On the conjugacy growth functions of groups

V. S. Guba, M. V. Sapir

March 20, 2010

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

$$
\frac{\exp (h t)}{h t}
$$

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

$$
\frac{\exp (h t)}{h t}
$$

Since every free homotopy class in that case contains unique closed geodesics, the problem is equivalent to counting primitive conjugacy classes.

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

$$
\frac{\exp (h t)}{h t}
$$

Since every free homotopy class in that case contains unique closed geodesics, the problem is equivalent to counting primitive conjugacy classes.
In group theoretic terms this implies that the number of primitive conjugacy classes intersecting the ball of radius n in the Cayley graph of the fundamental group of M (with respect to some finite generating set) is between $\frac{1}{C_{n}} \exp (h n)$ and $\frac{C}{n} \exp (h n)$ for some constant $C>1$.

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

$$
\frac{\exp (h t)}{h t}
$$

Since every free homotopy class in that case contains unique closed geodesics, the problem is equivalent to counting primitive conjugacy classes.
In group theoretic terms this implies that the number of primitive conjugacy classes intersecting the ball of radius n in the Cayley graph of the fundamental group of M (with respect to some finite generating set) is between $\frac{1}{C n} \exp (h n)$ and $\frac{C}{n} \exp (h n)$ for some constant $C>1$. Basically it means that two cyclically reduced products of generators are conjugate "almost" only if they are cyclic shifts of each other.

Closed geodesics

Margulis proved that for compact manifolds of pinched negative curvature and exponential volume growth $\exp (h n)$, the number of primitive closed geodesics of period $\leq t$ is approximately

$$
\frac{\exp (h t)}{h t}
$$

Since every free homotopy class in that case contains unique closed geodesics, the problem is equivalent to counting primitive conjugacy classes.
In group theoretic terms this implies that the number of primitive conjugacy classes intersecting the ball of radius n in the Cayley graph of the fundamental group of M (with respect to some finite generating set) is between $\frac{1}{C n} \exp (h n)$ and $\frac{C}{n} \exp (h n)$ for some constant $C>1$. Basically it means that two cyclically reduced products of generators are conjugate "almost" only if they are cyclic shifts of each other. Similar results were later obtained by M. Coornaert, G. Knieper, G. Link and others.

The definition

Definition. Let $G=\langle X\rangle$ be a group generated by a finite set X. For every n let $g_{c}(n)$ be the number of conjugacy classes of G intersecting the ball of radius n in G. The function $g_{c}(n)$ will be called the conjugacy growth function of G.

The definition

Definition. Let $G=\langle X\rangle$ be a group generated by a finite set X. For every n let $g_{c}(n)$ be the number of conjugacy classes of G intersecting the ball of radius n in G. The function $g_{c}(n)$ will be called the conjugacy growth function of G.

The definition differs from that of Margulis and others because we do not consider only primitive conjugacy classes.

The definition

Definition. Let $G=\langle X\rangle$ be a group generated by a finite set X. For every n let $g_{c}(n)$ be the number of conjugacy classes of G intersecting the ball of radius n in G. The function $g_{c}(n)$ will be called the conjugacy growth function of G.

The definition differs from that of Margulis and others because we do not consider only primitive conjugacy classes.

It does not affect the result in the cases of hyperbolic, relatively hyperbolic or CAT(0)-spaces and groups.

Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated infinite group with finite number of conjugacy classes,

Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated infinite group with finite number of conjugacy classes, and Osin constructed a finitely generated infinite group with just two conjugacy classes.

Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated infinite group with finite number of conjugacy classes, and Osin constructed a finitely generated infinite group with just two conjugacy classes. The conjugacy growth functions for these groups are eventually constants while the ordinary growth functions are exponential.

Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated infinite group with finite number of conjugacy classes, and Osin constructed a finitely generated infinite group with just two conjugacy classes. The conjugacy growth functions for these groups are eventually constants while the ordinary growth functions are exponential.

