Percolation on transitive graphs

Mark Sapir

A short survey plus Iva Kozáková＇s work

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G}

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The product measure is defined as follows. The σ-algebra is generated by the cylindrical subset E_{s}, where E_{s} is the set of subsets of E containing a given edge s.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The product measure is defined as follows. The σ-algebra is generated by the cylindrical subset E_{s}, where E_{s} is the set of subsets of E containing a given edge s.

The measure is given by $P_{p}\left(E_{s}\right)=p$.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The product measure is defined as follows. The σ-algebra is generated by the cylindrical subset E_{s}, where E_{s} is the set of subsets of E containing a given edge s.

The measure is given by $P_{p}\left(E_{s}\right)=p$.
For any realization $\omega \in \Omega$, open edges form a random subgraph of \mathcal{G}.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The product measure is defined as follows. The σ-algebra is generated by the cylindrical subset E_{s}, where E_{s} is the set of subsets of E containing a given edge s.

The measure is given by $P_{p}\left(E_{s}\right)=p$.
For any realization $\omega \in \Omega$, open edges form a random subgraph of \mathcal{G}. Connected components of that subgraph are called clusters.

The definition

Consider a transitive locally finite graph $\mathcal{G}=(V, E)$ with origin o.
For every $p \in(0,1)$, the Bernoulli bond percolation on \mathcal{G} is the product probability measure P_{p} on the space of subsets of E.

The product measure is defined as follows. The σ-algebra is generated by the cylindrical subset E_{s}, where E_{s} is the set of subsets of E containing a given edge s.

The measure is given by $P_{p}\left(E_{s}\right)=p$.
For any realization $\omega \in \Omega$, open edges form a random subgraph of \mathcal{G}. Connected components of that subgraph are called clusters. The Percolation function $\theta(p)$ is defined to be the probability that the origin is contained in an infinite cluster.

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law:

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1 .

Example of such an event:

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1 .

Example of such an event:

- existence of an infinite cluster.

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Example of such an event:

- existence of an infinite cluster.
- existence of k infinite clusters (for any given k).

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Example of such an event:

- existence of an infinite cluster.
- existence of k infinite clusters (for any given k).

Therefore if the graph is transitive, then

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Example of such an event:

- existence of an infinite cluster.
- existence of k infinite clusters (for any given k).

Therefore if the graph is transitive, then either with probability 1 there are no infinite clusters (that is $p<p_{c}$), or

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Example of such an event:

- existence of an infinite cluster.
- existence of k infinite clusters (for any given k).

Therefore if the graph is transitive, then either with probability 1 there are no infinite clusters (that is $p<p_{c}$), or with probability 1 , there exists a unique infinite cluster or

Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail invariant event happens with probability 0 or 1.

Example of such an event:

- existence of an infinite cluster.
- existence of k infinite clusters (for any given k).

Therefore if the graph is transitive, then either with probability 1 there are no infinite clusters (that is $p<p_{c}$), or with probability 1 , there exists a unique infinite cluster or with probability 1 there are infinitely many of them.

The critical value p_{c}

The critical value p_{c} of percolation

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;
- The hexagonal lattice in $\mathbb{R}^{2} ; p_{c}=1-2 \sin (\pi / 18)$;

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;
- The hexagonal lattice in $\mathbb{R}^{2} ; p_{c}=1-2 \sin (\pi / 18)$;
- Some other lattices in \mathbb{R}^{2}, using duality.

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;
- The hexagonal lattice in $\mathbb{R}^{2} ; p_{c}=1-2 \sin (\pi / 18)$;
- Some other lattices in \mathbb{R}^{2}, using duality.
- Trees; $p_{c}=1 /$ branching number (Lyons).

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;
- The hexagonal lattice in $\mathbb{R}^{2} ; p_{c}=1-2 \sin (\pi / 18)$;
- Some other lattices in \mathbb{R}^{2}, using duality.
- Trees; $p_{c}=1 /$ branching number (Lyons).
- Cayley graphs of virtually cyclic groups; $p_{c}=1$

The critical value p_{c}

The critical value p_{c} of percolation is such that for $0 \leq p<p_{c}$, $\theta(p)=0$, and if $p_{c}<p \leq 1$, then $\theta(p)>0$.

