The Tarski numbers of groups

Mark Sapir

With Mikhail Ershov and Gili Golan

The Tarski number

A group G admits a paradoxical decomposition if there exist positive integers m and n, disjoint subsets $P_1, \ldots, P_m, Q_1, \ldots, Q_n$ of G and elements $g_1, \ldots, g_m, h_1, \ldots, h_n$ of G such that

$$G=\bigcup_{i=1}^m g_i P_i=\bigcup_{j=1}^n h_j Q_j.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Tarski number

A group G admits a paradoxical decomposition if there exist positive integers m and n, disjoint subsets $P_1, \ldots, P_m, Q_1, \ldots, Q_n$ of G and elements $g_1, \ldots, g_m, h_1, \ldots, h_n$ of G such that

$$G = \bigcup_{i=1}^{m} g_i P_i = \bigcup_{j=1}^{n} h_j Q_j$$

The minimal possible value of m + n in a paradoxical decomposition of G is the *Tarski number* of G and denoted by $\mathcal{T}(G)$.

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: T(G) = 4 if and only if G contains a non-Abelian free subgroup.

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 .

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 . The ping-pong table: $Q_1 \cup Q_2, P_1 \cup P_2$.

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 . The ping-pong table: $Q_1 \cup Q_2, P_1 \cup P_2$. $G = P_1 \cup gP_2$,

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 . The ping-pong table: $Q_1 \cup Q_2, P_1 \cup P_2$. $G = P_1 \cup gP_2$, Therefore

 $P_1 \supseteq G \setminus gP_2 \supseteq g(P_1 \cup P_2 \cup Q_1 \cup Q_2) \setminus gP_2 = g(P_1 \cup Q_1 \cup Q_2).$

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 . The ping-pong table: $Q_1 \cup Q_2, P_1 \cup P_2$. $G = P_1 \cup gP_2$, Therefore

$$P_1 \supseteq G \setminus gP_2 \supseteq g(P_1 \cup P_2 \cup Q_1 \cup Q_2) \setminus gP_2 = g(P_1 \cup Q_1 \cup Q_2).$$

Hence $P_1 \supset g^m P_1 \supset g^{m+1}(Q_1 \cup Q_2)$ for every $m \ge 0$.

The Tarski number is always at least 4. The Tarski number of a subgroup (quotient) cannot be smaller than the Tarski number of the group.

Jónsson and Dekker: $\mathcal{T}(G) = 4$ if and only if G contains a non-Abelian free subgroup. The translating elements $\{1, g\}, \{1, h\}$, pieces P_1, P_2, Q_1, Q_2 . The ping-pong table: $Q_1 \cup Q_2, P_1 \cup P_2$. $G = P_1 \cup gP_2$, Therefore

$$P_1 \supseteq G \setminus gP_2 \supseteq g(P_1 \cup P_2 \cup Q_1 \cup Q_2) \setminus gP_2 = g(P_1 \cup Q_1 \cup Q_2).$$

Hence $P_1 \supset g^m P_1 \supset g^{m+1}(Q_1 \cup Q_2)$ for every $m \ge 0$.

 $P_2 \supseteq G \setminus g^{-1}P_1 \supseteq g(P_1 \cup P_2 \cup Q_1 \cup Q_2) \setminus g^{-1}P_1 = g^{-1}(P_2 \cup Q_1 \cup Q_2).$

Hence $P_2 \supset g^m P_2 \supset g^{m-1}(Q_1 \cup Q_2)$ for every $m \leq 0$.

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- ► The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- ► The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14.

Let $Amen_k$ (resp. Fin_k) be the class of all groups with all k-generated subgroups amenable (resp. finite)

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- ► The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14.

Let $Amen_k$ (resp. Fin_k) be the class of all groups with all k-generated subgroups amenable (resp. finite)

Ozawa: the Tarski number of every group in $Amen_k$ is at least k + 3.