It is not known how widespread this phenomenon is.

Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated infinite group with finite number of conjugacy classes, and Osin constructed a finitely generated infinite group with just two conjugacy classes. The conjugacy growth functions for these groups are eventually constants while the ordinary growth functions are exponential.

It is not known how widespread this phenomenon is.
There are no examples of finitely presented groups with exponential growth function and subexponential conjugacy growth function.

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from of a result of Milnor.

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from of a result of Milnor. He proved that if a solvable group has exponential growth and is not polycyclic, it contains a free subsemigroup.

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from of a result of Milnor. He proved that if a solvable group has exponential growth and is not polycyclic, it contains a free subsemigroup.
Definition. A subsemigroup H of G is Frattini embedded if every two elements in H that are conjugate in G are also conjugate in H

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from of a result of Milnor. He proved that if a solvable group has exponential growth and is not polycyclic, it contains a free subsemigroup.
Definition. A subsemigroup H of G is Frattini embedded if every two elements in H that are conjugate in G are also conjugate in H One can also use a result of Kropholler characterizing finitely generated solvable groups which do not have sections which are wreath products of a cyclic group with \mathbb{Z}

Amenable groups 1

Conjecture 1. For every amenable group of exponential growth, the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from of a result of Milnor. He proved that if a solvable group has exponential growth and is not polycyclic, it contains a free subsemigroup.
Definition. A subsemigroup H of G is Frattini embedded if every two elements in H that are conjugate in G are also conjugate in H One can also use a result of Kropholler characterizing finitely generated solvable groups which do not have sections which are wreath products of a cyclic group with \mathbb{Z} and results of Osin about the uniform growth of solvable groups.

Amenable groups 2.

Conjecture 2. An amenable group with polynomial conjugacy growth function is virtually nilpotent.

Amenable groups 2.

Conjecture 2. An amenable group with polynomial conjugacy growth function is virtually nilpotent.

This conjecture is an analog of Gromov's result about groups with polynomial growth.

Amenable groups 2.

Conjecture 2. An amenable group with polynomial conjugacy growth function is virtually nilpotent.

This conjecture is an analog of Gromov's result about groups with polynomial growth.

Problem 1. Compute the conjugacy growth of Grigorchuk groups.

Baumslag-Solitar

Example 1. The Baumslag-Solitar group
$B S(1, n)=\left\langle a, b \mid b^{-1} a b=a^{n}\right\rangle(n \geq 2)$ has exponential conjugacy growth function.

Baumslag-Solitar

Example 1. The Baumslag-Solitar group $B S(1, n)=\left\langle a, b \mid b^{-1} a b=a^{n}\right\rangle(n \geq 2)$ has exponential conjugacy growth function.
Proof. It is easy to see that for numbers $k \neq 1$ not divisible by n, the elements a^{k}, a^{\prime} are not conjugate in $B S(1, n)$.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$. This group is generated by b, the generator of \mathbb{Z}, and the involution $a=(1,2)$.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$. This group is generated by b, the generator of \mathbb{Z}, and the involution $a=(1,2)$. The conjugacy growth of G is exponential.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$. This group is generated by b, the generator of \mathbb{Z}, and the involution $a=(1,2)$. The conjugacy growth of G is exponential.

Indeed, the free subsemigroup $S=\left\langle b^{2}, b^{2} a\right\rangle$ is Frattini-embedded.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$. This group is generated by b, the generator of \mathbb{Z}, and the involution $a=(1,2)$. The conjugacy growth of G is exponential.

Indeed, the free subsemigroup $S=\left\langle b^{2}, b^{2} a\right\rangle$ is Frattini-embedded. Every element in S has the form (up to cyclic shift) $b^{n} a b^{n_{1}} a b^{n_{2}} \ldots a$ where all n, n_{i} are even and $n \geq n_{i}$.

