Polynomial maps over fields and residually finite groups

Mark Sapir

The talk is based on the following three papers:
Alexander Borisov, Mark Sapir, Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms. Invent. Math. 160 (2005), no. 2, 341-356.
Alexander Borisov, Mark Sapir, Polynomial maps over p-adics and residual properties of mapping tori of group endomorphisms, preprint, arXiv, math0810.0443, 2008.
Iva Kozáková, Mark Sapir, Almost all one-relator groups with at least three generators are residually finite. preprint, arXiv math0809.4693, 2008.

Residually finite groups

Definition A group G is called residually finite if

Residually finite groups

Definition A group G is called residually finite if for every $g \in G$, $g \neq 1$, there exists a homomorphism ϕ from G onto a finite group H such that $\phi(g) \neq 1$.

Residually finite groups

Definition A group G is called residually finite if for every $g \in G$, $g \neq 1$, there exists a homomorphism ϕ from G onto a finite group H such that $\phi(g) \neq 1$. If H can be always chosen a p-group for some fixed prime p, then G is called residually (finite p-)group.

Residually finite groups

Definition A group G is called residually finite if for every $g \in G$, $g \neq 1$, there exists a homomorphism ϕ from G onto a finite group H such that $\phi(g) \neq 1$. If H can be always chosen a p-group for some fixed prime p, then G is called residually (finite p-)group. Examples. \mathbb{Z}, F_{k}, linear groups are residually finite.

Residually finite groups

Definition A group G is called residually finite if for every $g \in G$, $g \neq 1$, there exists a homomorphism ϕ from G onto a finite group H such that $\phi(g) \neq 1$. If H can be always chosen a p-group for some fixed prime p, then G is called residually (finite p-)group. Examples. \mathbb{Z}, F_{k}, linear groups are residually finite. \mathbb{Q}, infinite simple groups, free Burnside groups of sufficiently large exponents are not residually finite.

Residually finite groups

Definition A group G is called residually finite if for every $g \in G$, $g \neq 1$, there exists a homomorphism ϕ from G onto a finite group H such that $\phi(g) \neq 1$. If H can be always chosen a p-group for some fixed prime p, then G is called residually (finite p-)group. Examples. \mathbb{Z}, F_{k}, linear groups are residually finite. \mathbb{Q}, infinite simple groups, free Burnside groups of sufficiently large exponents are not residually finite. Groups acting faithfully on rooted locally finite trees are residually finite.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree．
ロ 司 三 ミ 引 引のく

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree．
ロ司 三 ミ 引 ミのく

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree. If $f \neq 1$ on level n, we consider the homomorphism from $\operatorname{Aut}(T)$ to a finite group restricting automorphisms to vertices of levels at most n.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree．If $f \neq 1$ on level n ，we consider the homomorphism from $\operatorname{Aut}(T)$ to a finite group restricting automorphisms to vertices of levels at most n ．f survives this homomorphism．

Rooted trees

Conversely every finitely generated residually finite group acts faithfully on a locally finite rooted tree.

Linear groups

(A. Malcev, 1940)

Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually finite.

Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually finite.Moreover, it is virtually residually (finite p-)group for all but finitely many primes p.

Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually finite.Moreover, it is virtually residually (finite p-)group for all but finitely many primes p. Note that a linear group itself may not be residually (finite p-)group for any p.

Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually finite.Moreover, it is virtually residually (finite p-)group for all but finitely many primes p. Note that a linear group itself may not be residually (finite p-)group for any p. Example: $\mathrm{SL}_{3}(\mathbb{Z})$ by the Margulis normal subgroup theorem.

Problems.

Problem. Is every hyperbolic group residually finite?

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Example 1. $B S(2,3)\left\langle a, t \mid t a^{2} t^{-1}=a^{3}\right\rangle$ is not residually finite $\left(a \mapsto a^{2}, t \mapsto t\right)$

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Example 1. $B S(2,3)\left\langle a, t \mid t a^{2} t^{-1}=a^{3}\right\rangle$ is not residually finite $\left(a \mapsto a^{2}, t \mapsto t\right)$

Example 2. $B S(1,2)\left\langle a, t \mid t a t^{-1}=a^{2}\right\rangle$ is metabelian, and linear, so it is residually finite.

