Polynomial maps over fields and residually finite
groups

Mark Sapir
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The talk is based on the following three papers:

Alexander Borisov, Mark Sapir, Polynomial maps over finite fields
and residual finiteness of mapping tori of group endomorphisms.
Invent. Math. 160 (2005), no. 2, 341-356.

Alexander Borisov, Mark Sapir, Polynomial maps over p-adics and
residual properties of mapping tori of group endomorphisms,
preprint, arXiv, math0810.0443, 2008.

Iva Kozdkova, Mark Sapir, Almost all one-relator groups with at

least three generators are residually finite. preprint, arXiv
math0809.4693, 2008.
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Residually finite groups

Definition A group G is called residually finite if for every g € G,
g # 1, there exists a homomorphism ¢ from G onto a finite group
H such that ¢(g) # 1. If H can be always chosen a p-group for
some fixed prime p, then G is called residually (finite p-)group.
Examples. Z, F, linear groups are residually finite. Q, infinite

simple groups, free Burnside groups of sufficiently large exponents
are not residually finite.
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Residually finite groups

Definition A group G is called residually finite if for every g € G,
g # 1, there exists a homomorphism ¢ from G onto a finite group
H such that ¢(g) # 1. If H can be always chosen a p-group for
some fixed prime p, then G is called residually (finite p-)group.
Examples. Z, F, linear groups are residually finite. Q, infinite
simple groups, free Burnside groups of sufficiently large exponents
are not residually finite. Groups acting faithfully on rooted locally

finite trees are residually finite.
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An automorphism f must fix the root and so it fixes the levels of
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Rooted trees
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|
An automorphism f must fix the root and so it fixes the levels of

the tree. If f # 1 on level n, we consider the homomorphism from

Aut(T) to a finite group restricting automorphisms to vertices of
levels at most n.
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Rooted trees

[ ¢ b4 s

|
An automorphism f must fix the root and so it fixes the levels of

the tree. If f # 1 on level n, we consider the homomorphism from
Aut(T) to a finite group restricting automorphisms to vertices of
levels at most n. f survives this homomorphism.
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Rooted trees
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Conversely every finitely generated residually finite group acts
faithfully on a locally finite rooted tree.
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Linear groups

(A. Malcev, 1940)

DHa



Linear groups

finite.

(A. Malcev, 1940) Every finitely generated linear group is residually

DA™



Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually
finitely many primes p.

finite.Moreover, it is virtually residually (finite p-)group for all but

DA™



Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually
finite.Moreover, it is virtually residually (finite p-)group for all but

finitely many primes p. Note that a linear group itself may not be
residually (finite p-)group for any p.
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Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually
finite.Moreover, it is virtually residually (finite p-)group for all but
finitely many primes p. Note that a linear group itself may not be

residually (finite p-)group for any p. Example: SL3(Z) by the
Margulis normal subgroup theorem.
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Example 1. BS(2,3) (a,t | ta®t™! = a%) is not residually finite
(ar— &%, t > t)
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Problems.

Problem. Is every hyperbolic group residually finite?

Problem. When is a one-relator group (X | R = 1) residually
finite?

Example 1. BS(2,3) (a,t | ta®t™! = a%) is not residually finite
(ar— &%, t > t)

Example 2. BS(1,2) (a,t | tat™' = a%) is metabelian, and linear,
so it is residually finite.
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Problems.

Problem. Is every hyperbolic group residually finite?

Problem. When is a one-relator group (X | R = 1) residually
finite?

Problem. (Moldavanskii, Kapovich, Wise) Are ascending HNN
extensions of free groups residually finite?
These three problems are related.
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Hyperbolic groups, 1-related groups, and mapping tori of
hyperbolic.

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is
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hyperbolic. Almost every mapping torus of the free group is
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Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.
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Hyperbolic groups, 1-related groups, and mapping tori of
free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
(a,b| aba~tbtaba b ta lhta=1).
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Hyperbolic groups, 1-related groups, and mapping tori of
free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
(a,b|aba~t-b~!-aba~l-b1-a lhla=1). Replace a’ba' by
bj. The index i is called the Magnus a-index of that letter.
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Hyperbolic groups, 1-related groups, and mapping tori of

free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group

a,b_1,by, by | bibytbiby bt =1,a  hga = b_1,a ' bia = by).
0 0 1

So we have a new presentation of the same group.