The group $S_{\infty} \rtimes \mathbb{Z}$

Example 2. Let S_{∞} be the group of all permutations of \mathbb{Z} with finite supports.Let $G=S_{\infty} \rtimes \mathbb{Z}$. This group is generated by b, the generator of \mathbb{Z}, and the involution $a=(1,2)$. The conjugacy growth of G is exponential.

Indeed, the free subsemigroup $S=\left\langle b^{2}, b^{2} a\right\rangle$ is Frattini-embedded. Every element in S has the form (up to cyclic shift) $b^{n} a b^{n_{1}} a b^{n_{2}} \ldots a$ where all n, n_{i} are even and $n \geq n_{i}$. In short form: $b^{n+n_{1}+n_{2}+\cdots} t$ where t is a product of independent involutions with support $\leq n+n_{1}+n_{2}+\ldots$

Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group, and $\gamma_{S}(n)$ its growth function for some generating set S,

Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group, and $\gamma_{S}(n)$ its growth function for some generating set S, then there are constants $A, B>0$ such that $A n^{d} \leq \gamma_{S}(n) \leq B n^{d}$ for all $n \geq 1$, where $d=d(G)=\sum_{h \geq 1} h r_{h}, r_{h}$ is the torsion-free rank of G_{h} / G_{h+1} and $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots \supseteq G_{h} \supseteq \cdots$ is the lower central series of G.

Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group, and $\gamma_{S}(n)$ its growth function for some generating set S, then there are constants $A, B>0$ such that $A n^{d} \leq \gamma_{S}(n) \leq B n^{d}$ for all $n \geq 1$, where $d=d(G)=\sum_{h \geq 1} h r_{h}, r_{h}$ is the torsion-free rank of G_{h} / G_{h+1} and $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots \supseteq G_{h} \supseteq \cdots$ is the lower central series of G. In particular, for the Heisenberg group $H=\langle x, y, z \mid[x, y]=z, z x=x z, z y=y z\rangle$ with two generators, its growth function is n^{4}.

Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group, and $\gamma_{S}(n)$ its growth function for some generating set S, then there are constants $A, B>0$ such that $A n^{d} \leq \gamma_{S}(n) \leq B n^{d}$ for all $n \geq 1$, where $d=d(G)=\sum_{h \geq 1} h r_{h}, r_{h}$ is the torsion-free rank of G_{h} / G_{h+1} and $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots \supseteq G_{h} \supseteq \cdots$ is the lower central series of G. In particular, for the Heisenberg group $H=\langle x, y, z \mid[x, y]=z, z x=x z, z y=y z\rangle$ with two generators, its growth function is n^{4}.
Example 3. The conjugacy growth function of H is $\Theta\left(n^{2} \log n\right)$.

Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group, and $\gamma_{S}(n)$ its growth function for some generating set S, then there are constants $A, B>0$ such that $A n^{d} \leq \gamma_{S}(n) \leq B n^{d}$ for all $n \geq 1$, where $d=d(G)=\sum_{h \geq 1} h r_{h}, r_{h}$ is the torsion-free rank of G_{h} / G_{h+1} and $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots \supseteq G_{h} \supseteq \cdots$ is the lower central series of G. In particular, for the Heisenberg group $H=\langle x, y, z \mid[x, y]=z, z x=x z, z y=y z\rangle$ with two generators, its growth function is n^{4}.
Example 3. The conjugacy growth function of H is $\Theta\left(n^{2} \log n\right)$.
Problem 2. Find more precise estimates for the conjugacy growth functions of finitely generated nilpotent groups.

Diagram groups. Definition. I

A diagram is a planar directed labeled graph tesselated into cells, defined up to an isotopy of the plane.

Diagram groups. Definition. I

A diagram is a planar directed labeled graph tesselated into cells, defined up to an isotopy of the plane. Each diagram Δ has the top path $\operatorname{top}(\Delta)$, the bottom path $\operatorname{bot}(\Delta)$, the initial and terminal vertices $\iota(\Delta)$ and $\tau(\Delta)$.

