On the dimension growth of groups

Alexander Dranishnikov and Mark Sapir

Honolulu, March 3, 2012

Definition

Definition Let Γ be a graph.

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ -paths without repeated vertices.

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ -paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ . The number d such that $d = \max_{\lambda} (k(\lambda) - 1)$ is called the asymptotic dimension of Γ . (Gromov)

Definition Let Γ be a graph. Let $\lambda>1$. Let $k=k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ -paths without repeated vertices. Then $k(\lambda)-1$ is called the *dimension growth function* of Γ . The number d such that $d=\max_{\lambda}(k(\lambda)-1)$ is called the asymptotic dimension of Γ . (Gromov)

A λ -path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$.

Definition Let Γ be a graph. Let $\lambda>1$. Let $k=k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ -paths without repeated vertices. Then $k(\lambda)-1$ is called the *dimension growth function* of Γ . The number d such that $d=\max_{\lambda}(k(\lambda)-1)$ is called the asymptotic dimension of Γ . (Gromov)

A λ -path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$.

For example if Γ is \mathbb{Z} (or the square lattice \mathbb{Z}^n), then k(1) = 2.

Definition Let Γ be a graph. Let $\lambda>1$. Let $k=k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ -paths without repeated vertices. Then $k(\lambda)-1$ is called the *dimension growth function* of Γ . The number d such that $d=\max_{\lambda}(k(\lambda)-1)$ is called the asymptotic dimension of Γ . (Gromov)

A λ -path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$. For example if Γ is \mathbb{Z} (or the square lattice \mathbb{Z}^n), then k(1)=2. Color even vertices in white, odd vertices in black. The growth rate of $k(\lambda)$ is a q.i. invariant.

Proposition. The dimension growth of a finitely generated group G does not exceed its volume growth.

Proposition. The dimension growth of a finitely generated group *G* does not exceed its volume growth.

Proof Let f be the volume growth function. We consider a graph with vertices elements of G where every two vertices at distance

 $\leq \lambda$ are joined by an edge. Then the valency of this graph is

 $\leq f(\lambda)$. The graph has chromatic number $\leq f(\lambda) + 1$.

Proposition. The dimension growth of a finitely generated group G does not exceed its volume growth.

Proof Let f be the volume growth function. We consider a graph with vertices elements of G where every two vertices at distance $\leq \lambda$ are joined by an edge. Then the valency of this graph is

 $\leq f(\lambda)$. The graph has chromatic number $\leq f(\lambda) + 1$.

Corollary. The dimension growth of any finitely generated group is at most exponential.

Ozawa's result

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu's property A, hence it is uniformly embeddable into a Hilbert space.

Ozawa's result

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu's property A, hence it is uniformly embeddable into a Hilbert space.

Problem.Is the opposite implication true?

Ozawa's result

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu's property A, hence it is uniformly embeddable into a Hilbert space.

Problem.ls the opposite implication true?

Hence Gromov random groups containing expanders have exponential asymptotic dimension growth. This is the only known example.

Distortion of subgroups and dimension growth

Observation. Suppose that for a group Γ $k_{\Gamma}(\lambda) = k$ for some λ . Suppose that Γ (L, C)-embeds into G. Then $k_{G}(\frac{\lambda - C}{L}) \geq k$.

Distortion of subgroups and dimension growth

Observation. Suppose that for a group Γ $k_{\Gamma}(\lambda) = k$ for some λ . Suppose that Γ (L,C)-embeds into G. Then $k_{G}(\frac{\lambda-C}{L}) \geq k$. **Theorem.**(Panov, Moore) Let $\Gamma = \mathbb{Z}^{\infty}$ with I_{1} -metric. Then $k_{\Gamma}(2) = \infty$.

