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A group G admits a paradoxical decomposition if there exist
positive integers m and n, disjoint subsets P1, . . . ,Pm, Q1, . . . ,Qn

of G and elements g1, . . . , gm, h1, . . . , hn of G such that

G =
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hjQj .

The minimal possible value of m + n in a paradoxical
decomposition of G is the Tarski number of G and denoted by
T (G ).
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the group.

Jónsson and Dekker: T (G ) = 4 if and only if G contains a
non-Abelian free subgroup. The translating elements {1, g}, {1, h},
pieces P1,P2,Q1,Q2. The ping-pong table: Q1 ∪ Q2, P1 ∪ P2.
G = P1 ∪ gP2,Therefore

P1 ⊇ G \ gP2 ⊇ g(P1 ∪ P2 ∪Q1 ∪ Q2) \ gP2 = g(P1 ∪ Q1 ∪ Q2).

Hence P1 ⊃ gmP1 ⊃ gm+1(Q1 ∪ Q2) for every m ≥ 0.

P2 ⊇ G \g−1P1 ⊇ g(P1∪P2∪Q1∪Q2)\g
−1P1 = g−1(P2∪Q1∪Q2).

Hence P2 ⊃ gmP2 ⊃ gm−1(Q1 ∪ Q2) for every m ≤ 0.
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Known facts II

Ceccherini-Silberstein, Grigorchuk, de la Harpe:

◮ The Tarski number of any torsion group is at least 6.

◮ The Tarski number of any non-cyclic free Burnside group of
odd exponent ≥ 665 is between 6 and 14.

Let Amenk (resp. Fink) be the class of all groups with all
k-generated subgroups amenable (resp. finite)

Ozawa: the Tarski number of every group in Amenk is at least
k + 3.

It is possible to show that the Tarski number of every group from
Fink is at least 2k + 4.
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Ershov, Jaikin-Zapirain: There exists a Golod-Shafarevich (hence
non-amenable) group G such that for every m G has a finite index
subgroup from Finm.

There exists t > 0 such that the property ”The Tarski number is
t” is not a q.i. invariant.

It is not known what t is exactly. The estimate: 1010
8

. The case
t = 4 is Farb’s problem.
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Graph-theoretic formulation

Let G be a group, S1,S2 be finite subsets of G . Consider the
Cayley graph Cay(G , {S1,S2}), color edges in two colors. A
subgraph is called an evenly colored 2-graph if every vertex has two
children of different colors, and at most one parent.

LEMMA: G admits a paradoxical decomposition with translating
sets S1,S2 if and only if the Cayley graph contains an evenly
colored 2-subgraph.

LEMMA (P. Hall) Assume that every finite subset A of vertices of
Γ has at least 2|A| children. Then Γ has a spanning 2-subgraph.
Suppose that edges are colored in colors 1, 2, and for every pair of
finite subsets A1,A2, the number of children of color 1 of A1 plus
the number of children of color 2 of A2 is at least |A1|+ |A2|.
Then Γ contains an evenly colored 2-subgraph.
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Tarski numbers of extensions

THEOREM: Let G be a non-amenable group and H a subgroup
of G .

(a) Suppose that H has finite index in G . Then

T (H) − 2 ≤ [G : H](T (G )− 2).

(b) Let V be a variety of groups where all groups are amenable
and relatively free groups are right orderable. Then there
exists a function f : N → N (depending only on V) with the
following property: if H is normal in G and G/H ∈ V, then
T (H) ≤ f (T (G )).

(c) Assume that H is normal and amenable. Then
T (G/H) = T (G ).

(d) Assume that G = H × K for some K . Then
min{T (H),T (K )} ≤ 2(T (G )− 1)2.
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Let G be a group, H < G of finite index, T be a set of
representatives of right cosets of H.

Suppose that G has a paradoxical decomposition with translating
sets S1,S2 and assume that 1 ∈ S1 ∩ S2. Let S = S1 ∪ S2. Then
let S ′

i = TSiT
−1 ∩ H. Then H has a paradoxical decomposition

with translating sets S ′

1,S
′

2. Therefore, T (H) ≤ |S ′

1|+ |S ′

2|.
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To show this, consider an evenly colored 2-subgraph Γ of the
Cayley graph Cay(G , {S1,S2}), and identify vertices with the same
H-components. The new graph has vertex set H.

We prove that it satisfies the conditions of Hall’s lemma, so it
contains an evenly colored 2-subgraph. The edges are labeled by
elements of S ′

i , so we get a subgraph of Cay(H, {S ′

1
,S ′

2
}). Thus

the Tarski number of H is at most |S ′

1|+ |S ′

2|.

We estimate |S ′

i | = |TSiT
−1 ∩ H| ≤ |T |(|Si | − 1) + 1 (here we use

the fact that Si contains 1.) Hence
T (H) ≤ |S ′

1|+|S ′

2| ≤ |T |(|S1|+|S2|−2)+2 = [G : H](T (G )−2)+2,
and we are done.
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2-generated groups with arbitrary large Tarski numbers

Non-amenable groups from Amenk have at least k + 1 generators.
Hence
QUESTION: Does the Tarski number depend on the number of
generators?
THEOREM: There exist 2-generated infinite groups with property
(T) and arbitrary large Tarski numbers.
We use Neumann-Neumann construction and the fact that free
metabelian groups are left orderable.
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Let A ⊆ V (Γ), then ∂+(A) is the set of all children of vertices of A
which do not belong to A.

LEMMA. Suppose that a group G is generated by a set
T = {a, b, c} of 3 non-identity elements, and suppose that
|∂+

TA| ≥ |A| for every finite subset A ⊆ G . Then G admits a
paradoxical decomposition with both translating sets of size 3, and
therefore T (G ) ≤ 6.

Proof. Let S1 = {1, a, b},S2 = {1, b, c}. By Hall’s lemma, Γ has
a spanning 2-subgraph which can be evenly colored because every
2-element subset of {1, a, b, c} can be ordered so that the first
element is in S1, the second is in S2.
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Tarski number 6, continued

THEOREM. Let G be any 3-generated group with β1(G ) ≥ 3/2
where β1(G ) is the first L2-Betti number of G . Then T (G ) ≤ 6.
In particular, if G is torsion, then T (G ) = 6.

LEMMA. Let G be a finitely generated group, S a finite
generating subset of G , and let k = 2β1(G )− |S |+ 1. Then for
any finite A ⊆ G we have |∂+

S A| ≥ k |A|.

PROOF. First find a subforest F with∑
v∈A degF (v) ≥ (2β1(G ) + 2)|A| (Lyons).

Then remove edges with negative labels. That gives
|∂+(A)| ≥ (2β1(G ) + 2− |S |)|A| − |A|.

By Osin’s theorem, there are torsion 3-generated groups with
β1(G ) > 3/2, all these groups have Tarski numbers 6.
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Open problems

PROBLEM 1. Is 5 (7 or 898) the Tarski number of a group?
PROBLEM 2. Are the Tarski numbers of G and G ×G the same?
PROBLEM 3. Suppose that β1(G ) > 0. Is it true that
T (G ) ≤ 6?
Peterson and Thom: if G is torsion-free, β1 > 0, and Atiyah’s
conjecture holds, then T (G ) = 4.
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