Polynomial maps over fields and residually finite groups

Alexander Borisov and Mark Sapir ${ }^{1}$

Ascending HNN extensions

Definition．Let G be a group，$\phi: G \rightarrow G$ be an injective endomorphism．

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid t a t^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid t a t^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Ascending HNN extensions

Definition. Let G be a group, $\phi: G \rightarrow G$ be an injective endomorphism. The group

$$
\operatorname{HNN}_{\phi}(G)=\left\langle G, t \mid \operatorname{tat}^{-1}=\phi(a), a \in G\right\rangle
$$

is called an ascending HNN extension of G or the mapping torus of ϕ.
Example. $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$.

Facts about ascending HNN extensions

- Every element in HNN can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G$.

Facts about ascending HNN extensions

- Every element in HNN can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G . \ell-k$ is an invariant, the representation is unique for a given k.

Facts about ascending HNN extensions

- Every element in HNN can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G . \ell-k$ is an invariant, the representation is unique for a given k.
- A homomorphism $f: \operatorname{HNN}_{\phi}(G) \rightarrow H$ is injective iff f_{G} is injective and $f(t)$ is of infinite order.

Facts about ascending HNN extensions

- Every element in HNN can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G . \ell-k$ is an invariant, the representation is unique for a given k.
- A homomorphism $f: \operatorname{HNN}_{\phi}(G) \rightarrow H$ is injective iff f_{G} is injective and $f(t)$ is of infinite order.
- (Feighn-Handel) If G is free then $\operatorname{HNN}_{\phi}(G)$ is coherent i.e. every f.g. subgroup is f.p.

Facts about ascending HNN extensions

- Every element in HNN can be represented in the form $t^{-k} g t^{\ell}$ for some $k, \ell \in \mathbb{Z}$ and $g \in G . \ell-k$ is an invariant, the representation is unique for a given k.
- A homomorphism $f: \operatorname{HNN}_{\phi}(G) \rightarrow H$ is injective iff f_{G} is injective and $f(t)$ is of infinite order.
- (Feighn-Handel) If G is free then $\operatorname{HNN}_{\phi}(G)$ is coherent i.e. every f.g. subgroup is f.p.
- (Geoghegan-Mihalik-S.-Wise) If G is free then $\operatorname{HNN}_{\phi}(G)$ is Hopfian i.e. every surjective endomorphism is injective.

Hopfian and residually finite groups
Definition．A group is called residually finite if

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective,

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$. On the other hand $\phi^{-1}\left(H_{0}\right) \geq K$.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.
Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$. On the other hand $\phi^{-1}\left(H_{0}\right) \geq K$. Hence $K<H$ and so elements of K do not survive in any finite homomorphic image of G.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$. On the other hand $\phi^{-1}\left(H_{0}\right) \geq K$. Hence $K<H$ and so elements of K do not survive in any finite homomorphic image of G.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.
Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$. On the other hand $\phi^{-1}\left(H_{0}\right) \geq K$. Hence $K<H$ and so elements of K do not survive in any finite homomorphic image of G.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

> Proof. Let $\phi: G \rightarrow G$ be surjective and not injective, and K be the kernel. Let H be a subgroup of G of finite index n. Consider the intersection H_{0} of all subgroups of G of index n. It is a subgroup of H and $\phi^{-1}\left(H_{0}\right)=H_{0}$. On the other hand $\phi^{-1}\left(H_{0}\right) \geq K$. Hence $K<H$ and so elements of K do not survive
> in any finite homomorphic image of G.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

- f.g. linear groups (i.e. finitely generated subgroups of $\mathrm{SL}_{n}(\mathbb{C})$);

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

- f.g. linear groups (i.e. finitely generated subgroups of $\mathrm{SL}_{n}(\mathbb{C})$);
- metabelian groups;

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

- f.g. linear groups (i.e. finitely generated subgroups of $\mathrm{SL}_{n}(\mathbb{C})$);
- metabelian groups;
- Galois groups of infinite algebraic extensions of \mathbb{Q};

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

- f.g. linear groups (i.e. finitely generated subgroups of $\mathrm{SL}_{n}(\mathbb{C})$);
- metabelian groups;
- Galois groups of infinite algebraic extensions of \mathbb{Q};
- all groups acting faithfully on a rooted tree (say, iterated monodromy groups of rational maps on \mathbb{C}).