Diagram groups. Definition. I

A diagram is a planar directed labeled graph tesselated into cells, defined up to an isotopy of the plane. Each diagram Δ has the top path $\operatorname{top}(\Delta)$, the bottom path $\operatorname{bot}(\Delta)$, the initial and terminal vertices $\iota(\Delta)$ and $\tau(\Delta)$. These are common vertices of top (Δ) and $\operatorname{bot}(\Delta)$. The whole diagram is situated between the top and the bottom paths, and every edge of Δ belongs to a (directed) path in Δ between $\iota(\Delta)$ and $\tau(\Delta)$.

Diagram group. Definition. II

Let X be an alphabet. For every $x \in X$ we define the trivial diagram $\varepsilon(x)$ which is just an edge labeled by x. The top and bottom paths of $\varepsilon(x)$ are equal to $\varepsilon(x), \iota(\varepsilon(x))$ and $\tau(\varepsilon(x))$ are the initial and terminal vertices of the edge. If u and v are words in X, a cell $(u \rightarrow v)$ is a planar graph consisting of two directed labeled paths, the top path labeled by u and the bottom path labeled by v, connecting the same points $\iota(u \rightarrow v)$ and $\tau(u \rightarrow v)$.

Diagram group. Definition. II

Let X be an alphabet. For every $x \in X$ we define the trivial diagram $\varepsilon(x)$ which is just an edge labeled by x. The top and bottom paths of $\varepsilon(x)$ are equal to $\varepsilon(x), \iota(\varepsilon(x))$ and $\tau(\varepsilon(x))$ are the initial and terminal vertices of the edge. If u and v are words in X, a cell $(u \rightarrow v)$ is a planar graph consisting of two directed labeled paths, the top path labeled by u and the bottom path labeled by v, connecting the same points $\iota(u \rightarrow v)$ and $\tau(u \rightarrow v)$.
There are three operations that can be applied to diagrams in order to obtain new diagrams: addition, multiplication and inversion:

Diagram group. Definition. II

Let X be an alphabet. For every $x \in X$ we define the trivial diagram $\varepsilon(x)$ which is just an edge labeled by x. The top and bottom paths of $\varepsilon(x)$ are equal to $\varepsilon(x), \iota(\varepsilon(x))$ and $\tau(\varepsilon(x))$ are the initial and terminal vertices of the edge. If u and v are words in X, a cell $(u \rightarrow v)$ is a planar graph consisting of two directed labeled paths, the top path labeled by u and the bottom path labeled by v, connecting the same points $\iota(u \rightarrow v)$ and $\tau(u \rightarrow v)$.
There are three operations that can be applied to diagrams in order to obtain new diagrams: addition, multiplication and inversion:

$\Delta_{1} \circ \Delta_{2}$

$\Delta_{1}+\Delta_{2}$

Diagram groups. Definition. III

Definition. A diagram over a collection of cells P is any planar graph obtained from the trivial diagrams and cells of P by the operations of addition, multiplication and inversion. If the top path of a diagram Δ is labeled by a word u and the bottom path is labeled by a word v, then we call Δ a (u, v)-diagram over P.

Diagram groups. Definition. III

Definition. A diagram over a collection of cells P is any planar graph obtained from the trivial diagrams and cells of P by the operations of addition, multiplication and inversion. If the top path of a diagram Δ is labeled by a word u and the bottom path is labeled by a word v, then we call Δ a (u, v)-diagram over P.

Two cells in a diagram form a dipole if the bottom part of the first cell coincides with the top part of the second cell, and the cells are inverses of each other.

Diagram groups. Definition. III

Definition. A diagram over a collection of cells P is any planar graph obtained from the trivial diagrams and cells of P by the operations of addition, multiplication and inversion. If the top path of a diagram Δ is labeled by a word u and the bottom path is labeled by a word v, then we call Δ a (u, v)-diagram over P.

