Hilbert space compression of groups

- ロ > - 4 個 > - 4 三 > - 4 三 > - 三 - りへで

Definition of compression (Guentner-Kaminker)

(ロ) (日) (日) (三) (三) (三) (○) (○)

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.The *compression of* ϕ is the supremum over all $\alpha \ge 0$ such that

 $\operatorname{dist}_{Y}(f(u), f(v)) \geq \operatorname{dist}_{X}(u, v)^{\alpha}$

for all u, v with large enough $dist_X(u, v)$.

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.The *compression of* ϕ is the supremum over all $\alpha \ge 0$ such that

 $\operatorname{dist}_{Y}(f(u), f(v)) \geq \operatorname{dist}_{X}(u, v)^{\alpha}$

for all u, v with large enough $dist_X(u, v)$.

If \mathcal{E} is a class of metric spaces, then the \mathcal{E} -compression of X

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.The *compression of* ϕ is the supremum over all $\alpha \ge 0$ such that

 $\operatorname{dist}_{Y}(f(u), f(v)) \geq \operatorname{dist}_{X}(u, v)^{\alpha}$

for all u, v with large enough $dist_X(u, v)$.

If \mathcal{E} is a class of metric spaces, then the \mathcal{E} -compression of X is the supremum over all compressions of 1-Lipschitz maps $X \to Y$, $Y \in \mathcal{E}$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.The *compression of* ϕ is the supremum over all $\alpha \ge 0$ such that

 $\operatorname{dist}_{Y}(f(u), f(v)) \geq \operatorname{dist}_{X}(u, v)^{\alpha}$

for all u, v with large enough $dist_X(u, v)$.

If \mathcal{E} is a class of metric spaces, then the \mathcal{E} -compression of X is the supremum over all compressions of 1-Lipschitz maps $X \to Y$, $Y \in \mathcal{E}$.

In particular, if \mathcal{E} is the class of Hilbert spaces, we get the *Hilbert* space compression of X.

Definition of compression (Guentner-Kaminker)Let X and Y be two metric spaces and let $\phi: X \to Y$ be a 1-Lipschitz map.The *compression of* ϕ is the supremum over all $\alpha \ge 0$ such that

 $\operatorname{dist}_{Y}(f(u), f(v)) \geq \operatorname{dist}_{X}(u, v)^{\alpha}$

for all u, v with large enough $dist_X(u, v)$.

If \mathcal{E} is a class of metric spaces, then the \mathcal{E} -compression of X is the supremum over all compressions of 1-Lipschitz maps $X \to Y$, $Y \in \mathcal{E}$.

In particular, if \mathcal{E} is the class of Hilbert spaces, we get the *Hilbert* space compression of X.

The Hilbert space compression of a space is a q.i. invariant.

Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces. Let ρ be an increasing function $\rho \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\lim_{x\to\infty} \rho = \infty$.

Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces. Let ρ be an increasing function $\rho \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\lim_{x\to\infty} \rho = \infty$. A map $\phi \colon X \to Y$ is called a ρ -embedding

Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces. Let ρ be an increasing function $\rho \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\lim_{x\to\infty} \rho = \infty$. A map $\phi \colon X \to Y$ is called a ρ -embedding if

 $\rho(\operatorname{dist}_X(x_1, x_2)) \leq \operatorname{dist}_Y(\phi(x_1), \phi(x_2)) \leq \operatorname{dist}_X(x_1, x_2), \quad (1)$

(ロ) (用) (三) (三) (三) (の)

for all x_1, x_2 with large enough $dist(x_1, x_2)$.

Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces. Let ρ be an increasing function $\rho \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\lim_{x\to\infty} \rho = \infty$. A map $\phi \colon X \to Y$ is called a ρ -embedding if

$$\rho(\operatorname{dist}_X(x_1, x_2)) \le \operatorname{dist}_Y(\phi(x_1), \phi(x_2)) \le \operatorname{dist}_X(x_1, x_2), \quad (1)$$

(ロ) (同) (三) (三) (三) (0) (0)

for all x_1, x_2 with large enough $dist(x_1, x_2)$. This ρ is called the *compression function* of the embedding.