Hopfian and residually finite groups

Definition. A group is called residually finite if every element $\neq 1$ survives in a finite homomorphic image.

Theorem. (Malcev) Every residually finite f.g. group is Hopfian.

Examples of residually finite groups.

- f.g. linear groups (i.e. finitely generated subgroups of $\mathrm{SL}_{n}(\mathbb{C})$);
- metabelian groups;
- Galois groups of infinite algebraic extensions of \mathbb{Q};
- all groups acting faithfully on a rooted tree (say, iterated monodromy groups of rational maps on \mathbb{C}).

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree．

$$
\square \text { 包 三 ミ 三 }
$$

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree. If $f \neq 1$ on level n, we consider the homomorphism from $\operatorname{Aut}(T)$ to a finite group restricting automorphisms to vertices of levels at most n.

Rooted trees

An automorphism f must fix the root and so it fixes the levels of the tree．If $f \neq 1$ on level n ，we consider the homomorphism from $\operatorname{Aut}(T)$ to a finite group restricting automorphisms to vertices of levels at most n ．f survives this homomorphism．

Rooted trees

Conversely every finitely generated residually finite group acts faithfully on a locally finite rooted tree.

Problems.

Problem. Is every hyperbolic group residually finite?

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Example 1. $B S(2,3)\left\langle a, t \mid t a^{2} t^{-1}=a^{3}\right\rangle$ is not Hopfian $\left(a \mapsto a^{2}, t \mapsto t\right)$

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Example 1. $B S(2,3)\left\langle a, t \mid t a^{2} t^{-1}=a^{3}\right\rangle$ is not Hopfian $\left(a \mapsto a^{2}, t \mapsto t\right)$

Example 2. $B S(1,2)\left\langle a, t \mid t a t^{-1}=a^{2}\right\rangle$ is metabelian, and linear, so it is residually finite.

Problems.

Problem. Is every hyperbolic group residually finite?
Problem. When is a one-relator group $\langle X \mid R=1\rangle$ residually finite?

Problem. (Moldavanskii, Kapovich, Wise) Are ascending HNN extensions of free groups residually finite?
These three problems are related.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b \mid a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a=1\right\rangle$.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b \mid a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a=1\right\rangle$. Replace $a^{i} b a^{-i}$ by b_{i}.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$.
So we have a new presentation of the same group.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6\% of all 1-related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$.

Note that b_{-1} appears only once in $b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1$.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{-1}, b_{0}, b_{1} \mid b_{1} b_{0}^{-1} b_{1} b_{0}^{-1} b_{-1}^{-1}=1, a^{-1} b_{0} a=b_{-1}, a^{-1} b_{1} a=b_{0}\right\rangle$. So we can replace b_{-1} by $b_{1} b_{0}^{-1} b_{1} b_{0}^{-1}$, remove this generator, and get a new presentation of the same group.

Hyperbolic groups, 1-related groups, and mapping tori of free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is hyperbolic. Almost every mapping torus of the free group is hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1 -related group are mapping tori or free group endomorphisms.

Example (Magnus procedure). Consider the group $\left\langle a, b_{0}, b_{1} \mid a^{-1} b_{0} a=b_{1} b_{0}^{-1} b_{1} b_{0}^{-1}, \quad a^{-1} b_{1} a=a_{0}\right\rangle$.

This is clearly an ascending HNN extension of the free group $\left\langle b_{0}, b_{1}\right\rangle$.

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1}
$$

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Indexes of b 's are coordinates of the vertical steps of the walk.

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Indexes of b 's are coordinates of the vertical steps of the walk.

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Indexes of b 's are coordinates of the vertical steps of the walk.
In general:

Problem. What is the probability that a support line of the walk intersects the walk only once?

