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Since every free homotopy class in that case contains unique
closed geodesics, the problem is equivalent to counting primitive
conjugacy classes.
In group theoretic terms this implies that the number of primitive
conjugacy classes intersecting the ball of radius n in the Cayley
graph of the fundamental group of M (with respect to some finite
generating set) is between 1

Cn
exp(hn) and C

n
exp(hn) for some

constant C > 1. Basically it means that two cyclically reduced
products of generators are conjugate “almost” only if they are
cyclic shifts of each other. Similar results were later obtained by
M. Coornaert, G. Knieper, G. Link and others.
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Definition. Let G = 〈X 〉 be a group generated by a finite set X .
For every n let gc(n) be the number of conjugacy classes of G

intersecting the ball of radius n in G . The function gc (n) will be
called the conjugacy growth function of G .

The definition differs from that of Margulis and others because we
do not consider only primitive conjugacy classes.

It does not affect the result in the cases of hyperbolic, relatively
hyperbolic or CAT(0)-spaces and groups.
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Ivanov and Osin

S. Ivanov constructed the first example of a finitely generated
infinite group with finite number of conjugacy classes, and Osin
constructed a finitely generated infinite group with just two
conjugacy classes. The conjugacy growth functions for these
groups are eventually constants while the ordinary growth
functions are exponential.

It is not known how widespread this phenomenon is.

There are no examples of finitely presented groups with exponential
growth function and subexponential conjugacy growth function.
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Conjecture 1. For every amenable group of exponential growth,
the conjugacy growth function is exponential.

For solvable non-polycyclic groups Conjecture 1 should follow from
of a result of Milnor. He proved that if a solvable group has
exponential growth and is not polycyclic, it contains a free
subsemigroup.
Definition. A subsemigroup H of G is Frattini embedded if every
two elements in H that are conjugate in G are also conjugate in H

One can also use a result of Kropholler characterizing finitely
generated solvable groups which do not have sections which are
wreath products of a cyclic group with Z and results of Osin about
the uniform growth of solvable groups.
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Conjecture 2. An amenable group with polynomial conjugacy
growth function is virtually nilpotent.

This conjecture is an analog of Gromov’s result about groups with
polynomial growth.

Problem 1. Compute the conjugacy growth of Grigorchuk groups.
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Example 1. The Baumslag-Solitar group
BS(1, n) = 〈a, b | b−1ab = an〉 (n ≥ 2) has exponential conjugacy
growth function.
Proof. It is easy to see that for numbers k 6= l not divisible by n,
the elements ak , al are not conjugate in BS(1, n).



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z.



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z. This group is generated by b, the
generator of Z, and the involution a = (1, 2).



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z. This group is generated by b, the
generator of Z, and the involution a = (1, 2). The conjugacy
growth of G is exponential.



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z. This group is generated by b, the
generator of Z, and the involution a = (1, 2). The conjugacy
growth of G is exponential.

Indeed, the free subsemigroup S = 〈b2, b2a〉 is Frattini-embedded.



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z. This group is generated by b, the
generator of Z, and the involution a = (1, 2). The conjugacy
growth of G is exponential.

Indeed, the free subsemigroup S = 〈b2, b2a〉 is Frattini-embedded.
Every element in S has the form (up to cyclic shift) bnabn1abn2 ...a
where all n, ni are even and n ≥ ni .



The group S∞ ⋊ Z

Example 2. Let S∞ be the group of all permutations of Z with
finite supports.Let G = S∞ ⋊ Z. This group is generated by b, the
generator of Z, and the involution a = (1, 2). The conjugacy
growth of G is exponential.