Notation.

(ロ) (個) (言) (言) (言) (の)

Notation. Let $f, g \colon \mathbb{R}_+ \to \mathbb{R}_+$.

Notation. Let $f,g: \mathbb{R}_+ \to \mathbb{R}_+$. We write $f \ll g$ if for some a, b, c, $f(x) \leq ag(bx) + c$

for all x > 0.

Notation. Let $f, g : \mathbb{R}_+ \to \mathbb{R}_+$. We write $f \ll g$ if for some a, b, c, $f(x) \le ag(bx) + c$

for all x > 0.

Equivalence relation:

Notation. Let $f,g: \mathbb{R}_+ \to \mathbb{R}_+$. We write $f \ll g$ if for some a, b, c, $f(x) \leq ag(bx) + c$

for all x > 0.

Equivalence relation: $f \sim g$ iff $f \ll g, g \ll f$.

Notation. Let $f, g: \mathbb{R}_+ \to \mathbb{R}_+$. We write $f \ll g$ if for some a, b, c, $f(x) \leq ag(bx) + c$

for all x > 0.

Equivalence relation: $f \sim g$ iff $f \ll g, g \ll f$.

Not a linear order. So we cannot talk about *the maximal* compression function.

 (Guentner-Kaminker) If the compression function of some embedding into a Hilbert space is ≫ √x (say, if the compression > 1/2)

(Guentner-Kaminker) If the compression function of some embedding into a Hilbert space is ≫ √x (say, if the compression > 1/2) then the group is exact,

(Guentner-Kaminker) If the compression function of some embedding into a Hilbert space is ≫ √x (say, if the compression > 1/2) then the group is exact, so the group satisfies Yu's property A.

(Guentner-Kaminker) If the compression function of some embedding into a Hilbert space is ≫ √x (say, if the compression > 1/2) then the group is exact, so the group satisfies Yu's property A.

(Amenability - for the equivariant compression.)

(Bourgain, Tessera) The free group has compression 1.

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree $F_n \rightarrow l^2$ (set of edges) :

 $w \to \sum w[i].$

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree $F_n \rightarrow l^2$ (set of edges) :

$$w \to \sum w[i].$$

Bourgain's embedding: add coefficients to that sum:

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree $F_n \rightarrow l^2$ (set of edges) :

$$w \to \sum w[i].$$

Bourgain's embedding: add coefficients to that sum:

$$w \to \sum (n-i)^{\frac{1}{2}-\epsilon} w[i].$$

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree $F_n \rightarrow l^2$ (set of edges) :

$$w \to \sum w[i].$$

Bourgain's embedding: add coefficients to that sum:

$$w \to \sum (n-i)^{\frac{1}{2}-\epsilon} w[i].$$

That embedding has compression function $x^{1-2\epsilon}$.

Theorem. (Tessera)

Theorem. (Tessera) Every increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

$$\int_{x>c} \frac{f(x)^2}{x^3} dx < \infty$$

(ロ) (日) (日) (三) (三) (三) (○) (○)

Theorem. (Tessera) Every increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

$$\int_{x>c}\frac{f(x)^2}{x^3}dx<\infty$$

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

is \ll the compression function of some embedding of F_n into a Hilbert space.

Theorem. (Tessera) Every increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

$$\int_{x>c}\frac{f(x)^2}{x^3}dx<\infty$$

is \ll the compression function of some embedding of F_n into a Hilbert space.

Clearly for every sublinear g there exists a function f satisfying that condition such that f(n) > g(n) for infinitely many n.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem. (Tessera) Every increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

٠

$$\int_{x>c}\frac{f(x)^2}{x^3}dx<\infty$$

is \ll the compression function of some embedding of F_n into a Hilbert space.

Clearly for every sublinear g there exists a function f satisfying that condition such that f(n) > g(n) for infinitely many n.