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Problem. (Moldavanskii, Kapovich, Wise) Are ascending HNN extensions of free groups residually finite?
These three problems are related.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6\% of all 1-related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
$\left\langle a, b \mid a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a=1\right\rangle$.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
$\left\langle a, b \mid a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a=1\right\rangle$. Replace $a^{i} b a^{-i}$ by
b_{i}. The index i is called the Magnus a-index of that letter.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-OIshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6\% of all 1-related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$. So we have a new presentation of the same group.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6\% of all 1-related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$.
Note that b_{-1} appears only once in $b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1$.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$. So we can replace b_{-1} by $b_{1} b_{0}^{-1} b_{1} b_{0}^{-1}$, remove this generator, and get a new presentation of the same group.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{0}, b_{1} \mid a^{-1} b_{0} a=b_{1} b_{0}^{-1} b_{1} b_{0}^{-1}, \quad a^{-1} b_{1} a=b_{0}\right\rangle$.

This is clearly an ascending HNN extension of the free group $\left\langle b_{0}, b_{1}\right\rangle$.

The main result

Theorem.

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n is inside an ascending HNN extension of a free group,

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n is inside an ascending HNN extension of a free group, and so it is

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n is inside an ascending HNN extension of a free group, and so it is

- Residually finite,

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n is inside an ascending HNN extension of a free group, and so it is

- Residually finite,
- Virtually residually (finite p-)group for all but finitely many primes p,

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n is inside an ascending HNN extension of a free group, and so it is

- Residually finite,
- Virtually residually (finite p-)group for all but finitely many primes p,
- Coherent (that is all finitely generated subgroups are finitely presented).

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$. $\ell-k$ is an invariant, the representation is unique for a given k.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$. $\ell-k$ is an invariant, the representation is unique for a given k.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$. $\ell-k$ is an invariant, the representation is unique for a given k.
- (Feighn-Handel) If G is free then $\operatorname{HNN}_{\phi}(G)$ is coherent i.e. every f.g. subgroup is f.p.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$. $\ell-k$ is an invariant, the representation is unique for a given k.
- (Feighn-Handel) If G is free then $\operatorname{HNN}_{\phi}(G)$ is coherent i.e. every f.g. subgroup is f.p.
- (Geoghegan-Mihalik-S.-Wise) If G is free then $\operatorname{HNN}_{\phi}(G)$ is Hopfian i.e. every surjective endomorphism is injective.

Facts about ascending HNN extensions

- Every element in an ascending HNN extension of G can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$. $\ell-k$ is an invariant, the representation is unique for a given k.
- (Feighn-Handel) If G is free then $\operatorname{HNN}_{\phi}(G)$ is coherent i.e. every f.g. subgroup is f.p.
- (Geoghegan-Mihalik-S.-Wise) If G is free then $\operatorname{HNN}_{\phi}(G)$ is Hopfian i.e. every surjective endomorphism is injective.
- (Wise-S.) An ascending HNNextension of a residually finite group can be non-residually finite (example - Grigorcuk's group and its Lysenok extension).

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:
\bigcirc

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Magnus indexes of b 's are coordinates of the vertical steps of the walk.

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Magnus indexes of b 's are coordinates of the vertical steps of the walk.

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Magnus indexes of b 's are coordinates of the vertical steps of the walk.

In general:

Problem. What is the probability that a support line of the walk intersects the walk only once?

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Magnus indexes of b 's are coordinates of the vertical steps of the walk.

In general:

Dunfield and Thurston proved recently that this probability is
strictly between 0 and 1 .
Problem. What is the probability that a support line of the walk intersects the walk only once?

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group.

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

- If $k=2$ and one of the two support lines of w that is parallel to $\overrightarrow{O M}$ intersects w in a single vertex or a single edge,

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

- If $k=2$ and one of the two support lines of w that is parallel to $\overrightarrow{O M}$ intersects w in a single vertex or a single edge, then G is an ascending HNN extension of a free group.
- If $k>2$ then G is never an ascending HNN extension of a free group.

Some small cancelation theory, embedding into 2-generated groups

Theorem (Kozáková, S.)

Some small cancelation theory, embedding into 2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$.

Some small cancelation theory, embedding into 2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique.

Some small cancelation theory, embedding into 2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into an ascending HNN extension of a finitely generated free group.