Indeed, the free subsemigroup S = 〈b2, b2a〉 is Frattini-embedded.
Every element in S has the form (up to cyclic shift) bnabn1abn2 ...a
where all n, ni are even and n ≥ ni . In short form: bn+n1+n2+...t

where t is a product of independent involutions with support
≤ n + n1 + n2 + ....
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Nilpotent groups

Theorem of Bass. If G is a finitely generated nilpotent group,
and γS(n) its growth function for some generating set S , then
there are constants A,B > 0 such that And ≤ γS(n) ≤ Bnd for all
n ≥ 1, where d = d(G ) =

∑
h≥1

hrh, rh is the torsion-free rank of
Gh/Gh+1 and G = G1 ⊇ G2 ⊇ G3 ⊇ · · · ⊇ Gh ⊇ · · · is the lower
central series of G . In particular, for the Heisenberg group
H = 〈x , y , z | [x , y ] = z , zx = xz , zy = yz〉 with two generators, its
growth function is n4.
Example 3. The conjugacy growth function of H is Θ(n2 log n).

Problem 2. Find more precise estimates for the conjugacy growth
functions of finitely generated nilpotent groups.
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A diagram is a planar directed labeled graph tesselated into cells,
defined up to an isotopy of the plane. Each diagram ∆ has the top
path top(∆), the bottom path bot(∆), the initial and terminal
vertices ι(∆) and τ(∆). These are common vertices of top(∆)
and bot(∆). The whole diagram is situated between the top and
the bottom paths, and every edge of ∆ belongs to a (directed)
path in ∆ between ι(∆) and τ(∆).
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Let X be an alphabet. For every x ∈ X we define the trivial

diagram ε(x) which is just an edge labeled by x . The top and
bottom paths of ε(x) are equal to ε(x), ι(ε(x)) and τ(ε(x)) are
the initial and terminal vertices of the edge. If u and v are words
in X , a cell (u → v) is a planar graph consisting of two directed
labeled paths, the top path labeled by u and the bottom path
labeled by v , connecting the same points ι(u → v) and τ(u → v).

There are three operations that can be applied to diagrams in order
to obtain new diagrams: addition, multiplication and inversion:

s s∆1

∆2

∆1 ◦ ∆2

s s s∆1 ∆2

∆1 + ∆2
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Definition. A diagram over a collection of cells P is any planar
graph obtained from the trivial diagrams and cells of P by the
operations of addition, multiplication and inversion. If the top path
of a diagram ∆ is labeled by a word u and the bottom path is
labeled by a word v , then we call ∆ a (u, v)-diagram over P .

Two cells in a diagram form a dipole if the bottom part of the first
cell coincides with the top part of the second cell, and the cells are
inverses of each other.

Let P = {c1, c2, . . .} be a collection of cells. The diagram group
DG (P , u) corresponding to the collection of cells P and a word u

consists of all reduced (u, u)-diagrams obtained from these cells
and trivial diagrams by using the three operations mentioned
above. The product ∆1∆2 of two diagrams ∆1 and ∆2 is the
reduced diagram obtained by removing all dipoles from ∆1 ◦ ∆2.
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Diagram groups. Examples
Examples. 1. If X consists of one letter x and P consists of one
cell x → x2, then the group DG (P , x) is the R. Thompson group
F .

2. If X consists of three letters a, b, c and P consists of three cells
ab → a, b → b, bc → c , then the diagram group DG (P , ac) is
isomorphic to the wreath product Z ≀ Z.

Diagrams representing the two standard generators x0, x1 of the R.
Thompson group F :

s s s s s s s s s
x0 x1
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Diagram metric. Burillo’s property.

Diagram metric on a diagram group: dist(∆,∆′) is the number of
cells in the diagram ∆−1∆′.

If this metric is quasi-isometric to the word metric, we say that the
group satisfies property B.

We do not know whether every finitely generated diagram group
satisfies B. F and Z ≀ Z satisfy B.
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Diagram groups. The conjecture.

Conjecture 3. The following conditions for a finitely generated
diagram group G are equivalent.
1. G contains a non-Abelian free subsemigroup.
2. The growth function of G is exponential.
3. The conjugacy growth function of G is exponential.