Theorem. (Tessera) Every increasing function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

$$\int_{x>c}\frac{f(x)^2}{x^3}dx<\infty$$

is \ll the compression function of some embedding of F_n into a Hilbert space.

Clearly for every sublinear g there exists a function f satisfying that condition such that f(n) > g(n) for infinitely many n.

Definition (compression gap).

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$.

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say that (f,g) is a \mathcal{E} -compression gap of (X, dist) if

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say that (f,g) is a \mathcal{E} -compression gap of (X, dist) if (1) for some $\rho \gg f$ there exists a ρ -embedding of X into a \mathcal{E} -space;

Jac.

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say that (f,g) is a \mathcal{E} -compression gap of (X, dist) if

- (1) for some $\rho \gg f$ there exists a ρ -embedding of X into a \mathcal{E} -space;
- (2) for every ρ -embedding of X into a \mathcal{E} -space, $\rho \ll g$.

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say that (f,g) is a \mathcal{E} -compression gap of (X, dist) if

- (1) for some $\rho \gg f$ there exists a ρ -embedding of X into a \mathcal{E} -space;
- (2) for every ρ -embedding of X into a \mathcal{E} -space, $\rho \ll g$.
- If f = g then we say that f is the \mathcal{E} -compression of X.

Definition (compression gap). Let (X, dist) be a metric space, and let \mathcal{E} be a collection of metric spaces. Let $f \ll g \colon \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say that (f,g) is a \mathcal{E} -compression gap of (X, dist) if

- (1) for some $\rho \gg f$ there exists a ρ -embedding of X into a \mathcal{E} -space;
- (2) for every ρ -embedding of X into a \mathcal{E} -space, $\rho \ll g$.

If f = g then we say that f is the \mathcal{E} -compression of X. The quotient $\frac{g}{f}$ is called the *size of the gap*.

(ロ) (同) (三) (三) (三) (0) (0)

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log\log x)^{1+\epsilon}}, x\right)$$
 :

〈曰〉〈曰〉〈己〉〈之〉〈之〉

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log \log x)^{1+\epsilon}}, x\right)$$
 :

〈曰〉〈曰〉〈己〉〈之〉〈之〉

▶ (Bourgain, Tessera) Free groups;

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log \log x)^{1+\epsilon}}, x\right)$$
 :

(Bourgain, Tessera) Free groups;

(Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;

= √Q(~

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log \log x)^{1+\epsilon}}, x\right)$$
 :

- (Bourgain, Tessera) Free groups;
- (Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;

= √Q(~

(Tessera) Lattices in semi-simple Lie groups;

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log \log x)^{1+\epsilon}}, x\right)$$
 :

- (Bourgain, Tessera) Free groups;
- (Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;
- (Tessera) Lattices in semi-simple Lie groups;
- (Campbell-Niblo, Brodsky-Sonkin) Groups acting on finite dim. CAT(0)-cubings.

The following groups have compression gaps

$$\left(\frac{x}{\log x (\log \log x)^{1+\epsilon}}, x\right)$$
 :

(Bourgain, Tessera) Free groups;

- (Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;
- (Tessera) Lattices in semi-simple Lie groups;
- (Campbell-Niblo, Brodsky-Sonkin) Groups acting on finite dim. CAT(0)-cubings.

Problem. Is there a non-virtually cyclic group with better compression gap than F_n ?

Definition 1. *F* is given by the following presentation:

Definition 1. *F* is given by the following presentation:

 $F = \langle x_i, i \ge 0 \mid x_i x_j = x_{j+1} x_i, i < j \rangle$

< ロ > < 母 > < 三 > < 三 > < 三 > 三 の < で

Definition 1. *F* is given by the following presentation:

 $F = \langle x_i, i \ge 0 \mid x_i x_j = x_{j+1} x_i, i < j \rangle$

 $= \langle x_0, x_1 | \qquad x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0),$

< ロ > < 母 > < 三 > < 三 > < 三 > 三 の < で

Definition 1. *F* is given by the following presentation:

 $F = \langle x_i, i \ge 0 \mid x_i x_j = x_{j+1} x_i, i < j \rangle$ = $\langle x_0, x_1 \mid x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0),$ $x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle.$

< ロ > < 母 > < 三 > < 三 > < 三 > 三 の < で

Definition 1. *F* is given by the following presentation:

$$\begin{array}{lll} F &=& \langle x_i, i \ge 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition 2.