Two cells in a diagram form a dipole if the bottom part of the first cell coincides with the top part of the second cell, and the cells are inverses of each other.

Let $P=\left\{c_{1}, c_{2}, \ldots\right\}$ be a collection of cells. The diagram group $D G(P, u)$ corresponding to the collection of cells P and a word u consists of all reduced (u, u)-diagrams obtained from these cells and trivial diagrams by using the three operations mentioned above. The product $\Delta_{1} \Delta_{2}$ of two diagrams Δ_{1} and Δ_{2} is the reduced diagram obtained by removing all dipoles from $\Delta_{1} \circ \Delta_{2}$.

Diagram groups. Examples

Examples. 1. If X consists of one letter x and P consists of one cell $x \rightarrow x^{2}$, then the group $D G(P, x)$ is the R . Thompson group F.

Diagram groups. Examples

Examples. 1. If X consists of one letter x and P consists of one cell $x \rightarrow x^{2}$, then the group $D G(P, x)$ is the R . Thompson group F.
2. If X consists of three letters a, b, c and P consists of three cells $a b \rightarrow a, b \rightarrow b, b c \rightarrow c$, then the diagram group $D G(P, a c)$ is isomorphic to the wreath product $\mathbb{Z} \backslash \mathbb{Z}$.

Diagram groups. Examples

Examples. 1. If X consists of one letter x and P consists of one cell $x \rightarrow x^{2}$, then the group $D G(P, x)$ is the R . Thompson group F.
2. If X consists of three letters a, b, c and P consists of three cells $a b \rightarrow a, b \rightarrow b, b c \rightarrow c$, then the diagram group $D G(P, a c)$ is isomorphic to the wreath product $\mathbb{Z} \backslash \mathbb{Z}$.

Diagrams representing the two standard generators x_{0}, x_{1} of the R . Thompson group F:

Diagram groups. Examples

Examples. 1. If X consists of one letter x and P consists of one cell $x \rightarrow x^{2}$, then the group $D G(P, x)$ is the R . Thompson group F.
2. If X consists of three letters a, b, c and P consists of three cells $a b \rightarrow a, b \rightarrow b, b c \rightarrow c$, then the diagram group $D G(P, a c)$ is isomorphic to the wreath product $\mathbb{Z} \backslash \mathbb{Z}$.

Diagrams representing the two standard generators x_{0}, x_{1} of the R . Thompson group F:

x_{0}

Diagram metric. Burillo's property.

Diagram metric on a diagram group: $\operatorname{dist}\left(\Delta, \Delta^{\prime}\right)$ is the number of cells in the diagram $\Delta^{-1} \Delta^{\prime}$.

Diagram metric. Burillo's property.

Diagram metric on a diagram group: $\operatorname{dist}\left(\Delta, \Delta^{\prime}\right)$ is the number of cells in the diagram $\Delta^{-1} \Delta^{\prime}$.

If this metric is quasi-isometric to the word metric, we say that the group satisfies property B.

Diagram metric. Burillo's property.

Diagram metric on a diagram group: $\operatorname{dist}\left(\Delta, \Delta^{\prime}\right)$ is the number of cells in the diagram $\Delta^{-1} \Delta^{\prime}$.

If this metric is quasi-isometric to the word metric, we say that the group satisfies property B.

We do not know whether every finitely generated diagram group satisfies B.

Diagram metric. Burillo's property.

Diagram metric on a diagram group: $\operatorname{dist}\left(\Delta, \Delta^{\prime}\right)$ is the number of cells in the diagram $\Delta^{-1} \Delta^{\prime}$.

If this metric is quasi-isometric to the word metric, we say that the group satisfies property B.

We do not know whether every finitely generated diagram group satisfies B. F and $\mathbb{Z} \imath \mathbb{Z}$ satisfy B.

Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated diagram group G are equivalent.

Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated diagram group G are equivalent.

