The Tarski numbers of groups

Mark Sapir

With Mikhail Ershov and Gili Golan

The Tarski number

A group G admits a paradoxical decomposition if there exist positive integers m and n, disjoint subsets $P_{1}, \ldots, P_{m}, Q_{1}, \ldots, Q_{n}$ of G and elements $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n}$ of G such that

$$
G=\bigcup_{i=1}^{m} g_{i} P_{i}=\bigcup_{j=1}^{n} h_{j} Q_{j}
$$

The Tarski number

A group G admits a paradoxical decomposition if there exist positive integers m and n, disjoint subsets $P_{1}, \ldots, P_{m}, Q_{1}, \ldots, Q_{n}$ of G and elements $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n}$ of G such that

$$
G=\bigcup_{i=1}^{m} g_{i} P_{i}=\bigcup_{j=1}^{n} h_{j} Q_{j}
$$

The minimal possible value of $m+n$ in a paradoxical decomposition of G is the Tarski number of G and denoted by $\mathcal{T}(G)$.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$. The ping-pong table: $Q_{1} \cup Q_{2}, P_{1} \cup P_{2}$.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$. The ping-pong table: $Q_{1} \cup Q_{2}, P_{1} \cup P_{2}$. $G=P_{1} \cup g P_{2}$,

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$. The ping-pong table: $Q_{1} \cup Q_{2}, P_{1} \cup P_{2}$. $G=P_{1} \cup g P_{2}$, Therefore

$$
P_{1} \supseteq G \backslash g P_{2} \supseteq g\left(P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}\right) \backslash g P_{2}=g\left(P_{1} \cup Q_{1} \cup Q_{2}\right)
$$

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$. The ping-pong table: $Q_{1} \cup Q_{2}, P_{1} \cup P_{2}$. $G=P_{1} \cup g P_{2}$, Therefore

$$
P_{1} \supseteq G \backslash g P_{2} \supseteq g\left(P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}\right) \backslash g P_{2}=g\left(P_{1} \cup Q_{1} \cup Q_{2}\right)
$$

Hence $P_{1} \supset g^{m} P_{1} \supset g^{m+1}\left(Q_{1} \cup Q_{2}\right)$ for every $m \geq 0$.

Known facts I

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G)=4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\},\{1, h\}$, pieces $P_{1}, P_{2}, Q_{1}, Q_{2}$. The ping-pong table: $Q_{1} \cup Q_{2}, P_{1} \cup P_{2}$. $G=P_{1} \cup g P_{2}$, Therefore

$$
P_{1} \supseteq G \backslash g P_{2} \supseteq g\left(P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}\right) \backslash g P_{2}=g\left(P_{1} \cup Q_{1} \cup Q_{2}\right)
$$

Hence $P_{1} \supset g^{m} P_{1} \supset g^{m+1}\left(Q_{1} \cup Q_{2}\right)$ for every $m \geq 0$.
$P_{2} \supseteq G \backslash g^{-1} P_{1} \supseteq g\left(P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}\right) \backslash g^{-1} P_{1}=g^{-1}\left(P_{2} \cup Q_{1} \cup Q_{2}\right)$.
Hence $P_{2} \supset g^{m} P_{2} \supset g^{m-1}\left(Q_{1} \cup Q_{2}\right)$ for every $m \leq 0$.

Known facts II

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14 .

Known facts II

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14 .
Let $A m e n_{k}$ (resp. Fin ${ }_{k}$) be the class of all groups with all k-generated subgroups amenable (resp. finite)

Known facts II

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14 .
Let $A m e n_{k}$ (resp. Fin) be the class of all groups with all k-generated subgroups amenable (resp. finite)
Ozawa: the Tarski number of every group in Amen_{k} is at least $k+3$.

Known facts II

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14 .
Let $A m e n_{k}$ (resp. Fin) be the class of all groups with all k-generated subgroups amenable (resp. finite)
Ozawa: the Tarski number of every group in $A m e n_{k}$ is at least $k+3$.
It is possible to show that the Tarski number of every group from Fin_{k} is at least $2 k+4$.

Known facts III

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every $m G$ has a finite index subgroup from Fin_{m}.