Definition 1. *F* is given by the following presentation:

$$\begin{array}{rcl} \mathcal{F} &=& \langle x_i, i \geq 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

Definition 2. *F* is the group of all piecewise linear homeomorphisms of [0, 1] with dyadic break-points and slopes 2^n , $n \in \mathbb{Z}$.

Definition 1. *F* is given by the following presentation:

$$\begin{array}{rcl} F &=& \langle x_i, i \geq 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

Definition 2. *F* is the group of all piecewise linear homeomorphisms of [0, 1] with dyadic break-points and slopes 2^n , $n \in \mathbb{Z}$.

Problems.

Definition 1. *F* is given by the following presentation:

$$\begin{array}{rcl} \mathcal{F} &=& \langle x_i, i \geq 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

Definition 2. *F* is the group of all piecewise linear homeomorphisms of [0, 1] with dyadic break-points and slopes 2^n , $n \in \mathbb{Z}$.

Problems. Is F amenable?

Definition 1. *F* is given by the following presentation:

$$\begin{array}{rcl} F &=& \langle x_i, i \ge 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

Definition 2. *F* is the group of all piecewise linear homeomorphisms of [0, 1] with dyadic break-points and slopes 2^n , $n \in \mathbb{Z}$.

Problems. Is F amenable? Does F satisfy G. Yu's property A?

Definition 1. *F* is given by the following presentation:

$$\begin{array}{rcl} F &=& \langle x_i, i \geq 0 \mid & x_i x_j = x_{j+1} x_i, i < j \rangle \\ \\ &=& \langle x_0, x_1 \mid & x_0^2 x_1 x_0^{-2} = (x_1 x_0) x_1 (x_1 x_0), \\ \\ && x_0^3 x_1 x_0^{-3} = (x_1^2 x_0) x_1 (x_1^2 x_0)^{-1} \rangle \end{array}$$

Definition 2. *F* is the group of all piecewise linear homeomorphisms of [0, 1] with dyadic break-points and slopes 2^n , $n \in \mathbb{Z}$.

Problems. Is *F* amenable? Does *F* satisfy G. Yu's property A? (Farley) *F* is a-T-menable.

Thompson group as a diagram group **Definition 3.**

Definition 3. *F* is generated by the following two pictures:

Definition 3. *F* is generated by the following two pictures:

Definition 3. *F* is generated by the following two pictures:

Elementary diagrams:

Definition 3. *F* is generated by the following two pictures:

< 口 > < 同 >

Jac.

Definition 3. *F* is generated by the following two pictures:

Jac.

Operations:

Definition 3. *F* is generated by the following two pictures:

・ロシ ・ 雪 ・ 言 ・ ・ 雪 ・ ・ 日 ・

Theorem. (Guba, S., 1995)

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F.

Theorem. (Guba, S., 1995) The set of (1,1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Theorem. (Guba, S., 1995) The set of (1,1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

Theorem. (Guba, S., 1995) The set of (1,1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

 $f: x \to 2x$
Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

(ロ) (同) (三) (三) (三) (0) (0)

 $f: x \to 2x$

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

ヘロト ヘアト ヘヨト ヘヨト

Sar

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a group isomorphic to F. The length function of F is quasi-isometric to "the number of cells" function.