Some small cancelation theory, embedding into 2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into an ascending HNN extension of a finitely generated free group.
The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

Some small cancelation theory, embedding into

2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into an ascending HNN extension of a finitely generated free group.
The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

$$
\begin{aligned}
w_{1} & =a b a^{2} b \ldots a^{n} b a^{n+1} b a^{-n-1} b a^{-n} b \ldots a^{-2} b a^{-1} b \\
w_{i} & =a b^{i} a^{2} b^{i} \ldots a^{n} b^{i} a^{-n} b^{i} \ldots a^{-2} b^{i} a^{-1} b^{i}, \text { for } 1<i<k \\
w_{k} & =a b^{k} a^{2} b^{k} \ldots a^{n} b^{k} a^{-n} b^{k} \ldots a^{-2} b^{k}
\end{aligned}
$$

Some small cancelation theory, embedding into

2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into an ascending HNN extension of a finitely generated free group.
The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

$$
\begin{aligned}
w_{1} & =a b a^{2} b \ldots a^{n} b a^{n+1} b a^{-n-1} b a^{-n} b \ldots a^{-2} b a^{-1} b \\
w_{i} & =a b^{i} a^{2} b^{i} \ldots a^{n} b^{i} a^{-n} b^{i} \ldots a^{-2} b^{i} a^{-1} b^{i}, \text { for } 1<i<k \\
w_{k} & =a b^{k} a^{2} b^{k} \ldots a^{n} b^{k} a^{-n} b^{k} \ldots a^{-2} b^{k}
\end{aligned}
$$

The proof uses the fact that for $n \gg 1$ the words w_{i} satisfy $C^{\prime}\left(\frac{1}{12}\right)$

Some small cancelation theory, embedding into

2-generated groups

Theorem (Kozáková, S.) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into an ascending HNN extension of a finitely generated free group.
The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

$$
\begin{aligned}
w_{1} & =a b a^{2} b \ldots a^{n} b a^{n+1} b a^{-n-1} b a^{-n} b \ldots a^{-2} b a^{-1} b \\
w_{i} & =a b^{i} a^{2} b^{i} \ldots a^{n} b^{i} a^{-n} b^{i} \ldots a^{-2} b^{i} a^{-1} b^{i}, \text { for } 1<i<k \\
w_{k} & =a b^{k} a^{2} b^{k} \ldots a^{n} b^{k} a^{-n} b^{k} \ldots a^{-2} b^{k}
\end{aligned}
$$

The proof uses the fact that for $n \gg 1$ the words w_{i} satisfy $C^{\prime}\left(\frac{1}{12}\right)$ and a non-trivial result of Olshanskii about subgroups of free groups satisfying the congruence extension property

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$. A measure μ on C is called the Wiener's measure if for every Borel set A in \mathbb{R}^{k} and every $t<s \in[0,+\infty]$ the probability that $f(t)-f(s)$ is in A is

$$
\frac{1}{\sqrt{2 \pi(t-s)}} \int_{A} e^{\frac{-|x|^{2}}{2(t-s)}} d x
$$

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$. A measure μ on C is called the Wiener's measure if for every Borel set A in \mathbb{R}^{k} and every $t<s \in[0,+\infty]$ the probability that $f(t)-f(s)$ is in A is

$$
\frac{1}{\sqrt{2 \pi(t-s)}} \int_{A} e^{\frac{-|x|^{2}}{2(t-s)}} d x
$$

That is Brownian motion is a continuous Markov stationary process with normally distributed increments.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$, $\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$, $\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$. Then $Y_{n}(t)$ converges in distribution to a Brownian motion, as $n \rightarrow \infty$.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$, $\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$. Then $Y_{n}(t)$ converges in distribution to a Brownian motion, as $n \rightarrow \infty$.
We are using Rivin's Central Limit Theorem for cyclically reduced walks.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w^{\prime}.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w^{\prime}. The idea to prove it is the following.

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$).

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w ' or length r we construct (in a bijective manner) a "good" walk w ' of length $r+4$.

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w ' or length r we construct (in a bijective manner) a "good" walk w ' of length $r+4$. This implies that the number of vertices of "bad" walks is bounded if the probability of a "bad" walk is >0.

Illustration of Step 2

Here is the walk in \mathbb{Z}^{3} corresponding to the word

$$
c b^{-1} a c a c^{-1} b^{-1} c a c a^{-1} b^{-1} a a b^{-1} c .
$$

and its projection onto \mathbb{R}^{2}

Illustration of Step 2

Here is the walk and its projection corresponding to the word

$$
c b^{-1} a c a c^{-1} b^{-1} c a c a^{-1} b^{-1}\left(\left(b^{-1} c b c^{-1}\right)\right) a a b^{-1} c .
$$

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

This group is hyperbolic（Minasyan）．

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x
$$

This group is hyperbolic (Minasyan). Consider any $w=w(x, y) \neq 1$.