Hyperbolic groups, 1-related groups, and mapping tori of
free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
(a, , bo, b1 | ,aflboa:b_l,aflbla:b()).
Note that b_; appears only once in blbalblbalbj =1.
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Hyperbolic groups, 1-related groups, and mapping tori of
free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group

(a, b 1, by, by | blbalblbalb:% =1, a_lboa =b_q, a_lbla = b0>.
So we can replace b1 by blbalblbal, remove this generator,

and get a new presentation of the same group.
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Hyperbolic groups, 1-related groups, and mapping tori of
free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is

hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
(a, by, by | athga = byby by by, albia = by). This is
clearly an ascending HNN extension of the free group (bo, b1).
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The main result

Theorem. Almost surely as n — oo, every 1-related group with 3
primes p,

or more generators and relator of length n is inside an ascending
HNN extension of a free group, and so it is
» Residually finite,

» Virtually residually (finite p-)group for all but finitely many
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The main result

Theorem. Almost surely as n — oo, every 1-related group with 3

or more generators and relator of length n is inside an ascending
HNN extension of a free group, and so it is

» Residually finite,

» Virtually residually (finite p-)group for all but finitely many
primes p,

» Coherent (that is all finitely generated subgroups are finitely
presented).

DA™



Ascending HNN extensions

endomorphism.

Definition. Let G be a group, ¢: G — G be an injective

DA™



Ascending HNN extensions

endomorphism. The group

®.

Definition. Let G be a group, ¢: G — G be an injective

HNNy4(G) = (G, t | tat™! = $(a),a € G)

is called an ascending HNN extension of G or the mapping torus of
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endomorphism. The group

Definition. Let G be a group, ¢: G — G be an injective
}.

HNNy4(G) = (G, t | tat™! = $(a),a € G)

is called an ascending HNN extension of G or the mapping torus of
Example. (x,y,t | txt™ ! = xy, tyt ! = yx).
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endomorphism. The group

Definition. Let G be a group, ¢: G — G be an injective
}.

HNNy4(G) = (G, t | tat™! = $(a),a € G)

is called an ascending HNN extension of G or the mapping torus of
Example. (x,y,t | txt™ ! = xy, tyt ! = yx).
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represented in the form t Xgt’ for some k,¢ € Z and g € G.
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represented in the form t Xgt’ for some k,¢ € Z and g € G.
¢ — k is an invariant, the representation is unique for a given k

» (Feighn-Handel) If G is free then HNNy(G) is coherent i.e.
every f.g. subgroup is f.p.
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Facts about ascending HNN extensions

» Every element in an ascending HNN extension of G can be
represented in the form t Xgt’ for some k,¢ € Z and g € G.
¢ — k is an invariant, the representation is unique for a given k.

» (Feighn-Handel) If G is free then HNNy(G) is coherent i.e.
every f.g. subgroup is f.p.

» (Geoghegan-Mihalik-S.-Wise) If G is free then HNN(G) is
Hopfian i.e. every surjective endomorphism is injective.
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Facts about ascending HNN extensions

» Every element in an ascending HNN extension of G can be
represented in the form t Xgt’ for some k,¢ € Z and g € G.
¢ — k is an invariant, the representation is unique for a given k.

» (Feighn-Handel) If G is free then HNNy(G) is coherent i.e.
every f.g. subgroup is f.p.

» (Geoghegan-Mihalik-S.-Wise) If G is free then HNN4(G) is
Hopfian i.e. every surjective endomorphism is injective.

» (Wise-S.) An ascending HNNextension of a residually finite

group can be non-residually finite (example - Grigorcuk’s
group and its Lysenok extension).
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Random walks

Consider the word aba=1- b1 .aba=1-b~1.271p~15 and the
corresponding walk on the plane:
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aba b labalp!