1. G contains a non-Abelian free subsemigroup.

Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated diagram group G are equivalent.

1. G contains a non-Abelian free subsemigroup.
2. The growth function of G is exponential.

Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated diagram group G are equivalent.

1. G contains a non-Abelian free subsemigroup.
2. The growth function of G is exponential.
3. The conjugacy growth function of G is exponential.

Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated diagram group G are equivalent.

1. G contains a non-Abelian free subsemigroup.
2. The growth function of G is exponential.
3. The conjugacy growth function of G is exponential.
$1 \equiv 2,3 \rightarrow 1$ are true. $1 \rightarrow 3$ is still unknown.

Conjugacy growth of diagram groups with property B

Theorem. Every finitely generated diagram group with B containing the wreath product $\mathbb{Z} \imath \mathbb{Z}$ (in particular, the R.Thompson group F) has exponential conjugacy growth function.

The conjugacy problem for diagram groups

A spherical (u, u)-diagram Δ is called absolutely reduced if all its o-powers $\Delta \circ \Delta \circ \cdots \circ \Delta$ are reduced.

The conjugacy problem for diagram groups

A spherical (u, u)-diagram Δ is called absolutely reduced if all its o-powers $\Delta \circ \Delta \circ \cdots \circ \Delta$ are reduced. Every absolutely reduced diagram Δ is canonically decomposed as a sum
$\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}$ where each Δ_{i} is either a trivial diagram $\varepsilon\left(u_{i}\right)$ or a spherical $\left(u_{i}, u_{i}\right)$-diagram which is simple, i.e. further indecomposable as a sum of spherical diagrams.

The conjugacy problem for diagram groups

A spherical (u, u)-diagram Δ is called absolutely reduced if all its o-powers $\Delta \circ \Delta \circ \cdots \circ \Delta$ are reduced. Every absolutely reduced diagram Δ is canonically decomposed as a sum
$\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}$ where each Δ_{i} is either a trivial diagram $\varepsilon\left(u_{i}\right)$ or a spherical $\left(u_{i}, u_{i}\right)$-diagram which is simple, i.e. further indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate to an absolutely reduced spherical (v, v)-diagram.

The conjugacy problem for diagram groups

A spherical (u, u)-diagram Δ is called absolutely reduced if all its o-powers $\Delta \circ \Delta \circ \cdots \circ \Delta$ are reduced. Every absolutely reduced diagram Δ is canonically decomposed as a sum
$\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}$ where each Δ_{i} is either a trivial diagram $\varepsilon\left(u_{i}\right)$ or a spherical $\left(u_{i}, u_{i}\right)$-diagram which is simple, i.e. further indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate to an absolutely reduced spherical (v, v)-diagram.
(ii) Suppose that two absolutely reduced diagrams A and B have canonical decompositions $A_{1}+\cdots+A_{m}$ and $B_{1}+\cdots+B_{n}$ (where A_{i} is a $\left(u_{i}, u_{i}\right)$-diagram, B_{j} is a $\left(v_{j}, v_{j}\right)$-diagram $)$. Suppose further that A and B are conjugate. Then $m=n$, and A_{i} is conjugate to B_{i}, that is $A_{i}=\Gamma_{i}^{-1} B_{i} \Gamma_{i}$ for some $\left(v_{i}, u_{i}\right)$-diagram $\Gamma_{i}, i=1, \ldots, m$.