Known facts III

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every $m G$ has a finite index subgroup from Fin_{m}.
There exists $t>0$ such that the property "The Tarski number is $t^{\prime \prime}$ is not a q.i. invariant.

Known facts III

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every $m G$ has a finite index subgroup from Fin_{m}.
There exists $t>0$ such that the property "The Tarski number is $t^{\prime \prime}$ is not a q.i. invariant.
It is not known what t is exactly. The estimate: $10^{10^{8}}$. The case $t=4$ is Farb's problem.

Graph-theoretic formulation

Let G be a group, S_{1}, S_{2} be finite subsets of G. Consider the Cayley graph $\operatorname{Cay}\left(G,\left\{S_{1}, S_{2}\right\}\right)$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

Graph-theoretic formulation

Let G be a group, S_{1}, S_{2} be finite subsets of G. Consider the Cayley graph Cay $\left(G,\left\{S_{1}, S_{2}\right\}\right)$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: G admits a paradoxical decomposition with translating sets S_{1}, S_{2} if and only if the Cayley graph contains an evenly colored 2-subgraph.

Graph-theoretic formulation

Let G be a group, S_{1}, S_{2} be finite subsets of G. Consider the Cayley graph Cay $\left(G,\left\{S_{1}, S_{2}\right\}\right)$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: G admits a paradoxical decomposition with translating sets S_{1}, S_{2} if and only if the Cayley graph contains an evenly colored 2-subgraph.

LEMMA (P. Hall) Assume that every finite subset A of vertices of Γ has at least $2|A|$ children. Then Γ has a spanning 2-subgraph.

Graph-theoretic formulation

Let G be a group, S_{1}, S_{2} be finite subsets of G. Consider the Cayley graph $\operatorname{Cay}\left(G,\left\{S_{1}, S_{2}\right\}\right)$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: G admits a paradoxical decomposition with translating sets S_{1}, S_{2} if and only if the Cayley graph contains an evenly colored 2-subgraph.

LEMMA (P. Hall) Assume that every finite subset A of vertices of Γ has at least $2|A|$ children. Then Γ has a spanning 2 -subgraph. Suppose that edges are colored in colors 1,2, and for every pair of finite subsets A_{1}, A_{2}, the number of children of color 1 of A_{1} plus the number of children of color 2 of A_{2} is at least $\left|A_{1}\right|+\left|A_{2}\right|$.
Then 「 contains an evenly colored 2-subgraph.

Tarski numbers of extensions

THEOREM: Let G be a non-amenable group and H a subgroup of G.

Tarski numbers of extensions

THEOREM: Let G be a non-amenable group and H a subgroup of G.
(a) Suppose that H has finite index in G. Then

$$
\mathcal{T}(H)-2 \leq[G: H](\mathcal{T}(G)-2)
$$

(b) Let \mathcal{V} be a variety of groups where all groups are amenable and relatively free groups are right orderable. Then there exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ (depending only on \mathcal{V}) with the following property: if H is normal in G and $G / H \in \mathcal{V}$, then $\mathcal{T}(H) \leq f(\mathcal{T}(G))$.
(c) Assume that H is normal and amenable. Then $\mathcal{T}(G / H)=\mathcal{T}(G)$.
(d) Assume that $G=H \times K$ for some K. Then $\min \{\mathcal{T}(H), \mathcal{T}(K)\} \leq 2(\mathcal{T}(G)-1)^{2}$.

Proof of part (a)

Let G be a group, $H<G$ of finite index, T be a set of representatives of right cosets of H.

Proof of part (a)

Let G be a group, $H<G$ of finite index, T be a set of representatives of right cosets of H.

Suppose that G has a paradoxical decomposition with translating sets S_{1}, S_{2} and assume that $1 \in S_{1} \cap S_{2}$. Let $S=S_{1} \cup S_{2}$. Then let $S_{i}^{\prime}=T S_{i} T^{-1} \cap H$. Then H has a paradoxical decomposition with translating sets $S_{1}^{\prime}, S_{2}^{\prime}$. Therefore, $\mathcal{T}(H) \leq\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right|$.

Proof continued

To show this, consider an evenly colored 2-subgraph 「 of the Cayley graph Cay $\left(G,\left\{S_{1}, S_{2}\right\}\right)$, and identify vertices with the same H-components. The new graph has vertex set H.