Random walks

Consider the word $a b a^{-1} \cdot b^{-1} \cdot a b a^{-1} \cdot b^{-1} \cdot a^{-1} b^{-1} a$ and the corresponding walk on the plane:

$$
a b a^{-1} b^{-1} a b a^{-1} b^{-1} a^{-1} b^{-1} a
$$

Indexes of b 's are coordinates of the vertical steps of the walk.
In general:

Problem. What is the probability that a support line of the walk intersects the walk only once?
Dunfield and Thurston proved recently that this probability is
strictly between 0 and 1 .

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

This group is hyperbolic (Minasyan).

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

This group is hyperbolic (Minasyan). Consider any
$w=w(x, y) \neq 1$.

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x .
$$

This group is hyperbolic (Minasyan). Consider any $w=w(x, y) \neq 1$. We want to find $\psi: G \rightarrow V$ with $\psi(w) \neq 1$, $|V|<\infty$.

Algebraic geometry

Consider the following example

$$
G=\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle .
$$

So the endomorphism

$$
\phi: x \mapsto x y, y \mapsto y x
$$

This group is hyperbolic (Minasyan). Consider any $w=w(x, y) \neq 1$. We want to find $\psi: G \rightarrow V$ with $\psi(w) \neq 1$, $|V|<\infty$. Suppose that ψ exists.

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$ ．
ロ 岛 三 ミ 引

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1 .
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) .
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) .
$$

$$
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\begin{gathered}
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) . \\
\ldots \\
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
\end{gathered}
$$

Since \bar{t} has finite order in V, for some k, we must have

$$
\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right)=(\bar{x}, \bar{y})
$$

Let us denote $\psi(x), \psi(y), \psi(t)$ by $\bar{x}, \bar{y}, \bar{t}$. So we want

$$
w(\bar{x}, \bar{y}) \neq 1
$$

Note:

$$
\bar{t}(\bar{x}, \bar{y}) \bar{t}^{-1}=(\bar{x} \bar{y}, \bar{y} \bar{x})=(\phi(x), \phi(y))
$$

We can continue:

$$
\begin{gathered}
\bar{t}^{2}(\bar{x}, \bar{y}) \bar{t}^{-2}=(\bar{x} \bar{y} \bar{y} \bar{x}, \bar{y} \bar{x} \bar{x} \bar{y})=\left(\phi^{2}(\bar{x}), \phi^{2}(\bar{y})\right) . \\
\ldots \\
\bar{t}^{k}(\bar{x}, \bar{y}) \bar{t}^{-k}=\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right) .
\end{gathered}
$$

Since \bar{t} has finite order in V, for some k, we must have

$$
\left(\phi^{k}(\bar{x}), \phi^{k}(\bar{y})\right)=(\bar{x}, \bar{y})
$$

So (\bar{x}, \bar{y}) is a periodic point of the map

$$
\tilde{\phi}:(a, b) \mapsto(a b, b a) .
$$

on the "space" $V \times V$.

A problem from algebraic geometry over groups．

So if G is residually finite then

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$,

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

So the periodic point should be outside the "subvariety" given by $w=1$.

A problem from algebraic geometry over groups.

So if G is residually finite then for every $w(x, y) \neq 1$, we found a finite group V and a periodic point (\bar{x}, \bar{y}) of the map

$$
\tilde{\phi}:(a, b) \mapsto(\phi(a), \phi(b))
$$

on $V \times V$ such that

$$
w(\bar{x}, \bar{y}) \neq 1
$$

So the periodic point should be outside the "subvariety" given by $w=1$.

Key observation. The converse statement is also true (the number of generators and the choice of ϕ do not matter).

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite,

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need,

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k},

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G and a periodic point of the $\operatorname{map} \tilde{\phi}: G^{k} \rightarrow G^{k}$

The idea

Thus in order to prove that the group $\operatorname{HNN}_{\phi}\left(F_{k}\right)$ is residually finite, we need, for every word $w \neq 1$ in F_{k}, find a finite group G and a periodic point of the $\operatorname{map} \tilde{\phi}: G^{k} \rightarrow G^{k}$ outside the "subvariety" given by the equation $w=1$.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$. Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$. Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48).

