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The definition

Definition Let Γ be a graph. Let λ > 1. Let k = k(λ) be the
minimal number of colors so that we can color vertices of Γ in k

colors and there are no arbitrary long monochromatic λ-paths
without repeated vertices.Then k(λ)− 1 is called the dimension

growth function of Γ. The number d such that
d = maxλ(k(λ)− 1) is called the asymptotic dimension of
Γ.(Gromov)

A λ-path is a sequence of vertices with distances between
consecutive vertices ≤ λ.
For example if Γ is Z (or the square lattice Z

n), then k(1) = 2.
Color even vertices in white, odd vertices in black.
The growth rate of k(λ) is a q.i. invariant.
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The upper bound

Proposition. The dimension growth of a finitely generated group
G does not exceed its volume growth.
Proof Let f be the volume growth function. We consider a graph
with vertices elements of G where every two vertices at distance
≤ λ are joined by an edge. Then the valency of this graph is
≤ f (λ). The graph has chromatic number ≤ f (λ) + 1.
Corollary. The dimension growth of any finitely generated group is
at most exponential.
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Ozawa’s result

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is uniformly embeddable into a Hilbert space.
Problem.Is the opposite implication true?
Hence Gromov random groups containing expanders have
exponential asymptotic dimension growth. This is the only known
example.
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Distortion of subgroups and dimension growth

Observation. Suppose that for a group Γ kΓ(λ) = k for some λ.
Suppose that Γ (L,C )-embeds into G . Then kG (

λ−C

L
) ≥ k .

Theorem.(Panov, Moore) Let Γ = Z
∞ with l1-metric. Then

kΓ(2) = ∞.
Proof. Every finite subset M of N corresponds to a vector v(M)
from Z

∞ with coordinates 0, 1 in the natural way. Choose any
k ≥ 1. Let Pk(N) denote the set of all k-element subsets of N.
Every finite coloring of Z∞ induces a finite coloring of Pk(N). By
Ramsey there exists a subset M ⊆ N of size 2k such that all
k-element subsets of M have the same color. Therefore we can
find subsets T1,T2, . . . ,Tk of size k from M such that the
symmetric distance between Ti and Ti+1 is 2, i = 1, . . . , k − 1,
and T1,Tk are disjoint. Then the vectors v(T1), . . . , v(Tk) from
Z
∞ form a monochromatic 2-path of diameter ≥ 2k .
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Theorem.(D+S) If n < 2λ, then kZn(λ) = n + 1.
Idea of the proof. Extend the coloring of Zn to coloring of Rn

and use the fact that the covering dimension of Rn is n.
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Theorem. (D+S) Suppose that the growth function of a group G

is exponential, then the dimension growth of Z ≀ G is at least
exp

√
λ.

Idea of the proof. Zexp n embeds into Z ≀ G with q.i. constants
(O(n), 1). Hence kG (λ) ≥ kZexp n(λ/O(n)). Take λ = O(n2). We
conclude by the theorem above that kG (O(n2)) ≥ expO(n).
Example. Z ≀ (Z ≀ Z).
Remark. This is the biggest known dimension growth function of
an amenable group.
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The lower bounds of the dimension growth of the R.

Thompson group and its subgroups.

Theorem.(D+S, follows from Arzhantseva+Guba+S) The group
F contains a (n, 1)-distorted copy of Z2n for every n. Hence the
dimension growth of F is at least exp

√
n.

Theorem. (D+S) There exists an elementary amenable subgroup
B of F with kB(n) ≥ exp

√
n.



An open problem

Problem. Is it true that for some λ > 1, α > 0, kZn(λ) = O(nα).



An open problem

Problem. Is it true that for some λ > 1, α > 0, kZn(λ) = O(nα).
If “yes”, then the asymptotic dimension growth is exponential.



An open problem

Problem. Is it true that for some λ > 1, α > 0, kZn(λ) = O(nα).
If “yes”, then the asymptotic dimension growth is exponential.
We do not know the answer for λ = 2, α = 1. We also do not
know whether kZn(λ) is bounded for every λ as a function of n.
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Theorem. (D+S) The dimension growth of every solvable
subgroup of F , say (...(Z ≀ Z)...) ≀ Z, is polynomial.
Idea of the proof. Use the Kolmogorov-Ostrand work on the
Hilbert 13th problem.
K+O introduced a function k ′(λ) which is bigger than k(λ). We

prove that k ′
G ≀Z

(n) is not greater than
∫
n+2

0
k ′
G
(x)dx .

Hence the function kBs
(n) where Bs = (...(Z ≀ Z )...) ≀ Z

︸ ︷︷ ︸

s+1

is at most

ns . By the previous results it is at least ns/2.
Problem. What is the actual dimension growth of the iterated
wreath product Bs?