O]

Consider the word aba=1- b1 .aba=1-b~1.271p~15 and the
corresponding walk on the plane:
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corresponding walk on the plane:
walk.
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Random walks

Consider the word aba=1- b1 .aba=1-b~1.271p~15 and the
corresponding walk on the plane:
walk.

aba b laba b lalbla

In general:

Magnus indexes of b’s are coordinates of the vertical steps of the

a support line of the wa

Problem. Wha% ishthe probability that
intersects the walk only once?

DA™



Random walks

Consider the word aba

Lop=l.aba=!.- b7 1. a71h7 15 and the
corresponding walk on the plane
aba~'blaba"lb7la7lh
walk.

In general

Magnus indexes of b’s are coordinates of the vertical steps of the

Problem. What is the probability that
a support line of the wa
intersects the walk only once?
Dum‘leld and Thurston proved recently that this probability is
strictly between 0 and 1.

[m]

=
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Let G = (xq,...,xk | R = 1) be a 1-relator group.
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> If k =2 and one of the two support lines of w that is parallel
to OM intersects w in a single vertex or a single edge,
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Ken Brown's results

Let G = (xq,...,xk | R = 1) be a 1-relator group. Let w be the
corresponding walk in ZX, connecting point O with point M.

> If k =2 and one of the two support lines of w that is parallel

to OM intersects w in a single vertex or a single edge, then G
is an ascending HNN extension of a free group.

> If k > 2 then G is never an ascending HNN extension of a
free group.
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2-generated groups

Some small cancelation theory, embedding into
Theorem (Kozakova, S.)

DA™



Some small cancelation theory, embedding into
2-generated groups

Theorem (Kozakova, S.) Consider a group
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Some small cancelation theory, embedding into
2-generated groups

Theorem (Kozakova, S.) Consider a group

G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on

{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xg-index of x; is unique.
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Some small cancelation theory, embedding into
2-generated groups
Theorem (Kozakova, S.) Consider a group
G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on
{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xx-index of x; is unique. Then

G can be embedded into an ascending HNN extension of a finitely
generated free group.
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Some small cancelation theory, embedding into

2-generated groups
Theorem (Kozakova, S.) Consider a group
G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on
{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xx-index of x; is unique. Then
G can be embedded into an ascending HNN extension of a finitely
generated free group.
The embedding is given by the map x; — w;, i =1, ..., k where
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Some small cancelation theory, embedding into

2-generated groups
Theorem (Kozakova, S.) Consider a group
G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on
{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xx-index of x; is unique. Then
G can be embedded into an ascending HNN extension of a finitely
generated free group.

The embedding is given by the map x; — w;, i =1, ..., k where

wy = aba®b...a"ba" "t ba " lba "b...a %ba b
wi = ab'a®b’...a"b'a~"b ...a72b'a"b, for 1<i<k

wy = ab¥a?bk...a"bKa="bx...a72b*
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Some small cancelation theory, embedding into
2-generated groups
Theorem (Kozakova, S.) Consider a group
G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on
{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xx-index of x; is unique. Then

G can be embedded into an ascending HNN extension of a finitely
generated free group.

The embedding is given by the map x; — w;, i =1, ..., k where
wy = aba®b...a"ba" "t ba " lba "b...a %ba b
wi = ab'a®b’...a"b'a~"b ...a72b'a"b, for 1<i<k

wy = ab¥a?bk...a"bKa="bx...a72b*

The proof uses the fact that for n > 1 the words w; satisfy C’(%)



Some small cancelation theory, embedding into

2-generated groups
Theorem (Kozakova, S.) Consider a group
G = (x1,x2,...,x¢|R = 1), where R is a word in the free group on
{x1,Xx2,..., Xk}, k > 2. Assume the sum of exponents of xx in R is
zero and that the maximal Magnus xx-index of x; is unique. Then
G can be embedded into an ascending HNN extension of a finitely
generated free group.
The embedding is given by the map x; — w;, i =1, ..., k where

wy = aba®b...a"ba" "t ba " lba "b...a %ba b
wi = ab'a®b’...a"b'a~"b ...a72b'a"b, for 1<i<k

wy = ab¥a?bk...a"bKa="bx...a72b*

The proof uses the fact that for n > 1 the words w; satisfy C'(Z)
and a non-trivial result of Olshanskii about subgroups of free
groups satisfying the congruence extension property, -
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Brownian Motion

with £(0) = 0.