1 ≡ 2, 3 → 1 are true. 1 → 3 is still unknown.



Conjugacy growth of diagram groups with property B

Theorem. Every finitely generated diagram group with B
containing the wreath product Z ≀ Z (in particular, the
R.Thompson group F ) has exponential conjugacy growth function.



The conjugacy problem for diagram groups

A spherical (u, u)-diagram ∆ is called absolutely reduced if all its
◦-powers ∆ ◦ ∆ ◦ · · · ◦ ∆ are reduced.



The conjugacy problem for diagram groups

A spherical (u, u)-diagram ∆ is called absolutely reduced if all its
◦-powers ∆ ◦ ∆ ◦ · · · ◦ ∆ are reduced. Every absolutely reduced
diagram ∆ is canonically decomposed as a sum
∆1 + ∆2 + · · ·+ ∆n where each ∆i is either a trivial diagram ε(ui )
or a spherical (ui , ui )-diagram which is simple, i.e. further
indecomposable as a sum of spherical diagrams.



The conjugacy problem for diagram groups

A spherical (u, u)-diagram ∆ is called absolutely reduced if all its
◦-powers ∆ ◦ ∆ ◦ · · · ◦ ∆ are reduced. Every absolutely reduced
diagram ∆ is canonically decomposed as a sum
∆1 + ∆2 + · · ·+ ∆n where each ∆i is either a trivial diagram ε(ui )
or a spherical (ui , ui )-diagram which is simple, i.e. further
indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate
to an absolutely reduced spherical (v , v)-diagram.



The conjugacy problem for diagram groups

A spherical (u, u)-diagram ∆ is called absolutely reduced if all its
◦-powers ∆ ◦ ∆ ◦ · · · ◦ ∆ are reduced. Every absolutely reduced
diagram ∆ is canonically decomposed as a sum
∆1 + ∆2 + · · ·+ ∆n where each ∆i is either a trivial diagram ε(ui )
or a spherical (ui , ui )-diagram which is simple, i.e. further
indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate
to an absolutely reduced spherical (v , v)-diagram.
(ii) Suppose that two absolutely reduced diagrams A and B have
canonical decompositions A1 + · · · + Am and B1 + · · · + Bn (where
Ai is a (ui , ui )-diagram, Bj is a (vj , vj )-diagram). Suppose further
that A and B are conjugate. Then m = n, and Ai is conjugate to
Bi , that is Ai = Γ−1

i BiΓi for some (vi , ui )-diagram Γi , i = 1, . . . ,m.



The conjugacy problem for diagram groups

A spherical (u, u)-diagram ∆ is called absolutely reduced if all its
◦-powers ∆ ◦ ∆ ◦ · · · ◦ ∆ are reduced. Every absolutely reduced
diagram ∆ is canonically decomposed as a sum
∆1 + ∆2 + · · ·+ ∆n where each ∆i is either a trivial diagram ε(ui )
or a spherical (ui , ui )-diagram which is simple, i.e. further
indecomposable as a sum of spherical diagrams.

Theorem Guba-S. (i) Every spherical (u, u)-diagram is conjugate
to an absolutely reduced spherical (v , v)-diagram.
(ii) Suppose that two absolutely reduced diagrams A and B have
canonical decompositions A1 + · · · + Am and B1 + · · · + Bn (where
Ai is a (ui , ui )-diagram, Bj is a (vj , vj )-diagram). Suppose further
that A and B are conjugate. Then m = n, and Ai is conjugate to
Bi , that is Ai = Γ−1

i BiΓi for some (vi , ui )-diagram Γi , i = 1, . . . ,m.
(iii) If two simple diagrams A, B are conjugate then they have the
same number of cells.



The case of Z ≀ Z

Z ≀ Z is the diagram group DG (P , ac) where P = {ab → a, b → b,
bc → c}.