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup. Now let us iterate the map $\psi:(x, y) \rightarrow(x y, y x)$ starting with $(A, B) \bmod 5$.

Example

Consider again the group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$.
Consider two matrices

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

They generate a free subgroup in $\mathrm{SL}_{2}(\mathbb{Z})$ (Sanov, '48). Then the matrices

$$
A=U V=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right], B=V U=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

also generate a free subgroup. Now let us iterate the map $\psi:(x, y) \rightarrow(x y, y x)$ starting with $(A, B) \bmod 5$. That is we are considering the finite group $\mathrm{SL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$.

Example continued

$$
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow
$$

ロ 句 三 ミ 三

Example continued

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow
\end{aligned}
$$

$$
\square \text { 包 三 ミ ミ }
$$

Example continued

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
& \left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow
\end{aligned}
$$

Example continued

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) .
\end{gathered}
$$

Example continued

$$
\begin{gathered}
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 0 \\
4 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
3 & 3 \\
3 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
3 & 3
\end{array}\right]\right) \rightarrow\left(\left[\begin{array}{ll}
4 & 3 \\
0 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
3 & 4
\end{array}\right]\right) \rightarrow \\
\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]\right) .
\end{gathered}
$$

Thus the point (A, B) is periodic in $\mathrm{SL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ with period 6 .

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 ,

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 , and there exists $k \geq 1$ such that $w(A, B) \neq 1 \bmod 5^{k}$.

Example continued. Dynamics of polynomial maps over local fields

Replace 5 by 25,125 , etc. It turned out that (A, B) is periodic in $S L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ with period 30 , in $S L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ with period 150 , etc. Moreover there exists the following general Hensel-like statement

Theorem. Let $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a polynomial map with integer coefficients.Suppose that a point \vec{x} is periodic with period d modulo some prime p, and the Jacobian $J_{P}(x)$ is not zero. Then \vec{x} is periodic modulo p^{k} with period $p^{k-1} d$ for every k.

Now take any word $w \neq 1$ in x, y. Since $\langle A, B\rangle$ is free in $\mathrm{SL}_{2}(\mathbb{Z})$, the matrix $w(A, B)$ is not 1 , and there exists $k \geq 1$ such that $w(A, B) \neq 1 \bmod 5^{k}$.
Therefore our group $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ is residually finite.

Polynomial maps over finite fields

$$
\text { Let } G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle .
$$

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$.

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$. The group we consider will be $\mathrm{PGL}_{2}($.$) .$

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$. The group we consider will be $\mathrm{PGL}_{2}($.$) . Here "." is any finite field of, say,$ characteristic p.

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$. The group we consider will be $\mathrm{PGL}_{2}($.$) . Here "." is any finite field of, say,$ characteristic p.

Thus our problem is reduced to the following:

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$. The group we consider will be $\mathrm{PGL}_{2}($.$) . Here "." is any finite field of, say,$ characteristic p.

Thus our problem is reduced to the following:
Problem. Let P be a polynomial map $A^{n} \rightarrow A^{n}$ with integer coefficients.

Polynomial maps over finite fields

Let $G=\left\langle a_{1}, \ldots, a_{k}, t \mid t a_{i} t^{-1}=u_{i}, i=1, \ldots, k\right\rangle$. Consider the ring of matrices $M_{2}(\mathbb{Z})$.
The map $\psi: M_{2}(\mathbb{Z})^{k} \rightarrow M_{2}(\mathbb{Z})^{k}$ is given by

$$
\vec{x} \mapsto\left(w_{1}(\vec{x}), \ldots, w_{k}(\vec{x})\right) .
$$

It can be considered as a polynomial map $A^{4 k} \rightarrow A^{4 k}$. The group we consider will be $\mathrm{PGL}_{2}($.$) . Here "." is any finite field of, say,$ characteristic p.

Thus our problem is reduced to the following:
Problem. Let P be a polynomial map $A^{n} \rightarrow A^{n}$ with integer coefficients. Show that the set of periodic points of P is Zariski dense.