Let C be the space of all continuous functions f: [0, +00] — RK
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Let C be the space of all continuous functions f: [0, +00] — RK

with £(0) = 0. We can define a o-algebra structure on that space
generated by the sets of functions of the form

U(ty, x1, t2, X2, ..., tn, Xn) where t; € [0, +-00], x; € RK.
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Brownian Motion

Let C be the space of all continuous functions f: [0, +00] — RK
with £(0) = 0. We can define a o-algebra structure on that space
generated by the sets of functions of the form
U(ty, x1, t2, X2, ..., tn, Xn) where t; € [0, +-00], x; € RK.

This set
consists of all functions f € C such that f(¢t;) = x;.
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Brownian Motion

Let C be the space of all continuous functions f: [0, +00] — RK
with £(0) = 0. We can define a o-algebra structure on that space
generated by the sets of functions of the form

U(t1, x1, t2, X2, ..., tn, Xz) Where t; € [0, +00], x; € RK. This set
consists of all functions f € C such that f(t;) = x;. A measure p
on C is called the Wiener’s measure if for every Borel set A in R¥
and every t < s € [0, +00] the probability that f(t) — f(s) isin Ais

2
|x|
2(t—s)

m/e
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Brownian Motion

Let C be the space of all continuous functions f: [0, +00] — RK
with £(0) = 0. We can define a o-algebra structure on that space
generated by the sets of functions of the form

U(t1, x1, t2, X2, ..., tn, Xz) Where t; € [0, +00], x; € RK. This set
consists of all functions f € C such that f(t;) = x;. A measure p
on C is called the Wiener’s measure if for every Borel set A in R¥
and every t < s € [0, +00] the probability that f(t) — f(s) isin Ais

2
|x|
2(t—s)

m/e

That is Brownian motion is a continuous Markov stationary
process with normally distributed increments.
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Donsker’s theorem (modified)

Let PSR be the uniform distribution on the set of cyclically
reduced random walks of length n in Rk,
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Donsker’s theorem (modified)

Let PSR be the uniform distribution on the set of cyclically
reduced random walks of length nin R¥. Consider a piecewise
linear function Y,(t) : [0,1] — Rk, where the line segments are
connecting points Y,(t) = Sn¢/+/n for t =0,1/n,2/n,

...,n/n =1, where (S,) has a distribution according to PSR,
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Donsker’s theorem (modified)

Let PSR be the uniform distribution on the set of cyclically
reduced random walks of length nin R¥. Consider a piecewise
linear function Y,(t) : [0,1] — Rk, where the line segments are
connecting points Y,(t) = Sn¢/+/n for t =0,1/n,2/n,

...,n/n =1, where (S,) has a distribution according to PSR,

Then Y,(t) converges in distribution to a Brownian motion, as
n — oo.
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Donsker’s theorem (modified)

Let PSR be the uniform distribution on the set of cyclically
reduced random walks of length nin R¥. Consider a piecewise
linear function Y,(t) : [0,1] — Rk, where the line segments are
connecting points Y,(t) = Sn¢/+/n for t =0,1/n,2/n,

...,n/n =1, where (S,) has a distribution according to PSR,
Then Y,(t) converges in distribution to a Brownian motion, as
n — 00.

