppose that ∆ is a diagram of rank i with
∂(∆) = p1q1p

−1
2 q−1

2 where p1 and p2 are very short (just how
short pi should be will be clear from the proof) and the labels
u1, u2 of q1 and q2 are periodic words with period A which is
simple in Gi , and |u1| contains large enough number of periods.
Then the boundary arcs q1 and q2 are compatible.
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AA→ AC

A′
A′ o1o2

o′o′′
p1 p2

q1

q2
∆1 ∆2 ∆3r2 r1

P1 ∆1 R2

∆−1
3R−1

1 P−1
2

P1 R2

R−1
1 P−1

2z
C k C l

C k′ C l ′



AC→ AA

P1

u1 = u2v

u2

p2 P1
u2
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AC→ AA

P1

u1 = u2v

u2

p2 P1
u2

R

Use the fact that the fundamental group of a circle is Z. So Ak is
almost conjugate by a short word to a large power of a shorter word
P1 and we are in the situation of the AC-lemma. So AC → AA.