Distortion of subgroups and dimension growth

Observation. Suppose that for a group Γ $k_{\Gamma}(\lambda) = k$ for some λ . Suppose that Γ (L, C)-embeds into G. Then $k_{G}(\frac{\lambda - C}{L}) \geq k$. **Theorem.**(Panov, Moore) Let $\Gamma = \mathbb{Z}^{\infty}$ with I_{1} -metric. Then $k_{\Gamma}(2) = \infty$.

Proof. Every finite subset M of $\mathbb N$ corresponds to a vector v(M) from $\mathbb Z^\infty$ with coordinates 0, 1 in the natural way. Choose any $k \geq 1$. Let $P_k(\mathbb N)$ denote the set of all k-element subsets of $\mathbb N$. Every finite coloring of $\mathbb Z^\infty$ induces a finite coloring of $P_k(\mathbb N)$. By Ramsey there exists a subset $M \subseteq \mathbb N$ of size 2k such that all k-element subsets of M have the same color. Therefore we can find subsets T_1, T_2, \ldots, T_k of size k from M such that the symmetric distance between T_i and T_{i+1} is 2, $i=1,\ldots,k-1$, and T_1, T_k are disjoint. Then the vectors $v(T_1), \ldots, v(T_k)$ from $\mathbb Z^\infty$ form a monochromatic 2-path of diameter > 2k.

The dimension growth of \mathbb{Z}^n

Theorem.(D+S) If $n < 2^{\lambda}$, then $k_{\mathbb{Z}^n}(\lambda) = n+1$.

The dimension growth of \mathbb{Z}^n

Theorem.(D+S) If $n < 2^{\lambda}$, then $k_{\mathbb{Z}^n}(\lambda) = n+1$. **Idea of the proof.** Extend the coloring of \mathbb{Z}^n to coloring of \mathbb{R}^n and use the fact that the covering dimension of \mathbb{R}^n is n.

Theorem. (D+S) Suppose that the growth function of a group G is exponential, then the dimension growth of $Z \wr G$ is at least $\exp \sqrt{\lambda}$.

Theorem. (D+S) Suppose that the growth function of a group G is exponential, then the dimension growth of $Z \wr G$ is at least $\exp \sqrt{\lambda}$.

Idea of the proof. $\mathbb{Z}^{\exp n}$ embeds into $\mathbb{Z} \wr G$ with q.i. constants (O(n),1). Hence $k_G(\lambda) \geq k_{\mathbb{Z}^{\exp n}}(\lambda/O(n))$. Take $\lambda = O(n^2)$. We conclude by the theorem above that $k_G(O(n^2)) \geq \exp O(n)$.

Theorem. (D+S) Suppose that the growth function of a group G is exponential, then the dimension growth of $Z \wr G$ is at least $\exp \sqrt{\lambda}$.

Idea of the proof. $\mathbb{Z}^{\exp n}$ embeds into $\mathbb{Z} \wr G$ with q.i. constants (O(n),1). Hence $k_G(\lambda) \geq k_{\mathbb{Z}^{\exp n}}(\lambda/O(n))$. Take $\lambda = O(n^2)$. We conclude by the theorem above that $k_G(O(n^2)) \geq \exp O(n)$. **Example.** $\mathbb{Z} \wr (\mathbb{Z} \wr \mathbb{Z})$.

Theorem. (D+S) Suppose that the growth function of a group G is exponential, then the dimension growth of $Z \wr G$ is at least $\exp \sqrt{\lambda}$.

Idea of the proof. $\mathbb{Z}^{\exp n}$ embeds into $\mathbb{Z} \wr G$ with q.i. constants (O(n),1). Hence $k_G(\lambda) \geq k_{\mathbb{Z}^{\exp n}}(\lambda/O(n))$. Take $\lambda = O(n^2)$. We conclude by the theorem above that $k_G(O(n^2)) \geq \exp O(n)$. **Example.** $\mathbb{Z} \wr (\mathbb{Z} \wr \mathbb{Z})$.

Remark. This is the biggest known dimension growth function of an amenable group.

