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The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on G



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .

The product measure is defined as follows. The σ-algebra is
generated by the cylindrical subset Es , where Es is the set of
subsets of E containing a given edge s.



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .

The product measure is defined as follows. The σ-algebra is
generated by the cylindrical subset Es , where Es is the set of
subsets of E containing a given edge s.

The measure is given by Pp(Es) = p.



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .

The product measure is defined as follows. The σ-algebra is
generated by the cylindrical subset Es , where Es is the set of
subsets of E containing a given edge s.

The measure is given by Pp(Es) = p.

For any realization ω ∈ Ω, open edges form a random subgraph of
G.



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .

The product measure is defined as follows. The σ-algebra is
generated by the cylindrical subset Es , where Es is the set of
subsets of E containing a given edge s.

The measure is given by Pp(Es) = p.

For any realization ω ∈ Ω, open edges form a random subgraph of
G. Connected components of that subgraph are called clusters.



The definition

Consider a transitive locally finite graph G = (V , E ) with origin o.

For every p ∈ (0, 1), the Bernoulli bond percolation on Gis the
product probability measure Pp on the space of subsets of E .

The product measure is defined as follows. The σ-algebra is
generated by the cylindrical subset Es , where Es is the set of
subsets of E containing a given edge s.

The measure is given by Pp(Es) = p.

For any realization ω ∈ Ω, open edges form a random subgraph of
G. Connected components of that subgraph are called clusters.The
Percolation function θ(p) is defined to be the probability that the
origin is contained in an infinite cluster.
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Why transitive

For transitive graphs, we have the Kolmogorov 0-1 law: every tail
invariant event happens with probability 0 or 1.

Example of such an event:

◮ existence of an infinite cluster.

◮ existence of k infinite clusters (for any given k).

Therefore if the graph is transitive, then either with probability 1
there are no infinite clusters (that is p < pc), or with probability 1,
there exists a unique infinite cluster or with probability 1 there are
infinitely many of them.
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The critical value pc

The critical value pc of percolation is such that for 0 ≤ p < pc ,
θ(p) = 0, and if pc < p ≤ 1, then θ(p) > 0.

Explicit values of pc are known only in the following cases:

◮ The standard square lattice Z2; pc = 1
2 (Kesten);

◮ The triangular lattice in R2; pc = 2 sin(π/18);

◮ The hexagonal lattice in R2; pc = 1 − 2 sin(π/18);

◮ Some other lattices in R2, using duality.

◮ Trees; pc = 1/branching number (Lyons).

◮ Cayley graphs of virtually cyclic groups; pc = 1

◮ Free products of transitive graphs; pc can be expressed in
terms of the expected cluster sizes at the origin of the free
factors. (Kozakova)
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The uniqueness phase pu - the infimum of all p such that Pp-a.s.
the infinite cluster is unique. By Häggström and Peres, the infinite
cluster is unique a.s. for all p > pu.

It is known that pc ≤ pu for every group.

For amenable groups, pc = pu.

For the Cayley graph of F2, pc = 1
3 , pu = 1. For every transitive

graph with infinitely many ends, pu = 1.

Pak and Smirnova-Nagnibeda:For every non-amenable group, there
exists a generating set, possibly with repetitions, for which pc < pu.
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Cost of non-amenable groups

Gaboriau: The first ℓ2-Betti number of a group does not exceed
1
2(pu − pc).

pu is related to the cost of a group and to the “measurable”
version of the von Neumann conjecture by Gaboreau and Lyons .

Theorem (Gaboreau, Lyons) For any finitely generated
non-amenable group G , there is n ∈ N and a non-empty interval
(p1, p2) of parameters p for which there is an ergodic essentially
free action of F2 on Πn

1({0, 1}G , µp) such that almost every
G -orbit of the diagonal Bernoulli shift decomposes into F2-orbits.
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Schonmann’s critical value of p:

pexp = sup{p : ∃C ,γ>0∀x ,y∈V Pp(x ↔ y) ≤ Ce−γdist(x ,y)}

pc ≤ pexp ≤ pu.
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Critical exponents

The value of the critical probabilities is not a quasi-isometry
invariant.

The behavior of percolation at pc is conjectured to be more stable.

Assume that

θ(p) ≈ (p − pc)
β as p ց pc ,

χ(p) ≈ (pc − p)γ as p ր pc .

Then we say that β and γ are critical exponents.
For graphs with infinitely many ends, β = 1, γ = −1. These are
called the mean field values.