The conjugacy problem for diagram groups

A spherical (u, u)-diagram Δ is called absolutely reduced if all its o-powers $\Delta \circ \Delta \circ \cdots \circ \Delta$ are reduced. Every absolutely reduced diagram Δ is canonically decomposed as a sum
$\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}$ where each Δ_{i} is either a trivial diagram $\varepsilon\left(u_{i}\right)$ or a spherical $\left(u_{i}, u_{i}\right)$-diagram which is simple, i.e. further indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate to an absolutely reduced spherical (v, v)-diagram.
(ii) Suppose that two absolutely reduced diagrams A and B have canonical decompositions $A_{1}+\cdots+A_{m}$ and $B_{1}+\cdots+B_{n}$ (where A_{i} is a $\left(u_{i}, u_{i}\right)$-diagram, B_{j} is a $\left(v_{j}, v_{j}\right)$-diagram $)$. Suppose further that A and B are conjugate. Then $m=n$, and A_{i} is conjugate to B_{i}, that is $A_{i}=\Gamma_{i}^{-1} B_{i} \Gamma_{i}$ for some $\left(v_{i}, u_{i}\right)$-diagram $\Gamma_{i}, i=1, \ldots, m$. (iii) If two simple diagrams A, B are conjugate then they have the same number of cells.

The case of $\mathbb{Z} \imath \mathbb{Z}$

$\mathbb{Z} \imath \mathbb{Z}$ is the diagram group $D G(P, a c)$ where $P=\{a b \rightarrow a, b \rightarrow b$, $b c \rightarrow c\}$.

The case of $\mathbb{Z} \imath \mathbb{Z}$

$\mathbb{Z} \imath \mathbb{Z}$ is the diagram group $D G(P, a c)$ where $P=\{a b \rightarrow a, b \rightarrow b$, $b c \rightarrow c\}$. Let π be the cell $b \rightarrow b$, and n_{0}, \ldots, n_{k} be positive integers. Let $\Delta\left(n_{0}, \ldots, n_{k}\right)$ be the following diagram:

$$
\varepsilon(a)+\pi^{n_{0}}+\cdots+\pi^{n_{k}}+\varepsilon(c)
$$

The case of $\mathbb{Z} \imath \mathbb{Z}$

$\mathbb{Z} \imath \mathbb{Z}$ is the diagram group $D G(P, a c)$ where $P=\{a b \rightarrow a, b \rightarrow b$, $b c \rightarrow c\}$. Let π be the cell $b \rightarrow b$, and n_{0}, \ldots, n_{k} be positive integers. Let $\Delta\left(n_{0}, \ldots, n_{k}\right)$ be the following diagram:

$$
\varepsilon(a)+\pi^{n_{0}}+\cdots+\pi^{n_{k}}+\varepsilon(c)
$$

There is a diagram Γ such that $A\left(n_{0}, \ldots, n_{k}\right)=\Gamma^{-1} \Delta\left(n_{0}, \ldots, n_{k}\right) \Gamma \in D G(P, a c)$.

The case of $\mathbb{Z} \imath \mathbb{Z}$

$\mathbb{Z} \imath \mathbb{Z}$ is the diagram group $D G(P, a c)$ where $P=\{a b \rightarrow a, b \rightarrow b$, $b c \rightarrow c\}$. Let π be the cell $b \rightarrow b$, and n_{0}, \ldots, n_{k} be positive integers. Let $\Delta\left(n_{0}, \ldots, n_{k}\right)$ be the following diagram:

$$
\varepsilon(a)+\pi^{n_{0}}+\cdots+\pi^{n_{k}}+\varepsilon(c)
$$

There is a diagram Γ such that $A\left(n_{0}, \ldots, n_{k}\right)=\Gamma^{-1} \Delta\left(n_{0}, \ldots, n_{k}\right) \Gamma \in D G(P, a c)$.

By the theorem, the number of pairwise non-conjugate diagrams $A\left(n_{0}, \ldots, n_{k}\right)$ with $n_{0}+\ldots+n_{k}=n$ is 2^{n}.

The rigidity

Theorem 1. Suppose that for some collection of cells Q and some word u we have $D G(Q, u) \geq \mathbb{Z} \imath \mathbb{Z}$.

The rigidity

Theorem 1. Suppose that for some collection of cells Q and some word u we have $D G(Q, u) \geq \mathbb{Z} \imath \mathbb{Z}$. Then there exists a natural embedding ψ of $\mathbb{Z} \imath \mathbb{Z}$ into $D G(Q, u)$.