Counting periodic points. Quasi-fixed points

Fixed points are not enough.

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.

Counting periodic points．Quasi－fixed points

Fixed points are not enough．
Example：$x \mapsto x+1$ does not have fixed points．
Deligne：instead of fixed points，$P(x)=x$ ，consider

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}$

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=F r^{n}(x)\right)$.

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=\operatorname{Fr}^{n}(x)\right)$.
Note that all quasi-fixed points are periodic

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=\operatorname{Fr}^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=\operatorname{Fr}^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.
Deligne conjecture, proved by Fujiwara and Pink:

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=\operatorname{Fr}^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.
Deligne conjecture, proved by Fujiwara and Pink: If P is dominant and quasi-finite

Counting periodic points. Quasi-fixed points

Fixed points are not enough.
Example: $x \mapsto x+1$ does not have fixed points.
Deligne: instead of fixed points, $P(x)=x$, consider quasi-fixed points, $P(x)=x^{p^{n}}\left(=\operatorname{Fr}^{n}(x)\right)$.
Note that all quasi-fixed points are periodic because Fr is the automorphism of finite order, and commutes with P since all coefficients of P are integers.
Deligne conjecture, proved by Fujiwara and Pink: If P is dominant and quasi-finite then the set of quasi-fixed points is Zariski dense.

The main results

Theorem (Borisov, Sapir)

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$,

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V. In other words, suppose $W \subset V$ is a proper Zariski closed subvariety of V.

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V. In other words, suppose $W \subset V$ is a proper Zariski closed subvariety of V. Then for some $Q=q^{m}$ there is a point

$$
\left(a_{1}, \ldots, a_{n}\right) \in V\left(\overline{\mathbb{F}_{q}}\right) \backslash W\left(\overline{\mathbb{F}_{q}}\right)
$$

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V. In other words, suppose $W \subset V$ is a proper Zariski closed subvariety of V. Then for some $Q=q^{m}$ there is a point

$$
\left(a_{1}, \ldots, a_{n}\right) \in V\left(\overline{\mathbb{F}_{q}}\right) \backslash W\left(\overline{\mathbb{F}_{q}}\right)
$$

such that

$$
\left\{\begin{array}{l}
f_{1}\left(a_{1}, \ldots, a_{n}\right)=a_{1}^{Q} \\
f_{2}\left(a_{1}, \ldots, a_{n}\right)=a_{2}^{Q} \\
\ldots \\
f_{n}\left(a_{1}, \ldots, a_{n}\right)=a_{n}^{Q}
\end{array}\right.
$$

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V. In other words, suppose $W \subset V$ is a proper Zariski closed subvariety of V. Then for some $Q=q^{m}$ there is a point

$$
\left(a_{1}, \ldots, a_{n}\right) \in V\left(\overline{\mathbb{F}_{q}}\right) \backslash W\left(\overline{\mathbb{F}_{q}}\right)
$$

such that

$$
\left\{\begin{array}{l}
f_{1}\left(a_{1}, \ldots, a_{n}\right)=a_{1}^{Q} \\
f_{2}\left(a_{1}, \ldots, a_{n}\right)=a_{2}^{Q} \\
\ldots \\
f_{n}\left(a_{1}, \ldots, a_{n}\right)=a_{n}^{Q}
\end{array}\right.
$$

Theorem (Borisov, Sapir).

The main results

Theorem (Borisov, Sapir) Let $P^{n}: A^{n}\left(\mathbb{F}_{q}\right) \rightarrow A^{n}\left(\mathbb{F}_{q}\right)$ be the n-th iteration of P. Let V be the Zariski closure of $P^{n}\left(A^{n}\right)$. The set of its geometric points is $V\left(\overline{\mathbb{F}_{q}}\right)$, where $\overline{\mathbb{F}_{q}}$ is the algebraic closure of \mathbb{F}_{q}. Then the following holds.

