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The talk is based on the following three papers:Alexander Borisov, Mark Sapir, Polynomial maps over �nite �eldsand residual �niteness of mapping tori of group endomorphisms.Invent. Math. 160 (2005), no. 2, 341{356.Alexander Borisov, Mark Sapir, Polynomial maps over p-adis andresidual properties of mapping tori of group endomorphisms,preprint, arXiv, math0810.0443, 2008.Iva Koz�akov�a, Mark Sapir, Almost all one-relator groups with atleast three generators are residually �nite. preprint, arXivmath0809.4693, 2008.
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Rooted trees ss ss ss sr r rr r rs sAn automorphism f must �x the root and so it �xes the levels ofthe tree. If f 6= 1 on level n, we onsider the homomorphism fromAut(T ) to a �nite group restriting automorphisms to verties oflevels at most n. f survives this homomorphism.
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Linear groups
(A. Malev, 1940) Every �nitely generated linear group is residually�nite.Moreover, it is virtually residually (�nite p-)group for all but�nitely many primes p. Note that a linear group itself may not beresidually (�nite p-)group for any p. Example: SL3(Z) by theMargulis normal subgroup theorem.
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Problems.
Problem. Is every hyperboli group residually �nite?Problem. When is a one-relator group hX j R = 1i residually�nite?Problem. (Moldavanskii, Kapovih, Wise) Are asending HNNextensions of free groups residually �nite?These three problems are related.
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Hyperboli groups, 1-related groups, and mapping tori offree groupsFat 1. (Gromov-Olshanskii) Almost every 1-related group ishyperboli. Almost every mapping torus of the free group ishyperboli.Fat 2. (S., Shupp) 99.6% of all 1-related group are mappingtori or free group endomorphisms.Example (Magnus proedure). Consider the groupha; b0; b1 j a�1b0a = b1b�10 b1b�10 ; a�1b1a = b0i. This islearly an asending HNN extension of the free group hb0; b1i.
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The main result
Theorem. Almost surely as n!1, every 1-related group with 3or more generators and relator of length n is inside an asendingHNN extension of a free group, and so it isI Residually �nite,I Virtually residually (�nite p-)group for all but �nitely manyprimes p,I Coherent (that is all �nitely generated subgroups are �nitelypresented).
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Fats about asending HNN extensionsI Every element in an asending HNN extension of G an berepresented in the form t�kgt` for some k ; ` 2 Z and g 2 G .`� k is an invariant, the representation is unique for a given k .I (Feighn-Handel) If G is free then HNN�(G ) is oherent i.e.every f.g. subgroup is f.p.I (Geoghegan-Mihalik-S.-Wise) If G is free then HNN�(G ) isHop�an i.e. every surjetive endomorphism is injetive.I (Wise-S.) An asending HNNextension of a residually �nitegroup an be non-residually �nite (example - Grigoruk'sgroup and its Lysenok extension).
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Random walksConsider the word aba�1 � b�1 � aba�1 � b�1 � a�1b�1a and theorresponding walk on the plane:aba�1b�1aba�1b�1a�1b�1aMagnus indexes of b's are oordinates of the vertial steps of thewalk.
e�1 0 1

In general:
b e

Problem. What is the probability thata support line of the walkintersets the walk only one?Dun�eld and Thurston proved reently that this probability isstritly between 0 and 1.
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Let G = hx1; :::; xk j R = 1i be a 1-relator group. Let w be theorresponding walk in Zk, onneting point O with point M.I If k = 2 and one of the two support lines of w that is parallelto ~OM intersets w in a single vertex or a single edge, then Gis an asending HNN extension of a free group.I If k > 2 then G is never an asending HNN extension of afree group.
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Let PCRn be the uniform distribution on the set of yliallyredued random walks of length n in Rk . Consider a pieewiselinear funtion Yn(t) : [0; 1℄ ! Rk , where the line segments areonneting points Yn(t) = Snt=pn for t = 0; 1=n; 2=n,: : : ; n=n = 1, where (Sn) has a distribution aording to PCRn .Then Yn(t) onverges in distribution to a Brownian motion, asn!1.We are using Rivin's Central Limit Theorem for ylially reduedwalks.
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Let again w be the walk in Zk orresponding to the relator R .Suppose that it onnets O and M. Consider the hyperplane Pthat is orthogonal to ~OM, the projetion w 0 of w onto P , and theonvex hull of that projetion. From our theorem above, it followsthat the 1-related group G is inside an asending HNN extensionof a free group if there exists a vertex of � that is visited onlyone by w 0. The idea to prove it is the following.
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Convex hulls and maximal indies, ontinuedStep 1. We prove that the number of verties of � is growing(a.s.) with the length of w (here it is used that k � 3). Indeed, ifthe number of verties is bounded with positive probability, thenwith positive probability the limit of random walks w 0 (whih is aBrownian bridge) would have non-smooth onvex hull whih isimpossible by a theorem about Brownian motions (Theorem ofCranston-Hsu-Marh, 1989).Step 2. For every vertex of � for any `bad" walk w 0 or length r weonstrut (in a bijetive manner) a \good" walk w 0 of lengthr + 4. This implies that the number of verties of \bad" walks isbounded if the probability of a \bad" walk is > 0.
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A problem from algebrai geometry over groups.So if G is residually �nite then for every w(x ; y) 6= 1, we found a�nite group V and a periodi point (�x ; �y ) of the map~� : (a; b) 7! (�(a); �(b))on V � V suh that w(�x ; �y) 6= 1:So the periodi point should be outside the \subvariety" given byw = 1.Key observation. The onverse statement is also true (thenumber of generators and the hoie of � do not matter).
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ExampleConsider again the group ha; b; t j tat�1 = ab; tbt�1 = bai.Consider two matriesU = � 1 20 1 � ;V = � 1 02 1 � :They generate a free subgroup in SL2(Z) (Sanov, '48). Then thematries A = UV = � 5 22 1 � ;B = VU = � 1 22 5 �also generate a free subgroup. Now let us iterate the map : (x ; y) ! (xy ; yx) starting with (A;B) mod 5. That is we areonsidering the �nite group SL2(Z=5Z).
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Thus the idea for proving that asending HNN extensions of freegroups are virtually residually (�nite p-)groups is the following.For a given prime p, we have to �nd a olletion of k2� 2-matries that generate a free group and suh that modulo pn(n = 1; 2; :::) they form a periodi point of the map � with periodof the form apn�1 where a is a onstant.In fat one is not able to �nd these matries in SL2(Z). One needsa bigger ring.
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The theorem gives only a part of what we need. We also need thatthe k matries forming the uniformly reurrent point x generate afree subgroup of SL2(Zp). This follows from a strong reent resultof Breuillard and Gelander saying that SL2(Zp) has a freek-generated subgroup that is dense in the p-adi topology.
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The theorem has two parts:Part 1: n = 1. That is a version of Deligne problem.Part 2: n > 1. We need to lift the periodi point mod p to auniformly reurrent point over p-adis.
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