We are using Rivin’s Central Limit Theorem for cyclically reduced
walks.
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indices

Convex hull of Brownian motion and maximal Magnus

Let again w be the walk in Z¥ corresponding to the relator R.
Suppose that it connects O and M.
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Convex hull of Brownian motion and maximal Magnus
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Let again w be the walk in Z¥ corresponding to the relator R.
Suppose that it connects O and M. Consider the hyperplane P

that is orthogonal to OM, the projection w’ of w onto P, and the
convex hull of that projection.
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Convex hull of Brownian motion and maximal Magnus
indices

Let again w be the walk in Z¥ corresponding to the relator R.
Suppose that it connects O and M. Consider the hyperplane P
that is orthogonal to OM, the projection w’ of w onto P, and the
convex hull of that projection. From our theorem above, it follows
that the 1-related group G is inside an ascending HNN extension

of a free group if there exists a vertex of A that is visited only
once by w'.
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Convex hull of Brownian motion and maximal Magnus
indices

Let again w be the walk in Z¥ corresponding to the relator R.
Suppose that it connects O and M. Consider the hyperplane P
that is orthogonal to OM, the projection w’ of w onto P, and the
convex hull of that projection. From our theorem above, it follows
that the 1-related group G is inside an ascending HNN extension
of a free group if there exists a vertex of A that is visited only
once by w’. The idea to prove it is the following.
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Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of A is growing
(a.s.) with the length of w (here it is used that k > 3).
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Step 1. We prove that the number of vertices of A is growing
(a.s.) with the length of w (here it is used that k > 3). Indeed, if
the number of vertices is bounded with positive probability, then
with positive probability the limit of random walks w' (which is a
Brownian bridge) would have non-smooth convex hull
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Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of A is growing
(a.s.) with the length of w (here it is used that k > 3). Indeed, if
the number of vertices is bounded with positive probability, then
with positive probability the limit of random walks w' (which is a
Brownian bridge) would have non-smooth convex hull which is

impossible by a theorem about Brownian motions (Theorem of
Cranston-Hsu-March, 1989).
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Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of A is growing
(a.s.) with the length of w (here it is used that k > 3). Indeed, if
the number of vertices is bounded with positive probability, then
with positive probability the limit of random walks w' (which is a
Brownian bridge) would have non-smooth convex hull which is

impossible by a theorem about Brownian motions (Theorem of
Cranston-Hsu-March, 1989).

Step 2. For every vertex of A for any ‘bad” walk w’ or length r we

construct (in a bijective manner) a “good” walk w’ of length
r+ 4.
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Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of A is growing
(a.s.) with the length of w (here it is used that k > 3). Indeed, if
the number of vertices is bounded with positive probability, then
with positive probability the limit of random walks w' (which is a
Brownian bridge) would have non-smooth convex hull which is
impossible by a theorem about Brownian motions (Theorem of
Cranston-Hsu-March, 1989).

Step 2. For every vertex of A for any ‘bad” walk w’ or length r we
construct (in a bijective manner) a “good” walk w’ of length

r + 4. This implies that the number of vertices of “bad” walks is
bounded if the probability of a “bad” walk is > 0.
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Illustration of Step 2

Here is the walk in Z3 corresponding to the word

and its projection onto R?

cb tacac b lcaca b laab lc.
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Illustration of Step 2

Here is the walk and its projection corresponding to the word

cb™tacac™ b rcaca b7 (b cbeY))aab e,
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Algebraic geometry

Consider the following example

G=(x,y,t|txt 1

= Xy, tytil

= yx).
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G=(x,y,t|txt 1
So the endomorphism

= Xy, tytil

= yx).

P X XY,y > yX.
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P X XY,y — yX.
This group is hyperbolic (Minasyan).
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Algebraic geometry

Consider the following example

G=(x,y,t|txt 1
So the endomorphism

= Xy, tytil

= yx).

P X XY,y — yX.
This group is hyperbolic (Minasyan). Consider any
w = w(x,y) # 1.
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Algebraic geometry

Consider the following example

G=(x,y,t|txt 1
So the endomorphism

= Xy, tytil

= yx).

P X XY,y — yX.
This group is hyperbolic (Minasyan). Consider any
V| < 0.

w = w(x,y) #1. We want to find ¢: G — V with ¢(w) # 1,
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Algebraic geometry

Consider the following example

G=(x,y,t|txt 1 =xy tyt !
So the endomorphism

= yx).