Representation by piecewise linear and other homeomorphisms of the interval:

$\mathbb{Z} \wr Z$ as a diagram group

Theorem. (Guba, S., 1995)

$\mathbb{Z} \wr Z$ as a diagram group

Theorem. (Guba, S., 1995) The group $\mathbb{Z} \wr \mathbb{Z}$ is the (ac, ac)-diagram group corresponding to the following elementary diagrams:

(ロ) (四) (三) (三) (三) (四) (0)

Theorem. (Guba, S., 1995) The group $\mathbb{Z} \wr \mathbb{Z}$ is the (ac, ac)-diagram group corresponding to the following elementary diagrams:

= √Q(~

Theorem. (Arzhantseva-Guba-S.)

Theorem. (Arzhantseva-Guba-S.)

• Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.

Theorem. (Arzhantseva-Guba-S.)

Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.

• The R. Thompson group F has compression $\frac{1}{2}$

Theorem. (Arzhantseva-Guba-S.)

- Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.
- The R. Thompson group F has compression $\frac{1}{2}$
- and compression gap

 $\left(\sqrt{x},\sqrt{x}\log x\right)$.

Theorem. (Arzhantseva-Guba-S.)

- Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.
- The R. Thompson group F has compression $\frac{1}{2}$
- and compression gap

$$\left(\sqrt{x},\sqrt{x}\log x\right)$$
.

Same for the equivariant compression.

Theorem. (Arzhantseva-Guba-S.)

- Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.
- The R. Thompson group F has compression $\frac{1}{2}$
- and compression gap

$$\left(\sqrt{x},\sqrt{x}\log x\right)$$
.

Same for the equivariant compression.

Idea of the proof.

Theorem. (Arzhantseva-Guba-S.)

- Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.
- The R. Thompson group F has compression $\frac{1}{2}$
- and compression gap

$$\left(\sqrt{x},\sqrt{x}\log x\right)$$
.

(ロ) (同) (三) (三) (三) (0) (0)

Same for the equivariant compression.

Idea of the proof. Free group acts on a tree,

Theorem. (Arzhantseva-Guba-S.)

- Any diagram group with the Burillo property has compression function $\geq \sqrt{x}$.
- The R. Thompson group F has compression $\frac{1}{2}$
- and compression gap

$$\left(\sqrt{x},\sqrt{x}\log x\right)$$
.

Same for the equivariant compression.

Idea of the proof. Free group acts on a tree, Thompson group (and any other diagram group) acts of a 2-tree.

How to build the tree (Cayley graph of F_3):

How to build the tree (Cayley graph of F_3):

5900

< □ >

r 🕨

How to build the tree (Cayley graph of F_3):

How to build the tree (Cayley graph of F_3):

How to build the tree (Cayley graph of F_3):

< □ >

 $\mathcal{O} \land \mathcal{O}$

How to build the tree (Cayley graph of F_3):

• 🗆

5900

F acts on the set of cells of the 2-tree T:

F acts on the set of cells of the 2-tree T:

F acts on the set of cells of the 2-tree T:

< D >

Sac

Let $H = I^2$ (set of 2-cells of the 2-tree).

F acts on the set of cells of the 2-tree T:

Let $H = l^2$ (set of 2-cells of the 2-tree). Every diagram Δ has unique image on the 2-tree.

• • • •

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

F acts on the set of cells of the 2-tree T:

Let $H = I^2$ (set of 2-cells of the 2-tree). Every diagram Δ has unique image on the 2-tree. Map it to the sum of the cells of the image.

< ロ > < 何?

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

F acts on the set of cells of the 2-tree T:

Let $H = l^2$ (set of 2-cells of the 2-tree). Every diagram Δ has unique image on the 2-tree. Map it to the sum of the cells of the image. The compression function is \sqrt{x} . The equivariant compression of the embedding $= \frac{1}{2}$

F acts on the set of cells of the 2-tree T:

Let $H = l^2$ (set of 2-cells of the 2-tree). Every diagram Δ has unique image on the 2-tree. Map it to the sum of the cells of the image. The compression function is \sqrt{x} . The equivariant compression of the embedding $= \frac{1}{2}$ because of the Burillo property.

Build the following collections of diagrams Ψ_n by induction.