For the triangular lattice in R2 we have β = 5/36, γ = −43/18 as
proved by Smirnov and Werner.
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Problem (Benjamini-Schramm)

Is it true that pc 6= pu for every Cayley graph of a non-amenable

group?

Schonmann: pc < pu for highly nonamenable groups (i.e. such
that the Cheeger constant is bigger than (

√
2d2 − 1 − 1)/2, where

d is the vertex degree).

Problem
Find pc for the cubic lattice in R3?
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Main problems continued

Problem (Benjamini, Schramm)

Assume that G has growth function faster than linear, is pc < 1?

Only amenable case is of interest, since pc ≤ 1
iE+1 .

Lyons: for groups with polynomial or exponential growth pc < 1.
The same is true for all finitely presented groups
(Babson+Benjamini).

Problem (Smirnova-Nagnibeda)

Find pc of known groups with “standard” generating sets.
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Distortion of clusters

Problem
Let p > pc . What is the distortion of an infinite cluster?

On trees the distortion is linear.

Problem
What is the possible expected distortion of an open cluster in a

Cayley graph of a group? Same question for hyperbolic groups is

also open.
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Critical exponents

Hara and Slade: Zd has meanfield critical exponents for d ≥ 19.

Problem
Is it true that the critical exponents of all Cayley graphs of groups

with isometric asymptotic cones are equal? In particular, is it true

that every Cayley graph of a non-elementary hyperbolic group has

mean-field valued critical exponents?

Schonmann: the critical exponents take their mean-field values for
all non-amenable planar graphs with one end, and for unimodular
graphs with infinitely many ends (in particular, for all Cayley
graphs of groups with infinitely many ends).
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Rescaling

Instead of considering the limit as p → pc , consider tessellations of
Zd by cubes with bigger and bigger sizes.
An edge is open if one can cross the cube in the direction of the
edge using open edges of Zd .

Problem (Benjamini)

Is it true that every scale invariant finitely generated group is

virtually nilpotent?

Pete+Nekrashevich+S: Z2wrZ .
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Kozáková’s results I

Let G = G1 ∗ G2. Then the Cayley graph is the free product of
graphs of G1 and G2.
Consider the branching process with two types of children. The

Galton-Watson matrix is

(

0 χ1(p) − 1
χ2(p) − 1 0

)

. The

population dies out iff the spectral radius is 1. This gives the first
part of

Theorem (Kozáková)
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Kozáková’s results I

Let G = G1 ∗ G2. Then the Cayley graph is the free product of
graphs of G1 and G2.
Consider the branching process with two types of children. The

Galton-Watson matrix is

(

0 χ1(p) − 1
χ2(p) − 1 0

)

. The

population dies out iff the spectral radius is 1. This gives the first
part of

Theorem (Kozáková)

Let G = G1 ∗ G2. Then

1. For the free product with standard generating set, pc is the

smallest positive solution of (χ1(p) − 1)(χ2(p) − 1) = 1.

2. pexp(G1 ∗ G2) = min{pexp(G1), pexp(G2)}.
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The biggest known pc

In particular pc of PSL2(Z) is .51..., the biggest known pc of a
Cayley graph.

Theorem (Kozáková-S)

There exists a quotient of PSL2(Z) with a strictly bigger pc .

Problem
Is there a Cayley graph with pc > .6?
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Assume a transitive graph X has a tree-like structure. Then

◮ For a percolation with parameter p there exist a branching
process on the tree of pieces such that the expected
population size is finite if and only if the expected cluster size
of the percolation is finite.

◮ If all the border sets are finite then the branching process has
finitely many types, and the first moment matrix is of finite
size.

◮ If, in addition, the pieces are finite, then the entries of the
first moment matrix are algebraic functions in p. In this case
pc is an algebraic number, which is the smallest value of p

such that the spectral radius of the first moment matrix is 1.
Moreover there exists an algorithm, that, given the pieces of
the tree-like structure, produces a finite extension K of the
field Q(x), and an algebraic function f (x) such that pc is the
smallest positive root of f (x).
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Theorem
There exists an algorithm that, given a finite generating set of a

virtually free group, finds the pc of the corresponding Cayley graph.

This is the first quasi-isometry complete class of Cayley graphs of
groups such that there exists an algorithm to find the pc of any
graph in the class (except the class of virtually cyclic groups where
pc is always 1).


	The definition
	Survey
	Problems
	Kozáková's results