P X XY,y — yX.
This group is hyperbolic (Minasyan). Consider any
w = w(x,y) # 1. We want to find 9: G — V with ¢(w) # 1,
|V| < 0o. Suppose that ¢ exists.
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Let us denote 9(x),1(y),(t) by

% -

7.)_/7t'
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Let us denote (x), v (y), 4 (t) by X,y,t. So we want

w(z,7) # 1.
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Let us denote (x), v (y), % (t) by X,y,t. So we want
Note:

w(z,7) # 1.
§(%,7)

z_—l

= (x7,y%) = (¢(x), ¢(y))
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Let us denote (x), v (y), % (t) by X,y,t. So we want
w(x,7) £ 1.
Note:
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Let us denote (x), v (y), % (t) by X,y,t. So we want
w(x,7) £ 1.
Note:

Z‘k

(%, 7)t * = (¢(%), ¢“(7))-

Since t has finite order in V/, for some k, we must have

(¢(x), ¢ (7)) = (x.7)-
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Let us denote (x), v (y), % (t) by X,y,t. So we want
Note:

w(z,7) # 1.

Z‘k

(%, 7)t * = (¢(%), ¢“(7))-

Since t has finite order in V/, for some k, we must have
(¢*(x), 9" (7)) = (%, 7).

So (x,¥) is a periodic point of the map

on the “space” V x V.

¢: (a,b) — (ab, ba).
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A problem from algebraic geometry over groups.

So if G is residually finite then
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A problem from algebraic geometry over groups.

So if G is residually finite then for every w(x,y) # 1,
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So if G is residually finite then for every w(x,y) # 1, we found a
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A problem from algebraic geometry over groups.

So if G is residually finite then for every w(x,y) # 1, we found a
on VxV

finite group V and a periodic point (X, y) of the map

¢: (a,b) = (¢(a), #(b))
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A problem from algebraic geometry over groups.

on V x V such that

¢: (a,b) = (¢(a), #(b))

w(x,y) # L.

So if G is residually finite then for every w(x,y) # 1, we found a
finite group V and a periodic point (k, y) of the map
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A problem from algebraic geometry over groups.

So if G is residually finite then for every w(x,y) # 1, we found a
on V x V such that

finite group V and a periodic point (k, y) of the map

¢: (a,b) = (4(a), ¢(b))
w(z,7) # 1.
w = 1.

So the periodic point should be outside the “subvariety” given by
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A problem from algebraic geometry over groups.

finite group V and a periodic point (k, y) of the map

So if G is residually finite then for every w(x,y) # 1, we found a
on V x V such that

¢: (a,b) = (4(a), ¢(b))
w(z,7) # 1.
w = 1.

So the periodic point should be outside the “subvariety” given by

Key observation. The converse statement is also true (the
number of generators and the choice of ¢ do not matter).
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The idea

finite,

Thus in order to prove that the group HNNg(Fy) is residually
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Thus in order to prove that the group HNNy(Fy) is residually
finite, we need, for every word w # 1 in Fy,find a finite group G
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The idea

and a periodic point of the map (5: Gk — Gk

Thus in order to prove that the group HNNy(Fy) is residually
finite, we need, for every word w # 1 in Fy,find a finite group G
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The idea

Thus in order to prove that the group HNNy(Fy) is residually

finite, we need, for every word Wjé 1 in Fy find a finite group G
and a periodic point of the map ¢: G¥ — Gkoutside the
“subvariety” given by the equation w = 1.
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Example

Consider again the group (a, b, t | tat ™! = ab, tht ' = ba).
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1 2
BHRE
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Example

Consider two matrices

Consider again the group (a, b, t | tat ™! = ab, tht—* = ba).
1 2
v=[g 1] v

10
2 1|
They generate a free subgroup in SLy(Z) (Sanov, '48)
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Example

Consider two matrices

Consider again the group (a, b, t | tat ™! = ab, tht—* = ba).
1 2
v=[g 1] v

10
2 1|
They generate a free subgroup in SL>(Z) (Sanov, '48).

5 2
A_UV_[2 1

also generate a free subgroup.

matrices

Then the

a3
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Example

Consider two matrices

Consider again the group (a, b, t | tat ™! = ab, tht—* = ba).
1 2
v=[g 1] v

10
2 1|
They generate a free subgroup in SL>(Z) (Sanov, '48).