1. All quasi-fixed points of Φ belong to $V\left(\overline{\mathbb{F}_{q}}\right)$.
2. Quasi-fixed points of Φ are Zariski dense in V. In other words, suppose $W \subset V$ is a proper Zariski closed subvariety of V. Then for some $Q=q^{m}$ there is a point

$$
\left(a_{1}, \ldots, a_{n}\right) \in V\left(\overline{\mathbb{F}_{q}}\right) \backslash W\left(\overline{\mathbb{F}_{q}}\right)
$$

such that

$$
\left\{\begin{array}{l}
f_{1}\left(a_{1}, \ldots, a_{n}\right)=a_{1}^{Q} \\
f_{2}\left(a_{1}, \ldots, a_{n}\right)=a_{2}^{Q} \\
\ldots \\
f_{n}\left(a_{1}, \ldots, a_{n}\right)=a_{n}^{Q}
\end{array}\right.
$$

Theorem (Borisov, Sapir). Every ascending HNN extension of a free group is residually finite.

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Hrushovsky＇s result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V ．

Theorem（Borisov，Sapir）The ascending HNN extension of any finitely generated linear group is residually finite．

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, Sapir) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S . and Wise).

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, Sapir) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S. and Wise).

Problem. Is $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ linear?

Hrushovsky's result

Hrushovsky managed to replace A^{n} in our statement by arbitrary variety V.

Theorem (Borisov, Sapir) The ascending HNN extension of any finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S. and Wise).

Problem. Is $\left\langle a, b, t \mid t a t^{-1}=a b, t b t^{-1}=b a\right\rangle$ linear?
Conjecture: No.

Proof

We denote by I_{Q} the ideal in $\overline{\mathbb{F}_{q}}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q}$, for $i=1,2, \ldots, n$.

Proof

We denote by I_{Q} the ideal in $\overline{\mathbb{F}_{q}}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q}$, for $i=1,2, \ldots, n$.
Step 1. For a big enough Q the ideal I_{Q} has finite codimension in the ring $\overline{\mathbb{F}_{q}}\left[x_{1}, . . x_{n}\right]$.

Proof

We denote by I_{Q} the ideal in $\overline{\mathbb{F}_{q}}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q}$, for $i=1,2, \ldots, n$.
Step 1. For a big enough Q the ideal I_{Q} has finite codimension in the ring $\overline{\mathbb{F}_{q}}\left[x_{1}, . . x_{n}\right]$.
Step 2. For all $1 \leq i \leq n$ and $j \geq 1$

$$
f_{i}^{(j)}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q^{j}} \in I_{Q} .
$$

Proof

We denote by I_{Q} the ideal in $\overline{\mathbb{F}_{q}}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q}$, for $i=1,2, \ldots, n$.
Step 1. For a big enough Q the ideal I_{Q} has finite codimension in the ring $\overline{\mathbb{F}_{q}}\left[x_{1}, . . x_{n}\right]$.
Step 2. For all $1 \leq i \leq n$ and $j \geq 1$

$$
f_{i}^{(j)}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q^{j}} \in I_{Q}
$$

Step 3. There exists a number k such that for every quasi-fixed point $\left(a_{1}, \ldots, a_{n}\right)$ with big enough Q and for every $1 \leq i \leq n$ the polynomial

$$
\left(f_{i}^{(n)}\left(x_{1}, \ldots, x_{n}\right)-f_{i}^{(n)}\left(a_{1}, \ldots, a_{n}\right)\right)^{k}
$$

is contained in the localization of I_{Q} at $\left(a_{1}, \ldots, a_{n}\right)$.

Proof

We denote by I_{Q} the ideal in $\overline{\mathbb{F}_{q}}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q}$, for $i=1,2, \ldots, n$.
Step 1. For a big enough Q the ideal I_{Q} has finite codimension in the ring $\overline{\mathbb{F}_{q}}\left[x_{1}, . . x_{n}\right]$.
Step 2. For all $1 \leq i \leq n$ and $j \geq 1$

$$
f_{i}^{(j)}\left(x_{1}, \ldots, x_{n}\right)-x_{i}^{Q^{j}} \in I_{Q}
$$

Step 3. There exists a number k such that for every quasi-fixed point $\left(a_{1}, \ldots, a_{n}\right)$ with big enough Q and for every $1 \leq i \leq n$ the polynomial

$$
\left(f_{i}^{(n)}\left(x_{1}, \ldots, x_{n}\right)-f_{i}^{(n)}\left(a_{1}, \ldots, a_{n}\right)\right)^{k}
$$

is contained in the localization of I_{Q} at $\left(a_{1}, \ldots, a_{n}\right)$.
Let us fix some polynomial D with the coefficients in a finite extension of \mathbb{F}_{q} such that it vanishes on W but not on V.