Build the following collections of diagrams Ψ_n by induction. $\Psi_0 = \{x_0\}$. Suppose that $\Psi_n = \{\Delta_1, ..., \Delta_{2^n}\}$ has been constructed.

Build the following collections of diagrams Ψ_n by induction. $\Psi_0 = \{x_0\}$. Suppose that $\Psi_n = \{\Delta_1, ..., \Delta_{2^n}\}$ has been constructed. Let Ψ_{n+1} be:

Build the following collections of diagrams Ψ_n by induction. $\Psi_0 = \{x_0\}$. Suppose that $\Psi_n = \{\Delta_1, ..., \Delta_{2^n}\}$ has been constructed. Let Ψ_{n+1} be:

Sac

< □ > < @ >

Build the following collections of diagrams Ψ_n by induction. $\Psi_0 = \{x_0\}$. Suppose that $\Psi_n = \{\Delta_1, ..., \Delta_{2^n}\}$ has been constructed. Let Ψ_{n+1} be:

The diagrams of Ψ_n pairwise commute and have 2n + 4 cells.

글 🖌 🔺 글 🕨

Jac.
The upper bound

Build the following collections of diagrams Ψ_n by induction. $\Psi_0 = \{x_0\}$. Suppose that $\Psi_n = \{\Delta_1, ..., \Delta_{2^n}\}$ has been constructed. Let Ψ_{n+1} be:

The diagrams of Ψ_n pairwise commute and have 2n + 4 cells. Thus the Cayley graph of F contains cubes of dimension 2^n with sides of edges $\sim n$.

Skew cubes

Use the "skew cube" inequality:

Use the "skew cube" inequality:

For every skew cube in a Hilbert space, the sum of squares of its diagonals does not exceed the sum of squares of its edges.

Use the "skew cube" inequality:

For every skew cube in a Hilbert space, the sum of squares of its diagonals does not exceed the sum of squares of its edges.

Sac

This gives the upper bound for compression $\sqrt{x} \log x$

Use the "skew cube" inequality:

For every skew cube in a Hilbert space, the sum of squares of its diagonals does not exceed the sum of squares of its edges.

Jac.

This gives the upper bound for compression $\sqrt{x} \log x$ and a compression gap $(\sqrt{x}, \sqrt{x} \log x)$ of logarithmic size.

The problem

Problem. Is it true that a compression function of some embedding of *F* into a Hilbert space is $\gg \sqrt{x}$?

Theorem (Arzhantseva-Guba-Sapir)

Theorem (Arzhantseva-Guba-Sapir)The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$.

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$.

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$. If the polynomial growth rate is *k* then the compression does not exceed $\frac{1+k/2}{1+k}$.

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$. If the polynomial growth rate is *k* then the compression does not exceed $\frac{1+k/2}{1+k}$.

Problem. What is the compression of $\mathbb{Z} \wr \mathbb{Z}$?

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$. If the polynomial growth rate is *k* then the compression does not exceed $\frac{1+k/2}{1+k}$.

Problem. What is the compression of $\mathbb{Z} \wr \mathbb{Z}$? Tessera: $\geq \frac{2}{3}$.

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$. If the polynomial growth rate is *k* then the compression does not exceed $\frac{1+k/2}{1+k}$.

Problem. What is the compression of $\mathbb{Z} \wr \mathbb{Z}$? Tessera: $\geq \frac{2}{3}$.

Problem. What is the compression of Grigorchuk's group of subexponential growth?

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space compression of $\mathbb{Z} \wr \mathbb{Z}$ is between $\frac{1}{2}$ and $\frac{3}{4}$. The Hilbert space compression of $\mathbb{Z} \wr B$ where *B* has exponential growth is between 0 and $\frac{1}{2}$. If the polynomial growth rate is *k* then the compression does not exceed $\frac{1+k/2}{1+k}$.

Problem. What is the compression of $\mathbb{Z} \wr \mathbb{Z}$? Tessera: $\geq \frac{2}{3}$.

Problem. What is the compression of Grigorchuk's group of subexponential growth?

Problem. Is there an amenable group with compression 0?