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

- The Tarski number of any torsion group is at least 6.
- ► The Tarski number of any non-cyclic free Burnside group of odd exponent ≥ 665 is between 6 and 14.

Let $Amen_k$ (resp. Fin_k) be the class of all groups with all k-generated subgroups amenable (resp. finite)

Ozawa: the Tarski number of every group in $Amen_k$ is at least k + 3.

It is possible to show that the Tarski number of every group from Fin_k is at least 2k + 4.

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every m G has a finite index subgroup from Fin_m .

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every m G has a finite index subgroup from Fin_m .

There exists t > 0 such that the property "The Tarski number is t" is not a q.i. invariant.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence non-amenable) group G such that for every m G has a finite index subgroup from Fin_m .

There exists t > 0 such that the property "The Tarski number is t" is not a q.i. invariant.

It is not known what t is exactly. The estimate: 10^{10^8} . The case t = 4 is Farb's problem.

Let G be a group, S_1, S_2 be finite subsets of G. Consider the Cayley graph $Cay(G, \{S_1, S_2\})$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

Let G be a group, S_1, S_2 be finite subsets of G. Consider the Cayley graph $Cay(G, \{S_1, S_2\})$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: G admits a paradoxical decomposition with translating sets S_1, S_2 if and only if the Cayley graph contains an evenly colored 2-subgraph.

Let G be a group, S_1, S_2 be finite subsets of G. Consider the Cayley graph $Cay(G, \{S_1, S_2\})$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: *G* admits a paradoxical decomposition with translating sets S_1 , S_2 if and only if the Cayley graph contains an evenly colored 2-subgraph.

LEMMA (P. Hall) Assume that every finite subset A of vertices of Γ has at least 2|A| children. Then Γ has a spanning 2-subgraph.

Let G be a group, S_1, S_2 be finite subsets of G. Consider the Cayley graph $Cay(G, \{S_1, S_2\})$, color edges in two colors. A subgraph is called an evenly colored 2-graph if every vertex has two children of different colors, and at most one parent.

LEMMA: *G* admits a paradoxical decomposition with translating sets S_1 , S_2 if and only if the Cayley graph contains an evenly colored 2-subgraph.

LEMMA (P. Hall) Assume that every finite subset A of vertices of Γ has at least 2|A| children. Then Γ has a spanning 2-subgraph. Suppose that edges are colored in colors 1, 2, and for every pair of finite subsets A_1, A_2 , the number of children of color 1 of A_1 plus the number of children of color 2 of A_2 is at least $|A_1| + |A_2|$. Then Γ contains an evenly colored 2-subgraph.

Tarski numbers of extensions

THEOREM: Let G be a non-amenable group and H a subgroup of G.

Tarski numbers of extensions

THEOREM: Let G be a non-amenable group and H a subgroup of G.

(a) Suppose that H has finite index in G. Then

$$\mathcal{T}(H) - 2 \leq [G:H](\mathcal{T}(G) - 2).$$

- (b) Let \mathcal{V} be a variety of groups where all groups are amenable and relatively free groups are right orderable. Then there exists a function $f : \mathbb{N} \to \mathbb{N}$ (depending only on \mathcal{V}) with the following property: if H is normal in G and $G/H \in \mathcal{V}$, then $\mathcal{T}(H) \leq f(\mathcal{T}(G))$.
- (c) Assume that H is normal and amenable. Then $\mathcal{T}(G/H) = \mathcal{T}(G)$.
- (d) Assume that $G = H \times K$ for some K. Then $\min\{\mathcal{T}(H), \mathcal{T}(K)\} \le 2(\mathcal{T}(G) 1)^2$.

Let G be a group, H < G of finite index, T be a set of representatives of right cosets of H.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Let G be a group, H < G of finite index, T be a set of representatives of right cosets of H.

Suppose that G has a paradoxical decomposition with translating sets S_1, S_2 and assume that $1 \in S_1 \cap S_2$. Let $S = S_1 \cup S_2$. Then let $S'_i = TS_iT^{-1} \cap H$. Then H has a paradoxical decomposition with translating sets S'_1, S'_2 . Therefore, $\mathcal{T}(H) \leq |S'_1| + |S'_2|$.