The rigidity

Theorem 1. Suppose that for some collection of cells Q and some word u we have $D G(Q, u) \geq \mathbb{Z} \imath \mathbb{Z}$. Then there exists a natural embedding Ψ of $\mathbb{Z} \imath \mathbb{Z}$ into $D G(Q, u)$. It is induced by a diagram Γ, and a map ψ that takes letters a, b, c to words $\psi(a), \psi(b), \psi(c)$ over the alphabet of Q, and each of the three cells $x \rightarrow y$ of P to a non-trivial $(\psi(x), \psi(y))$-diagram $\psi(x \rightarrow y)$ over Q.

The rigidity

Theorem 1. Suppose that for some collection of cells Q and some word u we have $D G(Q, u) \geq \mathbb{Z} \imath \mathbb{Z}$. Then there exists a natural embedding Ψ of $\mathbb{Z} \imath \mathbb{Z}$ into $D G(Q, u)$. It is induced by a diagram Γ, and a map ψ that takes letters a, b, c to words $\psi(a), \psi(b), \psi(c)$ over the alphabet of Q, and each of the three cells $x \rightarrow y$ of P to a non-trivial $(\psi(x), \psi(y))$-diagram $\psi(x \rightarrow y)$ over Q. The map ψ takes each ($a c, a c$)-diagram Δ of $D G(P, a c)$ to the diagram $\Gamma^{-1} \psi(\Delta) \Gamma$ where $\psi(\Delta)$ is obtained from Δ by replacing every edge $\varepsilon(e)$ by the path $\varepsilon(\psi(e))$ and every cell π by the diagram $\psi(\pi)$.

The end of the proof.

Consider the natural embedding ψ of $\mathbb{Z} \imath \mathbb{Z}$ into $D G(Q, u)$. The diagrams $\Psi\left(A\left(n_{0}, \ldots, n_{k}\right)\right.$ pairwise are not conjugate.

A conjecture

Conjecture 4. Suppose that G acts on a simplicial tree non-trivially and faithfully. Then the conjugacy growth function of G is exponential provided the growth function of G is exponential.

A theorem

Theorem 2. Let G be the HNN extension of a group H with associated subgroups A, B such that $A B \cup B A \neq H$. Then the conjugacy growth function of G is exponential.

The proof

Consider the subsemigroup S generated by t, ta.

The proof

Consider the subsemigroup S generated by t, ta. Every word in S (up to a cyclic shift) has the form

$$
t^{n_{1}} a t^{n_{2}} \ldots t^{n_{k}} a
$$

were all $n_{i} \geq 0$, and $n_{1}, \ldots, n_{k}>0$.

The proof

Consider the subsemigroup S generated by t, ta. Every word in S (up to a cyclic shift) has the form

$$
t^{n_{1}} a t^{n_{2}} \ldots t^{n_{k}} a
$$

were all $n_{i} \geq 0$, and $n_{1}, \ldots, n_{k}>0$.
Let the presentation of G consist of all relations of H plus the conjugacy relations $u t=t v$ of the HNN-extension (here $u \in A, v \in B)$.

The proof, continued

Consider the annular (Schupp) diagram Δ for conjugacy of two words of the above form:

The proof, continued

Consider the annular (Schupp) diagram Δ for conjugacy of two words of the above form:

The proof, continued

Consider the annular (Schupp) diagram Δ for conjugacy of two words of the above form:

The t-bands give a correspondence between the a-edges on the boundary. The condition $a \notin A B \cup B A$ implies that the correspondence is a cyclic shift.

The proof, continued

Consider the annular (Schupp) diagram Δ for conjugacy of two words of the above form:

The t-bands give a correspondence between the a-edges on the boundary. The condition $a \notin A B \cup B A$ implies that the correspondence is a cyclic shift. Hence the conjugacy growth function of G is exponential.