Proof continued

Step 4. There exists a positive integer K such that for all quasi-fixed points $\left(a_{1}, \ldots, a_{n}\right) \in W$ with big enough Q we get

$$
R=\left(D\left(f_{1}^{(n)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{K} \equiv 0\left(\bmod I_{Q}^{\left(a_{1}, \ldots, a_{n}\right)}\right)
$$

Proof continued

Step 4. There exists a positive integer K such that for all quasi-fixed points $\left(a_{1}, \ldots, a_{n}\right) \in W$ with big enough Q we get

$$
R=\left(D\left(f_{1}^{(n)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{K} \equiv 0\left(\bmod I_{Q}^{\left(a_{1}, \ldots, a_{n}\right)}\right)
$$

We know that all points with $P(x)=x^{Q}$ belong to V. We want to prove that some of them do not belong to W. We suppose that they all do, and we are going to derive a contradiction.

Proof continued

Step 4. There exists a positive integer K such that for all quasi-fixed points $\left(a_{1}, \ldots, a_{n}\right) \in W$ with big enough Q we get

$$
R=\left(D\left(f_{1}^{(n)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{K} \equiv 0\left(\bmod I_{Q}^{\left(a_{1}, \ldots, a_{n}\right)}\right)
$$

We know that all points with $P(x)=x^{Q}$ belong to V. We want to prove that some of them do not belong to W. We suppose that they all do, and we are going to derive a contradiction.
Step 5. First of all, we claim that in this case R lies in the localizations of I_{Q} with respect to all maximal ideals of the ring of polynomials.

Proof continued

Step 4. There exists a positive integer K such that for all quasi-fixed points $\left(a_{1}, \ldots, a_{n}\right) \in W$ with big enough Q we get

$$
R=\left(D\left(f_{1}^{(n)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{K} \equiv 0\left(\bmod I_{Q}^{\left(a_{1}, \ldots, a_{n}\right)}\right)
$$

We know that all points with $P(x)=x^{Q}$ belong to V. We want to prove that some of them do not belong to W. We suppose that they all do, and we are going to derive a contradiction.
Step 5. First of all, we claim that in this case R lies in the localizations of I_{Q} with respect to all maximal ideals of the ring of polynomials.
This implies that $R \in I_{Q}$.

Proof continued

This means that there exist polynomials $u_{1}, \ldots u_{n}$ such that

$$
\begin{equation*}
R=\sum_{i=1}^{n} u_{i} \cdot\left(f_{i}-x_{i}^{Q}\right) \tag{1}
\end{equation*}
$$

Proof continued

This means that there exist polynomials $u_{1}, \ldots u_{n}$ such that

$$
\begin{equation*}
R=\sum_{i=1}^{n} u_{i} \cdot\left(f_{i}-x_{i}^{Q}\right) \tag{1}
\end{equation*}
$$

Step 6. We get a set of u_{i} 's with the following property:

- For every $i<j$ the degree of x_{i} in every monomial in u_{j} is smaller than Q.

Proof continued

This means that there exist polynomials $u_{1}, \ldots u_{n}$ such that

$$
\begin{equation*}
R=\sum_{i=1}^{n} u_{i} \cdot\left(f_{i}-x_{i}^{Q}\right) \tag{1}
\end{equation*}
$$

Step 6. We get a set of u_{i} 's with the following property:

- For every $i<j$ the degree of x_{i} in every monomial in u_{j} is smaller than Q.

Step 7. We look how the monomials cancel in the equation (1) and get a contradiction.