To show this, consider an evenly colored 2-subgraph Γ of the Cayley graph $Cay(G, \{S_1, S_2\})$, and identify vertices with the same *H*-components. The new graph has vertex set *H*.

To show this, consider an evenly colored 2-subgraph Γ of the Cayley graph $Cay(G, \{S_1, S_2\})$, and identify vertices with the same *H*-components. The new graph has vertex set *H*.

We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S'_i , so we get a subgraph of $Cay(H, \{S'_1, S'_2\})$. Thus the Tarski number of H is at most $|S'_1| + |S'_2|$.

To show this, consider an evenly colored 2-subgraph Γ of the Cayley graph $Cay(G, \{S_1, S_2\})$, and identify vertices with the same *H*-components. The new graph has vertex set *H*.

We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S'_i , so we get a subgraph of $Cay(H, \{S'_1, S'_2\})$. Thus the Tarski number of H is at most $|S'_1| + |S'_2|$.

We estimate $|S'_i| = |TS_iT^{-1} \cap H| \le |T|(|S_i| - 1) + 1$ (here we use the fact that S_i contains 1.)

To show this, consider an evenly colored 2-subgraph Γ of the Cayley graph $Cay(G, \{S_1, S_2\})$, and identify vertices with the same *H*-components. The new graph has vertex set *H*.

We prove that it satisfies the conditions of Hall's lemma, so it contains an evenly colored 2-subgraph. The edges are labeled by elements of S'_i , so we get a subgraph of $Cay(H, \{S'_1, S'_2\})$. Thus the Tarski number of H is at most $|S'_1| + |S'_2|$.

We estimate $|S'_i| = |TS_i T^{-1} \cap H| \le |T|(|S_i| - 1) + 1$ (here we use the fact that S_i contains 1.) Hence $\mathcal{T}(H) \le |S'_1| + |S'_2| \le |T|(|S_1| + |S_2| - 2) + 2 = [G : H](\mathcal{T}(G) - 2) + 2$, and we are done.

Non-amenable groups from $Amen_k$ have at least k + 1 generators. Hence

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Non-amenable groups from $Amen_k$ have at least k + 1 generators. Hence **QUESTION:** Does the Tarski number depend on the number of generators?

Non-amenable groups from $Amen_k$ have at least k + 1 generators. Hence

QUESTION: Does the Tarski number depend on the number of generators?

THEOREM: There exist 2-generated infinite groups with property (T) and arbitrary large Tarski numbers.

Non-amenable groups from $Amen_k$ have at least k + 1 generators. Hence

QUESTION: Does the Tarski number depend on the number of generators?

THEOREM: There exist 2-generated infinite groups with property (T) and arbitrary large Tarski numbers.

We use Neumann-Neumann construction and the fact that free metabelian groups are left orderable.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^+(A)$ is the set of all children of vertices of A which do not belong to A.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^+(A)$ is the set of all children of vertices of A which do not belong to A.

LEMMA. Suppose that a group *G* is generated by a set $T = \{a, b, c\}$ of 3 non-identity elements, and suppose that $|\partial_T^+ A| \ge |A|$ for every finite subset $A \subseteq G$. Then *G* admits a paradoxical decomposition with both translating sets of size 3, and therefore $T(G) \le 6$.

Tarski number 6

Let $A \subseteq V(\Gamma)$, then $\partial^+(A)$ is the set of all children of vertices of A which do not belong to A.

LEMMA. Suppose that a group *G* is generated by a set $T = \{a, b, c\}$ of 3 non-identity elements, and suppose that $|\partial_T^+ A| \ge |A|$ for every finite subset $A \subseteq G$. Then *G* admits a paradoxical decomposition with both translating sets of size 3, and therefore $T(G) \le 6$.