Proof continued

To show this, consider an evenly colored 2-subgraph 「 of the Cayley graph Cay ($G,\left\{S_{1}, S_{2}\right\}$), and identify vertices with the same H-components. The new graph has vertex set H.
We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S_{i}^{\prime}, so we get a subgraph of $\operatorname{Cay}\left(H,\left\{S_{1}^{\prime}, S_{2}^{\prime}\right\}\right)$. Thus the Tarski number of H is at most $\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right|$.

Proof continued

To show this, consider an evenly colored 2-subgraph 「 of the Cayley graph Cay ($G,\left\{S_{1}, S_{2}\right\}$), and identify vertices with the same H-components. The new graph has vertex set H.
We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S_{i}^{\prime}, so we get a subgraph of $\operatorname{Cay}\left(H,\left\{S_{1}^{\prime}, S_{2}^{\prime}\right\}\right)$. Thus the Tarski number of H is at most $\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right|$.
We estimate $\left|S_{i}^{\prime}\right|=\left|T S_{i} T^{-1} \cap H\right| \leq|T|\left(\left|S_{i}\right|-1\right)+1$ (here we use the fact that S_{i} contains 1.)

Proof continued

To show this, consider an evenly colored 2-subgraph 「 of the Cayley graph $\operatorname{Cay}\left(G,\left\{S_{1}, S_{2}\right\}\right)$, and identify vertices with the same H-components. The new graph has vertex set H.
We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S_{i}^{\prime}, so we get a subgraph of $\operatorname{Cay}\left(H,\left\{S_{1}^{\prime}, S_{2}^{\prime}\right\}\right)$. Thus the Tarski number of H is at most $\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right|$.
We estimate $\left|S_{i}^{\prime}\right|=\left|T S_{i} T^{-1} \cap H\right| \leq|T|\left(\left|S_{i}\right|-1\right)+1$ (here we use the fact that S_{i} contains 1.) Hence
$\mathcal{T}(H) \leq\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right| \leq|T|\left(\left|S_{1}\right|+\left|S_{2}\right|-2\right)+2=[G: H](\mathcal{T}(G)-2)+2$, and we are done.

2-generated groups with arbitrary large Tarski numbers

Non-amenable groups from Amen $_{k}$ have at least $k+1$ generators. Hence

2-generated groups with arbitrary large Tarski numbers

Non-amenable groups from Amen_{k} have at least $k+1$ generators. Hence
QUESTION: Does the Tarski number depend on the number of generators?

2-generated groups with arbitrary large Tarski numbers

Non-amenable groups from Amen_{k} have at least $k+1$ generators . Hence
QUESTION: Does the Tarski number depend on the number of generators?
THEOREM: There exist 2-generated infinite groups with property
(T) and arbitrary large Tarski numbers.

2-generated groups with arbitrary large Tarski numbers

Non-amenable groups from Amen_{k} have at least $k+1$ generators. Hence
QUESTION: Does the Tarski number depend on the number of generators?
THEOREM: There exist 2-generated infinite groups with property
(T) and arbitrary large Tarski numbers.
We use Neumann-Neumann construction and the fact that free metabelian groups are left orderable.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^{+}(A)$ is the set of all children of vertices of A which do not belong to A.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^{+}(A)$ is the set of all children of vertices of A which do not belong to A.
LEMMA. Suppose that a group G is generated by a set $T=\{a, b, c\}$ of 3 non-identity elements, and suppose that $\left|\partial_{T}^{+} A\right| \geq|A|$ for every finite subset $A \subseteq G$. Then G admits a paradoxical decomposition with both translating sets of size 3, and therefore $\mathcal{T}(G) \leq 6$.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^{+}(A)$ is the set of all children of vertices of A which do not belong to A.
LEMMA. Suppose that a group G is generated by a set $T=\{a, b, c\}$ of 3 non-identity elements, and suppose that $\left|\partial_{T}^{+} A\right| \geq|A|$ for every finite subset $A \subseteq G$. Then G admits a paradoxical decomposition with both translating sets of size 3, and therefore $\mathcal{T}(G) \leq 6$.
Proof. Let $S_{1}=\{1, a, b\}, S_{2}=\{1, b, c\}$. By Hall's lemma, Γ has a spanning 2 -subgraph which can be evenly colored because every 2-element subset of $\{1, a, b, c\}$ can be ordered so that the first element is in S_{1}, the second is in S_{2}.