5 2
A_UV_[2 1

|.a=w—|

1 2 ]
also generate a free subgroup. Now let us iterate the map
: (x,y) = (xy, yx) starting with (A, B) mod 5.

matrices

Then the

2 5
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Example

Consider two matrices

Consider again the group (a, b, t | tat ™! = ab, tht—* = ba).
1 2
v=[g 1] v

10
2 1|
They generate a free subgroup in SL>(Z) (Sanov, '48).

5 2
A_UV_[2 1

|.a=w—|

matrices

Then the
1 2

also generate a free subgroup. Now let us iterate the map

2 5 ]
P (x,y) — (xy, yx) starting with (A, B) mod 5. That is we are
considering the finite group SL»(Z/57Z).
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Example continued

5 21 [1
2

Jse))-
(53]

Thus the point (A, B) is periodic in SLz(Z/BZ) W|th period 6
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local fields

Example continued. Dynamics of polynomial maps over

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
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Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.

Moreover there exists the following general Hensel-like statement
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.
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local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero.
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.

Now take any word w # 1 in x, y.
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.

Now take any word w # 1 in x,y. Since (A, B) is free in SLy(7Z),
the matrix w(A, B) is not 1,
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.

Now take any word w # 1 in x,y. Since (A, B) is free in SLy(Z),
the matrix w(A, B) is not 1, and there exists k > 1 such that
w(A, B) #1 mod 5.
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.

Now take any word w # 1 in x,y. Since (A, B) is free in SLy(Z),
the matrix w(A, B) is not 1, and there exists k > 1 such that
w(A, B) #1 mod 5.

Therefore our group (a, b, t | tat™! = ab, tht~! = ba) is residually
finite
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Example continued. Dynamics of polynomial maps over
local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SLy(Z/25Z) with period 30, in SL»(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P: Z" — Z" be a polynomial map with integer
coefficients.Suppose that a point X is periodic with period d
modulo some prime p, and the Jacobian Jp(x) is not zero. Then X
is periodic modulo pX with period pX~1d for every k.

Now take any word w # 1 in x,y. Since (A, B) is free in SLy(Z),
the matrix w(A, B) is not 1, and there exists k > 1 such that
w(A, B) #1 mod 5.

Therefore our group (a, b, t | tat™! = ab, tht~! = ba) is residually
finite In fact it is virtually residually (finite 5-)group.
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The general idea

Thus the idea for proving that ascending HNN extensions of free
groups are virtually residually (finite p-)groups is the following.
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The general idea

Thus the idea for proving that ascending HNN extensions of free
groups are virtually residually (finite p-)groups is the following.

For a given prime p, we have to find a collection of k

2 x 2-matrices that generate a free group and such that modulo p”

(n=1,2,...) they form a periodic point of the map ¢ with period
of the form ap"~ ! where a is a constant.
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The general idea

Thus the idea for proving that ascending HNN extensions of free
groups are virtually residually (finite p-)groups is the following.

For a given prime p, we have to find a collection of k

2 x 2-matrices that generate a free group and such that modulo p”
(n=1,2,...) they form a periodic point of the map ¢ with period
of the form ap"~ ! where a is a constant.

In fact one is not able to find these matrices in SL»(Z). One needs
a bigger ring.
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Polynomial maps over p-adics

Let F, be a finite field with g = p elements.
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number field K which is unramified at p
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Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue

field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.
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Polynomial maps over p-adics

Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue

field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.

Theorem (Borisov-S.)
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Polynomial maps over p-adics

Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue
field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.

Theorem (Borisov-S.) Suppose ® is an n—variable polynomial

map with integer coefficients, and V is the Zariski closure of the
image of ®" (over Z).
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Polynomial maps over p-adics

Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue
field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.

Theorem (Borisov-S.) Suppose ® is an n—variable polynomial
map with integer coefficients, and V is the Zariski closure of the
image of ®" (over Z). Suppose W is a proper subscheme of V.
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Polynomial maps over p-adics

Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue
field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.