Proof. Let $S_1 = \{1, a, b\}, S_2 = \{1, b, c\}$. By Hall's lemma, Γ has a spanning 2-subgraph which can be evenly colored because every 2-element subset of $\{1, a, b, c\}$ can be ordered so that the first element is in S_1 , the second is in S_2 .

THEOREM. Let G be any 3-generated group with $\beta_1(G) \ge 3/2$ where $\beta_1(G)$ is the first L^2 -Betti number of G. Then $\mathcal{T}(G) \le 6$. In particular, if G is torsion, then $\mathcal{T}(G) = 6$.

THEOREM. Let G be any 3-generated group with $\beta_1(G) \ge 3/2$ where $\beta_1(G)$ is the first L^2 -Betti number of G. Then $\mathcal{T}(G) \le 6$. In particular, if G is torsion, then $\mathcal{T}(G) = 6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k = 2\beta_1(G) - |S| + 1$. Then for any finite $A \subseteq G$ we have $|\partial_S^+ A| \ge k|A|$.

THEOREM. Let G be any 3-generated group with $\beta_1(G) \ge 3/2$ where $\beta_1(G)$ is the first L^2 -Betti number of G. Then $\mathcal{T}(G) \le 6$. In particular, if G is torsion, then $\mathcal{T}(G) = 6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k = 2\beta_1(G) - |S| + 1$. Then for any finite $A \subseteq G$ we have $|\partial_S^+ A| \ge k|A|$. **PROOF.** First find a subforest F with $\sum_{v \in A} \deg_F(v) \ge (2\beta_1(G) + 2)|A|$ (Lyons).

THEOREM. Let G be any 3-generated group with $\beta_1(G) \ge 3/2$ where $\beta_1(G)$ is the first L^2 -Betti number of G. Then $\mathcal{T}(G) \le 6$. In particular, if G is torsion, then $\mathcal{T}(G) = 6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k = 2\beta_1(G) - |S| + 1$. Then for any finite $A \subseteq G$ we have $|\partial_S^+ A| \ge k|A|$. **PROOF.** First find a subforest F with $\sum_{v \in A} \deg_F(v) \ge (2\beta_1(G) + 2)|A|$ (Lyons). Then remove edges with negative labels. That gives $|\partial^+(A)| > (2\beta_1(G) + 2 - |S|)|A| - |A|$.

THEOREM. Let G be any 3-generated group with $\beta_1(G) \ge 3/2$ where $\beta_1(G)$ is the first L^2 -Betti number of G. Then $\mathcal{T}(G) \le 6$. In particular, if G is torsion, then $\mathcal{T}(G) = 6$.

LEMMA. Let G be a finitely generated group, S a finite generating subset of G, and let $k = 2\beta_1(G) - |S| + 1$. Then for any finite $A \subseteq G$ we have $|\partial_S^+ A| \ge k|A|$.

PROOF. First find a subforest *F* with $\sum_{v \in A} \deg_F(v) \ge (2\beta_1(G) + 2)|A| \text{ (Lyons).}$ Then remove edges with negative labels. That gives $|\partial^+(A)| \ge (2\beta_1(G) + 2 - |S|)|A| - |A|.$

By Osin's theorem, there are torsion 3-generated groups with $\beta_1(G) > 3/2$, all these groups have Tarski numbers 6.

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group?

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? **PROBLEM 2.** Are the Tarski numbers of G and $G \times G$ the same?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? **PROBLEM 2.** Are the Tarski numbers of *G* and $G \times G$ the same? **PROBLEM 3.** Suppose that $\beta_1(G) > 0$. Is it true that $\mathcal{T}(G) \leq 6$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group? **PROBLEM 2.** Are the Tarski numbers of *G* and $G \times G$ the same? **PROBLEM 3.** Suppose that $\beta_1(G) > 0$. Is it true that $\mathcal{T}(G) \leq 6$? Peterson and Thom: if *G* is torsion-free, $\beta_1 > 0$, and Atiyah's conjecture holds, then $\mathcal{T}(G) = 4$.