Explicit values of p_{c} are known only in the following cases:

- The standard square lattice $\mathbb{Z}^{2} ; p_{c}=\frac{1}{2}$ (Kesten);
- The triangular lattice in $\mathbb{R}^{2} ; p_{c}=2 \sin (\pi / 18)$;
- The hexagonal lattice in $\mathbb{R}^{2} ; p_{c}=1-2 \sin (\pi / 18)$;
- Some other lattices in \mathbb{R}^{2}, using duality.
- Trees; $p_{c}=1$ /branching number (Lyons).
- Cayley graphs of virtually cyclic groups; $p_{c}=1$
- Free products of transitive graphs; p_{c} can be expressed in terms of the expected cluster sizes at the origin of the free factors. (Kozakova)

Other critical characteristics of percolation

The uniqueness phase p_{u} - the infimum of all p such that P_{p}-a.s. the infinite cluster is unique. By Häggström and Peres, the infinite cluster is unique a.s. for all $p>p_{u}$.

It is known that $p_{c} \leq p_{u}$ for every group.
For amenable groups, $p_{c}=p_{u}$.
For the Cayley graph of $F_{2}, p_{c}=\frac{1}{3}, p_{u}=1$. For every transitive graph with infinitely many ends, $p_{u}=1$.

Other critical characteristics of percolation

The uniqueness phase p_{u} - the infimum of all p such that P_{p}-a.s. the infinite cluster is unique. By Häggström and Peres, the infinite cluster is unique a.s. for all $p>p_{u}$.

It is known that $p_{c} \leq p_{u}$ for every group.
For amenable groups, $p_{c}=p_{u}$.
For the Cayley graph of $F_{2}, p_{c}=\frac{1}{3}, p_{u}=1$. For every transitive graph with infinitely many ends, $p_{u}=1$.

Pak and Smirnova-Nagnibeda:

Other critical characteristics of percolation

The uniqueness phase p_{u} - the infimum of all p such that P_{p}-a.s. the infinite cluster is unique. By Häggström and Peres, the infinite cluster is unique a.s. for all $p>p_{u}$.

It is known that $p_{c} \leq p_{u}$ for every group.
For amenable groups, $p_{c}=p_{u}$.
For the Cayley graph of $F_{2}, p_{c}=\frac{1}{3}, p_{u}=1$. For every transitive graph with infinitely many ends, $p_{u}=1$.

Pak and Smirnova-Nagnibeda:For every non-amenable group, there exists a generating set, possibly with repetitions, for which $p_{c}<p_{u}$.

Cost of non-amenable groups

Gaboriau: The first ℓ^{2}-Betti number of a group does not exceed $\frac{1}{2}\left(p_{u}-p_{c}\right)$.

Cost of non-amenable groups

Gaboriau: The first ℓ^{2}-Betti number of a group does not exceed $\frac{1}{2}\left(p_{u}-p_{c}\right)$.
p_{u} is related to the cost of a group and to the "measurable" version of the von Neumann conjecture by Gaboreau and Lyons.

Cost of non-amenable groups

Gaboriau: The first ℓ^{2}-Betti number of a group does not exceed $\frac{1}{2}\left(p_{u}-p_{c}\right)$.
p_{u} is related to the cost of a group and to the "measurable" version of the von Neumann conjecture by Gaboreau and Lyons.

Theorem (Gaboreau, Lyons) For any finitely generated non-amenable group G, there is $n \in \mathbb{N}$ and a non-empty interval (p_{1}, p_{2}) of parameters p for which there is an ergodic essentially free action of F_{2} on $\Pi_{1}^{n}\left(\{0,1\}^{G}, \mu_{p}\right)$ such that almost every G-orbit of the diagonal Bernoulli shift decomposes into F_{2}-orbits.