Tarski number 6, continued

THEOREM. Let G be any 3 -generated group with $\beta_{1}(G) \geq 3 / 2$ where $\beta_{1}(G)$ is the first L^{2}-Betti number of G. Then $\mathcal{T}(G) \leq 6$. In particular, if G is torsion, then $\mathcal{T}(G)=6$.

Tarski number 6, continued

THEOREM. Let G be any 3 -generated group with $\beta_{1}(G) \geq 3 / 2$ where $\beta_{1}(G)$ is the first L^{2}-Betti number of G. Then $\mathcal{T}(G) \leq 6$. In particular, if G is torsion, then $\mathcal{T}(G)=6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k=2 \beta_{1}(G)-|S|+1$. Then for any finite $A \subseteq G$ we have $\left|\partial_{S}^{+} A\right| \geq k|A|$.

Tarski number 6, continued

THEOREM. Let G be any 3 -generated group with $\beta_{1}(G) \geq 3 / 2$ where $\beta_{1}(G)$ is the first L^{2}-Betti number of G. Then $\mathcal{T}(G) \leq 6$. In particular, if G is torsion, then $\mathcal{T}(G)=6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k=2 \beta_{1}(G)-|S|+1$. Then for any finite $A \subseteq G$ we have $\left|\partial_{S}^{+} A\right| \geq k|A|$.
PROOF. First find a subforest F with
$\sum_{v \in A} \operatorname{deg}_{F}(v) \geq\left(2 \beta_{1}(G)+2\right)|A|$ (Lyons).

Tarski number 6, continued

THEOREM. Let G be any 3 -generated group with $\beta_{1}(G) \geq 3 / 2$ where $\beta_{1}(G)$ is the first L^{2}-Betti number of G. Then $\mathcal{T}(G) \leq 6$. In particular, if G is torsion, then $\mathcal{T}(G)=6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k=2 \beta_{1}(G)-|S|+1$. Then for any finite $A \subseteq G$ we have $\left|\partial_{S}^{+} A\right| \geq k|A|$.
PROOF. First find a subforest F with
$\sum_{v \in A} \operatorname{deg}_{F}(v) \geq\left(2 \beta_{1}(G)+2\right)|A|$ (Lyons).
Then remove edges with negative labels. That gives
$\left|\partial^{+}(A)\right| \geq\left(2 \beta_{1}(G)+2-|S|\right)|A|-|A|$.

Tarski number 6, continued

THEOREM. Let G be any 3 -generated group with $\beta_{1}(G) \geq 3 / 2$ where $\beta_{1}(G)$ is the first L^{2}-Betti number of G. Then $\mathcal{T}(G) \leq 6$. In particular, if G is torsion, then $\mathcal{T}(G)=6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k=2 \beta_{1}(G)-|S|+1$. Then for any finite $A \subseteq G$ we have $\left|\partial_{S}^{+} A\right| \geq k|A|$.
PROOF. First find a subforest F with
$\sum_{v \in A} \operatorname{deg}_{F}(v) \geq\left(2 \beta_{1}(G)+2\right)|A|$ (Lyons).
Then remove edges with negative labels. That gives
$\left|\partial^{+}(A)\right| \geq\left(2 \beta_{1}(G)+2-|S|\right)|A|-|A|$.
By Osin's theorem, there are torsion 3-generated groups with $\beta_{1}(G)>3 / 2$, all these groups have Tarski numbers 6 .

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group?

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? PROBLEM 2. Are the Tarski numbers of G and $G \times G$ the same?

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? PROBLEM 2. Are the Tarski numbers of G and $G \times G$ the same? PROBLEM 3. Suppose that $\beta_{1}(G)>0$. Is it true that $\mathcal{T}(G) \leq 6$?

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? PROBLEM 2. Are the Tarski numbers of G and $G \times G$ the same?
PROBLEM 3. Suppose that $\beta_{1}(G)>0$. Is it true that $\mathcal{T}(G) \leq 6$?
Peterson and Thom: if G is torsion-free, $\beta_{1}>0$, and Atiyah's conjecture holds, then $\mathcal{T}(G)=4$.