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

This group is hyperbolic (Minasyan). Consider any $w=w(x, y) \neq 1$. We want to find $\psi: G \rightarrow V$ with $\psi(w) \neq 1$, $|V|<\infty$.

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x
$$

This group is hyperbolic (Minasyan). Consider any $w=w(x, y) \neq 1$. We want to find $\psi: G \rightarrow V$ with $\psi(w) \neq 1$, $|V|<\infty$. Suppose that ψ exists.

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$ ．

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) .
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) .
$$

$$
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\begin{gathered}
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) . \\
\ldots \\
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
\end{gathered}
$$

Since \bar{t} has finite order in V, for some k, we must have

$$
\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right)=(\bar{x}, \bar{y})
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\begin{gathered}
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) . \\
\ldots \\
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
\end{gathered}
$$

Since \bar{t} has finite order in V, for some k, we must have

$$
\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right)=(\bar{x}, \bar{y})
$$

So (\bar{x}, \bar{y}) is a periodic point of the map

$$
\tilde{\phi}:(a, b) \mapsto(a b, b a) .
$$

on the "space" $V \times V$.

A problem from algebraic geometry over groups.

So if G is residually finite then

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$,

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V

A problem from algebraic geometry over groups．

So if G is residually finite then for every $w(x, y) \neq 1$ ，we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

So the periodic point should be outside the "subvariety" given by $w=1$.

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

So the periodic point should be outside the "subvariety" given by $w=1$.

Key observation. The converse statement is also true (the number of generators and the choice of ϕ do not matter).

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite,

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need,

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k},

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G and a periodic point of the map $\tilde{\phi}: G^{k} \rightarrow G^{k}$

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G and a periodic point of the map $\tilde{\phi}: G^{k} \rightarrow G^{k}$ outside the "subvariety" given by the equation $w=1$.

Example

Consider again the group $\left\langle a, b, t \mid \operatorname{tat}^{-1}=a b, t b t^{-1}=b a\right\rangle$.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$. Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] .
$$

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$. Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48).

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup. Now let us iterate the map $\psi:(x, y) \rightarrow(x y, y x)$ starting with $(A, B) \bmod 5$.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup. Now let us iterate the map $\psi:(x, y) \rightarrow(x y, y x)$ starting with $(A, B) \bmod 5$. That is we are considering the finite group $\mathrm{SL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$.

Example continued

$$
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow
$$

ロ 司 三 ミ 引

Example continued

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow
\end{aligned}
$$

Example continued

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow
\end{aligned}
$$

Example continued

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) .
\end{gathered}
$$

Example continued

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) .
\end{gathered}
$$

Thus the point (A, B) is periodic in $\mathrm{SL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ with period 6 .

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement
Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 ,

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 , and there exists $k \geq 1$ such that $w(A, B) \neq 1 \bmod 5^{k}$.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 , and there exists $k \geq 1$ such that $w(A, B) \neq 1 \bmod 5^{k}$.
Therefore our group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ is residually finite

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 , and there exists $k \geq 1$ such that $w(A, B) \neq 1 \bmod 5^{k}$.
Therefore our group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ is residually finite In fact it is virtually residually (finite 5-)group.

The general idea

Thus the idea for proving that ascending HNN extensions of free groups are virtually residually（finite p－）groups is the following．

The general idea

Thus the idea for proving that ascending HNN extensions of free groups are virtually residually (finite p-)groups is the following. For a given prime p, we have to find a collection of k 2×2-matrices that generate a free group and such that modulo p^{n} $(n=1,2, \ldots)$ they form a periodic point of the map ϕ with period of the form $a p^{n-1}$ where a is a constant.

The general idea

Thus the idea for proving that ascending HNN extensions of free groups are virtually residually (finite p-)groups is the following. For a given prime p, we have to find a collection of k 2×2-matrices that generate a free group and such that modulo p^{n} $(n=1,2, \ldots)$ they form a periodic point of the map ϕ with period of the form $a p^{n-1}$ where a is a constant.
In fact one is not able to find these matrices in $\mathrm{SL}_{2}(\mathbb{Z})$. One needs a bigger ring.