Schonmann's critical value

Schonmann's critical value of p :

$$
p_{\exp }=\sup \left\{p: \exists C, \gamma>0 \forall_{x, y \in V} \mathrm{P}_{p}(x \leftrightarrow y) \leq C e^{-\gamma \operatorname{dist}(x, y)}\right\}
$$

Schonmann's critical value

Schonmann's critical value of p :

$$
p_{\exp }=\sup \left\{p: \exists C, \gamma>0 \forall_{x, y \in V} \mathrm{P}_{p}(x \leftrightarrow y) \leq C e^{-\gamma \operatorname{dist}(x, y)}\right\}
$$

$$
p_{c} \leq p_{\exp } \leq p_{u}
$$

Critical exponents

The value of the critical probabilities is not a quasi-isometry invariant.

Critical exponents

The value of the critical probabilities is not a quasi-isometry invariant.

The behavior of percolation at p_{c} is conjectured to be more stable.

Critical exponents

The value of the critical probabilities is not a quasi-isometry invariant.

The behavior of percolation at p_{c} is conjectured to be more stable.
Assume that

$$
\begin{array}{ll}
\theta(p) \approx\left(p-p_{c}\right)^{\beta} & \text { as } p \searrow p_{c} \\
\chi(p) \approx\left(p_{c}-p\right)^{\gamma} & \text { as } p \nearrow p_{c}
\end{array}
$$

Then we say that β and γ are critical exponents.

Critical exponents

The value of the critical probabilities is not a quasi-isometry invariant.

The behavior of percolation at p_{c} is conjectured to be more stable.
Assume that

$$
\begin{array}{ll}
\theta(p) \approx\left(p-p_{c}\right)^{\beta} & \text { as } p \searrow p_{c} \\
\chi(p) \approx\left(p_{c}-p\right)^{\gamma} & \text { as } p \nearrow p_{c}
\end{array}
$$

Then we say that β and γ are critical exponents. For graphs with infinitely many ends, $\beta=1, \gamma=-1$. These are called the mean field values.

Critical exponents

The value of the critical probabilities is not a quasi-isometry invariant.

The behavior of percolation at p_{c} is conjectured to be more stable.
Assume that

$$
\begin{aligned}
\theta(p) \approx\left(p-p_{c}\right)^{\beta} & \text { as } p \searrow p_{c} \\
\chi(p) \approx\left(p_{c}-p\right)^{\gamma} & \text { as } p \nearrow p_{c}
\end{aligned}
$$

Then we say that β and γ are critical exponents. For graphs with infinitely many ends, $\beta=1, \gamma=-1$. These are called the mean field values.

For the triangular lattice in \mathbb{R}^{2} we have $\beta=5 / 36, \gamma=-43 / 18$ as proved by Smirnov and Werner.

The main problems about percolation

Problem (Benjamini-Schramm)
Is it true that $p_{c} \neq p_{u}$ for every Cayley graph of a non-amenable group?

The main problems about percolation

Problem (Benjamini-Schramm)
Is it true that $p_{c} \neq p_{u}$ for every Cayley graph of a non-amenable group?
Schonmann: $p_{c}<p_{u}$ for highly nonamenable groups (i.e. such that the Cheeger constant is bigger than $\left(\sqrt{2 d^{2}-1}-1\right) / 2$, where d is the vertex degree).

The main problems about percolation

Problem (Benjamini-Schramm)
Is it true that $p_{c} \neq p_{u}$ for every Cayley graph of a non-amenable group?
Schonmann: $p_{c}<p_{u}$ for highly nonamenable groups (i.e. such that the Cheeger constant is bigger than $\left(\sqrt{2 d^{2}-1}-1\right) / 2$, where d is the vertex degree).

Problem

Find p_{c} for the cubic lattice in \mathbb{R}^{3} ?

Main problems continued

Problem (Benjamini, Schramm)
Assume that G has growth function faster than linear, is $p_{c}<1$?

Main problems continued

Problem (Benjamini, Schramm)
Assume that G has growth function faster than linear, is $p_{c}<1$?
Only amenable case is of interest, since $p_{c} \leq \frac{1}{i_{E}+1}$.