The lower bounds of the dimension growth of the R. Thompson group and its subgroups.

Theorem.(D+S, follows from Arzhantseva+Guba+S) The group F contains a (n,1)-distorted copy of \mathbb{Z}^{2^n} for every n. Hence the dimension growth of F is at least $\exp \sqrt{n}$.

The lower bounds of the dimension growth of the R. Thompson group and its subgroups.

Theorem.(D+S, follows from Arzhantseva+Guba+S) The group F contains a (n,1)-distorted copy of \mathbb{Z}^{2^n} for every n. Hence the dimension growth of F is at least $\exp \sqrt{n}$.

Theorem. (D+S) There exists an elementary amenable subgroup B of F with $k_B(n) \ge \exp \sqrt{n}$.

An open problem

Problem. Is it true that for some $\lambda > 1, \alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^{\alpha})$.

An open problem

Problem. Is it true that for some $\lambda > 1$, $\alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^{\alpha})$. If "yes", then the asymptotic dimension growth is exponential.

An open problem

Problem. Is it true that for some $\lambda > 1$, $\alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^{\alpha})$. If "yes", then the asymptotic dimension growth is exponential. We do not know the answer for $\lambda = 2$, $\alpha = 1$. We also do not know whether $k_{\mathbb{Z}^n}(\lambda)$ is bounded for every λ as a function of n.

Theorem. (D+S) The dimension growth of every solvable subgroup of F, say $(...(\mathbb{Z} \wr \mathbb{Z})...) \wr \mathbb{Z}$, is polynomial.

Theorem. (D+S) The dimension growth of every solvable subgroup of F, say $(...(\mathbb{Z} \wr \mathbb{Z})...) \wr \mathbb{Z}$, is polynomial. **Idea of the proof.** Use the Kolmogorov-Ostrand work on the Hilbert 13th problem.

Theorem. (D+S) The dimension growth of every solvable subgroup of F, say $(...(\mathbb{Z} \wr \mathbb{Z})...) \wr \mathbb{Z}$, is polynomial. **Idea of the proof.** Use the Kolmogorov-Ostrand work on the Hilbert 13th problem.

K+O introduced a function $k'(\lambda)$ which is bigger than $k(\lambda)$. We prove that $k'_{G\wr\mathbb{Z}}(n)$ is not greater than $\int_0^{n+2} k'_G(x) dx$.

Theorem. (D+S) The dimension growth of every solvable subgroup of F, say $(...(\mathbb{Z} \wr \mathbb{Z})...) \wr \mathbb{Z}$, is polynomial. **Idea of the proof.** Use the Kolmogorov-Ostrand work on the Hilbert 13th problem. K+O introduced a function $k'(\lambda)$ which is bigger than $k(\lambda)$. We prove that $k'_{G \wr \mathbb{Z}}(n)$ is not greater than $\int_0^{n+2} k'_G(x) dx$. Hence the function $k_{B_s}(n)$ where $B_s = \underbrace{(...(Z \wr Z)...) \wr \mathbb{Z}}_{s+1}$ is at most n^s . By the previous results it is at least $n^{s/2}$.

Theorem. (D+S) The dimension growth of every solvable subgroup of F, say $(...(\mathbb{Z} \wr \mathbb{Z})...) \wr \mathbb{Z}$, is polynomial. **Idea of the proof.** Use the Kolmogorov-Ostrand work on the Hilbert 13th problem.

K+O introduced a function $k'(\lambda)$ which is bigger than $k(\lambda)$. We prove that $k'_{G\wr\mathbb{Z}}(n)$ is not greater than $\int_0^{n+2} k'_G(x) dx$. Hence the function $k_{B_s}(n)$ where $B_s = \underbrace{(...(Z\wr Z)...)\wr\mathbb{Z}}_{t}$ is at most

 n^s . By the previous results it is at least $n^{s/2}$. **Problem.** What is the actual dimension growth of the iterated wreath product B_s ?