Polynomial maps over p－adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements．

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}.

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.
Theorem (Borisov-S.)

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.
Theorem (Borisov-S.) Suppose Φ is an n-variable polynomial map with integer coefficients, and V is the Zariski closure of the image of Φ^{n} (over \mathbb{Z}).

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.
Theorem (Borisov-S.) Suppose Φ is an n-variable polynomial map with integer coefficients, and V is the Zariski closure of the image of $\Phi^{n}($ over $\mathbb{Z})$. Suppose W is a proper subscheme of V.

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.
Theorem (Borisov-S.) Suppose Φ is an n-variable polynomial map with integer coefficients, and V is the Zariski closure of the image of Φ^{n} (over \mathbb{Z}). Suppose W is a proper subscheme of V. Then for every sufficiently large prime p there exist $q=p^{\prime}$ and a point $x \in V\left(\mathbb{F}_{q}\right) \backslash W\left(\mathbb{F}_{q}\right)$ such that for every $X \in V\left(\mathbb{Z}_{q}\right)$ with $\pi(X)=x$ we have

$$
\Phi^{a p^{n}} \equiv X\left(\bmod p^{n}\right)
$$

where a is fixed and n is arbitrary.

Polynomial maps over p-adics

Let \mathbb{F}_{q} be a finite field with $q=p^{\prime}$ elements. Then there exists a number field K which is unramified at p and such that the residue field at p is \mathbb{F}_{q}. Let \mathbb{Z}_{q} be the p-adic completion of the ring of integers of K.
Theorem (Borisov-S.) Suppose Φ is an n-variable polynomial map with integer coefficients, and V is the Zariski closure of the image of Φ^{n} (over \mathbb{Z}). Suppose W is a proper subscheme of V. Then for every sufficiently large prime p there exist $q=p^{\prime}$ and a point $x \in V\left(\mathbb{F}_{q}\right) \backslash W\left(\mathbb{F}_{q}\right)$ such that for every $X \in V\left(\mathbb{Z}_{q}\right)$ with $\pi(X)=x$ we have

$$
\Phi^{a p^{n}} \equiv X\left(\bmod p^{n}\right)
$$

where a is fixed and n is arbitrary.
In particular, the point X is uniformly recurrent for Φ in the p-adic topology on $V\left(\mathbb{Z}_{q}\right)$.

Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need.

Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need. We also need that the k matrices forming the uniformly recurrent point x generate a free subgroup of $\mathrm{SL}_{2}\left(Z_{p}\right)$.

Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need. We also need that the k matrices forming the uniformly recurrent point x generate a free subgroup of $\mathrm{SL}_{2}\left(Z_{p}\right)$. This follows from a strong recent result of Breuillard and Gelander saying that

Dense free subgroups, a result of Breuillard and Gelander

The theorem gives only a part of what we need. We also need that the k matrices forming the uniformly recurrent point x generate a free subgroup of $\mathrm{SL}_{2}\left(Z_{p}\right)$. This follows from a strong recent result of Breuillard and Gelander saying that $\mathrm{SL}_{2}\left(Z_{p}\right)$ has a free k-generated subgroup that is dense in the p-adic topology.

About the proof

The theorem has two parts:

About the proof

The theorem has two parts:
Part 1: $n=1$. That is a version of Deligne problem.

About the proof

The theorem has two parts:
Part 1: $n=1$. That is a version of Deligne problem.
Part 2: $n>1$. We need to lift the periodic point $\bmod p$ to a uniformly recurrent point over p-adics.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}$

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.
Note that all quasi-fixed points are periodic

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink:

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is dominant and quasi-finite

Deligne conjecture

We have a polynomial map P with integer coefficients on $V\left(\mathbb{F}_{p}^{a l g}\right)$. Need to prove that the set of periodic points is dense.
Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is dominant and quasi-finite then the set of quasi-fixed points is Zariski dense.

Hrushovsky＇s result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V ．

ロ 句 三 ミ ミ 引のく

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, S.) The ascending HNN extension of any finitely generated linear group is residually finite.

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, S.) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S. and Wise).

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, S.) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S. and Wise).

Problem. Is $\langle a, b, t|$ tat $\left.t^{-1}=a b, t b t^{-1}=b a\right\rangle$ linear?

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, S.) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S. and Wise).

Problem. Is $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ linear?
Conjecture: No.