Main problems continued

Problem (Benjamini, Schramm)

Assume that G has growth function faster than linear, is $p_{c}<1$?
Only amenable case is of interest, since $p_{c} \leq \frac{1}{i_{E}+1}$.
Lyons: for groups with polynomial or exponential growth $p_{c}<1$. The same is true for all finitely presented groups
(Babson+Benjamini).

Main problems continued

Problem (Benjamini, Schramm)

Assume that G has growth function faster than linear, is $p_{c}<1$?
Only amenable case is of interest, since $p_{c} \leq \frac{1}{i_{E}+1}$.
Lyons: for groups with polynomial or exponential growth $p_{c}<1$. The same is true for all finitely presented groups
(Babson+Benjamini).

Problem (Smirnova-Nagnibeda)
Find p_{c} of known groups with "standard" generating sets.

Distortion of clusters

Problem

Let $p>p_{c}$. What is the distortion of an infinite cluster?

Distortion of clusters

Problem
Let $p>p_{c}$. What is the distortion of an infinite cluster?
On trees the distortion is linear.

Distortion of clusters

Problem

Let $p>p_{c}$. What is the distortion of an infinite cluster?
On trees the distortion is linear.

Problem

What is the possible expected distortion of an open cluster in a Cayley graph of a group? Same question for hyperbolic groups is also open.

Critical exponents

Hara and Slade: Z^{d} has meanfield critical exponents for $d \geq 19$.

Critical exponents

Hara and Slade: Z^{d} has meanfield critical exponents for $d \geq 19$.

Problem

Is it true that the critical exponents of all Cayley graphs of groups with isometric asymptotic cones are equal? In particular, is it true that every Cayley graph of a non-elementary hyperbolic group has mean-field valued critical exponents?

Critical exponents

Hara and Slade: Z^{d} has meanfield critical exponents for $d \geq 19$.

Problem

Is it true that the critical exponents of all Cayley graphs of groups with isometric asymptotic cones are equal? In particular, is it true that every Cayley graph of a non-elementary hyperbolic group has mean-field valued critical exponents?
Schonmann: the critical exponents take their mean-field values for all non-amenable planar graphs with one end, and for unimodular graphs with infinitely many ends (in particular, for all Cayley graphs of groups with infinitely many ends).

Rescaling

Instead of considering the limit as $p \rightarrow p_{c}$, consider tessellations of \mathbb{Z}^{d} by cubes with bigger and bigger sizes.

Rescaling

Instead of considering the limit as $p \rightarrow p_{c}$, consider tessellations of \mathbb{Z}^{d} by cubes with bigger and bigger sizes.
An edge is open if one can cross the cube in the direction of the edge using open edges of \mathbb{Z}^{d}.

Rescaling

Instead of considering the limit as $p \rightarrow p_{c}$, consider tessellations of \mathbb{Z}^{d} by cubes with bigger and bigger sizes.
An edge is open if one can cross the cube in the direction of the edge using open edges of \mathbb{Z}^{d}.

Problem (Benjamini)

Is it true that every scale invariant finitely generated group is virtually nilpotent?

Rescaling

Instead of considering the limit as $p \rightarrow p_{c}$, consider tessellations of \mathbb{Z}^{d} by cubes with bigger and bigger sizes.
An edge is open if one can cross the cube in the direction of the edge using open edges of \mathbb{Z}^{d}.

Problem (Benjamini)

Is it true that every scale invariant finitely generated group is virtually nilpotent?
Pete + Nekrashevich + S: $Z_{2} w r Z$.

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.
Consider the branching process with two types of children.

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.
Consider the branching process with two types of children. The Galton-Watson matrix is $\left(\begin{array}{ll}0 & \chi_{1}(p)-1 \\ \chi_{2}(p)-1 & 0\end{array}\right)$. The population dies out iff the spectral radius is 1 . This gives the first part of

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.
Consider the branching process with two types of children. The Galton-Watson matrix is $\left(\begin{array}{ll}0 & \chi_{1}(p)-1 \\ \chi_{2}(p)-1 & 0\end{array}\right)$. The population dies out iff the spectral radius is 1 . This gives the first part of

Theorem (Kozáková)
Let $G=G_{1} * G_{2}$. Then

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.
Consider the branching process with two types of children. The Galton-Watson matrix is $\left(\begin{array}{ll}0 & \chi_{1}(p)-1 \\ \chi_{2}(p)-1 & 0\end{array}\right)$. The population dies out iff the spectral radius is 1 . This gives the first part of

Theorem (Kozáková)
Let $G=G_{1} * G_{2}$. Then

1. For the free product with standard generating set, p_{c} is the smallest positive solution of $\left(\chi_{1}(p)-1\right)\left(\chi_{2}(p)-1\right)=1$.