The case of Z ≀ Z

Z ≀ Z is the diagram group DG (P , ac) where P = {ab → a, b → b,
bc → c}. Let π be the cell b → b, and n0, . . . , nk be positive
integers. Let ∆(n0, . . . , nk) be the following diagram:

ε(a) + πn0 + · · · + πnk + ε(c).



The case of Z ≀ Z

Z ≀ Z is the diagram group DG (P , ac) where P = {ab → a, b → b,
bc → c}. Let π be the cell b → b, and n0, . . . , nk be positive
integers. Let ∆(n0, . . . , nk) be the following diagram:

ε(a) + πn0 + · · · + πnk + ε(c).

There is a diagram Γ such that
A(n0, ..., nk) = Γ−1∆(n0, ..., nk )Γ ∈ DG (P , ac).



The case of Z ≀ Z

Z ≀ Z is the diagram group DG (P , ac) where P = {ab → a, b → b,
bc → c}. Let π be the cell b → b, and n0, . . . , nk be positive
integers. Let ∆(n0, . . . , nk) be the following diagram:

ε(a) + πn0 + · · · + πnk + ε(c).

There is a diagram Γ such that
A(n0, ..., nk) = Γ−1∆(n0, ..., nk )Γ ∈ DG (P , ac).

By the theorem, the number of pairwise non-conjugate diagrams
A(n0, ..., nk) with n0 + ...+ nk = n is 2n.
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The rigidity

Theorem 1. Suppose that for some collection of cells Q and some
word u we have DG (Q, u) ≥ Z ≀ Z. Then there exists a natural

embedding Ψ of Z ≀Z into DG (Q, u). It is induced by a diagram Γ,
and a map ψ that takes letters a, b, c to words ψ(a), ψ(b), ψ(c)
over the alphabet of Q, and each of the three cells x → y of P to
a non-trivial (ψ(x), ψ(y))-diagram ψ(x → y) over Q. The map Ψ
takes each (ac , ac)-diagram ∆ of DG (P , ac) to the diagram
Γ−1ψ(∆)Γ where ψ(∆) is obtained from ∆ by replacing every edge
ε(e) by the path ε(ψ(e)) and every cell π by the diagram ψ(π).



The end of the proof.

Consider the natural embedding Ψ of Z ≀ Z into DG (Q, u). The
diagrams Ψ(A(n0, ..., nk) pairwise are not conjugate.



A conjecture

Conjecture 4. Suppose that G acts on a simplicial tree
non-trivially and faithfully. Then the conjugacy growth function of
G is exponential provided the growth function of G is exponential.



A theorem

Theorem 2. Let G be the HNN extension of a group H with
associated subgroups A,B such that AB ∪ BA 6= H. Then the
conjugacy growth function of G is exponential.



The proof

Consider the subsemigroup S generated by t, ta.



The proof

Consider the subsemigroup S generated by t, ta. Every word in S

(up to a cyclic shift) has the form

tn1atn2 . . . tnk a

were all ni ≥ 0, and n1, . . . , nk > 0.



The proof

Consider the subsemigroup S generated by t, ta. Every word in S

(up to a cyclic shift) has the form

tn1atn2 . . . tnk a

were all ni ≥ 0, and n1, . . . , nk > 0.

Let the presentation of G consist of all relations of H plus the
conjugacy relations ut = tv of the HNN-extension (here
u ∈ A, v ∈ B).



The proof, continued

Consider the annular (Schupp) diagram ∆ for conjugacy of two
words of the above form:
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The t-bands give a correspondence between the a-edges on the
boundary. The condition a 6∈ AB ∪ BA implies that the
correspondence is a cyclic shift.



The proof, continued

Consider the annular (Schupp) diagram ∆ for conjugacy of two
words of the above form:
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The t-bands give a correspondence between the a-edges on the
boundary. The condition a 6∈ AB ∪ BA implies that the
correspondence is a cyclic shift. Hence the conjugacy growth
function of G is exponential.
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