Theorem (Borisov-S.) Suppose ® is an n—variable polynomial
map with integer coefficients, and V is the Zariski closure of the
image of ®" (over Z). Suppose W is a proper subscheme of V.
Then for every sufficiently large prime p there exist ¢ = p’ and a
point x € V(Fy) \ W(Fy) such that for every X € V(Z,) with
7(X) = x we have

®*" = X( mod p"),

where a is fixed and n is arbitrary.
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Polynomial maps over p-adics

Let Fy be a finite field with g = p' elements. Then there exists a
number field K which is unramified at p and such that the residue
field at p is IF;. Let Z4 be the p-adic completion of the ring of
integers of K.

Theorem (Borisov-S.) Suppose ® is an n—variable polynomial
map with integer coefficients, and V is the Zariski closure of the
image of ®" (over Z). Suppose W is a proper subscheme of V.
Then for every sufficiently large prime p there exist ¢ = p’ and a
point x € V(Fy) \ W(Fy) such that for every X € V(Z,) with
7(X) = x we have

®*" = X( mod p"),

where a is fixed and n is arbitrary.
In particular, the point X is uniformly recurrent for ® in the
p—adic topology on V(Zg).
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Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need.
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the k matrices forming the uniformly recurrent point x generate a
free subgroup of SL>(Z,).
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The theorem gives only a part of what we need. We also need that
the k matrices forming the uniformly recurrent point x generate a

free subgroup of SLy(Z,). This follows from a strong recent result
of Breuillard and Gelander saying that
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Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need. We also need that
the k matrices forming the uniformly recurrent point x generate a
free subgroup of SLy(Z,). This follows from a strong recent result
of Breuillard and Gelander saying that SLy(Z,) has a free
k-generated subgroup that is dense in the p-adic topology.
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About the proof

The theorem has two parts:
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The theorem has two parts:

Part 1: n=1. That is a version of Deligne problem
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About the proof

The theorem has two parts:

Part 1: n=1. That is a version of Deligne problem.

Part 2: n > 1. We need to lift the periodic point mod p to a
uniformly recurrent point over p-adics.
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Deligne conjecture

We have a polynomial map P with integer coefficients on V(Ff,’g).
Need to prove that the set of periodic points is dense.
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We have a polynomial map P with integer coefficients on V(Ff,’g).
Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Example: x — x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
points, P(x) = xP"
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Fixed points are not enough.

Example: x — x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
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Note that all quasi-fixed points are periodic
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Deligne conjecture

We have a polynomial map P with integer coefficients on V(leg)_
Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Example: x — x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
points, P(x) = xP"(= Fr"(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

n}
L)
1
w
i

DA™



Deligne conjecture

We have a polynomial map P with integer coefficients on V(Ff,’g).
Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Example: x — x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
points, P(x) = xP"(= Fr"(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink:
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Deligne conjecture

We have a polynomial map P with integer coefficients on V(Ff,’g).
Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Example: x — x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
points, P(x) = xP"(= Fr"(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is
dominant and quasi-finite
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Deligne conjecture

We have a polynomial map P with integer coefficients on V(Ff,’g).
Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Example: x — x + 1 does not have fixed points.
Deligne: instead of fixed points, P(x) = x, consider quasi-fixed
points, P(x) = xP"(= Fr"(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is
dominant and quasi-finite then the set of quasi-fixed points is
Zariski dense.
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Hrushovsky managed to replace A" in our statement by arbitrary
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Theorem (Borisov, S.) The ascending HNN extension of any
finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S.
and Wise).
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Hrushovsky's result

Hrushovsky managed to replace A" in our statement by arbitrary
variety V.

Theorem (Borisov, S.) The ascending HNN extension of any
finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S.
and Wise).

Problem. Is (a, b, t | tat™! = ab, tbt ! = ba) linear?
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Hrushovsky's result

Hrushovsky managed to replace A" in our statement by arbitrary
variety V.

Theorem (Borisov, S.) The ascending HNN extension of any
finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S.
and Wise).

Problem. Is (a, b, t | tat™! = ab, tbt ! = ba) linear?

Conjecture: No.
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