Kozáková's results I

Let $G=G_{1} * G_{2}$. Then the Cayley graph is the free product of graphs of G_{1} and G_{2}.
Consider the branching process with two types of children. The Galton-Watson matrix is $\left(\begin{array}{ll}0 & \chi_{1}(p)-1 \\ \chi_{2}(p)-1 & 0\end{array}\right)$. The population dies out iff the spectral radius is 1 . This gives the first part of

Theorem (Kozáková)
Let $G=G_{1} * G_{2}$. Then

1. For the free product with standard generating set, p_{c} is the smallest positive solution of $\left(\chi_{1}(p)-1\right)\left(\chi_{2}(p)-1\right)=1$.
2. $p_{\exp }\left(G_{1} * G_{2}\right)=\min \left\{p_{\exp }\left(G_{1}\right), p_{\exp }\left(G_{2}\right)\right\}$.

The biggest known p_{c}

In particular p_{c} of $P S L_{2}(\mathbb{Z})$ is .51..., the biggest known p_{c} of a Cayley graph.

The biggest known p_{c}

In particular p_{c} of $P S L_{2}(\mathbb{Z})$ is . $51 \ldots$, the biggest known p_{c} of a Cayley graph.

Theorem (Kozáková-S)
There exists a quotient of $P S L_{2}(\mathbb{Z})$ with a strictly bigger p_{c}.

The biggest known p_{c}

In particular p_{c} of $P S L_{2}(\mathbb{Z})$ is . $51 \ldots$, the biggest known p_{c} of a Cayley graph.

Theorem (Kozáková-S)
There exists a quotient of $P S L_{2}(\mathbb{Z})$ with a strictly bigger p_{c}.

Problem
Is there a Cayley graph with $p_{c}>.6$?

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types,

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types, and the first moment matrix is of finite size.

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types, and the first moment matrix is of finite size.
- If, in addition, the pieces are finite,

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types, and the first moment matrix is of finite size.
- If, in addition, the pieces are finite, then the entries of the first moment matrix are algebraic functions in p.

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types, and the first moment matrix is of finite size.
- If, in addition, the pieces are finite, then the entries of the first moment matrix are algebraic functions in p. In this case p_{c} is an algebraic number, which is the smallest value of p such that the spectral radius of the first moment matrix is 1 .

Kozáková's results II

Assume a transitive graph X has a tree-like structure. Then

- For a percolation with parameter p there exist a branching process on the tree of pieces such that the expected population size is finite if and only if the expected cluster size of the percolation is finite.
- If all the border sets are finite then the branching process has finitely many types, and the first moment matrix is of finite size.
- If, in addition, the pieces are finite, then the entries of the first moment matrix are algebraic functions in p. In this case p_{c} is an algebraic number, which is the smallest value of p such that the spectral radius of the first moment matrix is 1 . Moreover there exists an algorithm, that, given the pieces of the tree-like structure, produces a finite extension K of the field $\mathbb{Q}(x)$, and an algebraic function $f(x)$ such that p_{c} is the smallest positive root of $f(x)$.

Kozáková's results III

Theorem
There exists an algorithm that, given a finite generating set of a virtually free group, finds the p_{c} of the corresponding Cayley graph.

Kozáková's results III

Theorem
There exists an algorithm that, given a finite generating set of a virtually free group, finds the p_{c} of the corresponding Cayley graph.

This is the first quasi-isometry complete class of Cayley graphs of groups such that there exists an algorithm to find the p_{c} of any graph in the class (except the class of virtually cyclic groups where p_{c} is always 1).

