# Polynomial maps over fields and residually finite groups

Mark Sapir

August, 2009, Bath, UK

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

## LECTURE 4. APPLICATIONS.

## The main result

Theorem.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Residually finite,

- Residually finite,
- Virtually residually (finite *p*-)group for all but finitely many primes *p*,

- Residually finite,
- Virtually residually (finite *p*-)group for all but finitely many primes *p*,
- Coherent (that is all finitely generated subgroups are finitely presented).

For every injective homomorphism  $\phi \colon F_k \to F_k$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

For every injective homomorphism  $\phi: F_k \to F_k$  there exists a pro-finite completion F of  $F_k$ , and an automorphism  $\phi'$  of F such that  $\phi'_{F_k} = \phi$ .

For every injective homomorphism  $\phi: F_k \to F_k$  there exists a pro-finite completion F of  $F_k$ , and an automorphism  $\phi'$  of F such that  $\phi'_{F_k} = \phi$ . Proof. Consider the homomorphisms  $\mu_n$  from  $\text{HNN}_{\phi}$  to finite groups.

For every injective homomorphism  $\phi: F_k \to F_k$  there exists a pro-finite completion F of  $F_k$ , and an automorphism  $\phi'$  of F such that  $\phi'_{F_k} = \phi$ . Proof. Consider the homomorphisms  $\mu_n$  from HNN $_{\phi}$  to finite groups. The images  $\mu_n(t)$  induce automorphisms of the images of  $F_k$ . The intersections of kernels of  $\mu_n$  with  $F_k$  give a sequence of subgroups of finite index.

For every injective homomorphism  $\phi: F_k \to F_k$  there exists a pro-finite completion F of  $F_k$ , and an automorphism  $\phi'$  of F such that  $\phi'_{F_k} = \phi$ . Proof. Consider the homomorphisms  $\mu_n$  from  $\text{HNN}_{\phi}$  to finite groups. The images  $\mu_n(t)$  induce automorphisms of the images of  $F_k$ . The intersections of kernels of  $\mu_n$  with  $F_k$  give a sequence of subgroups of finite index. The corresponding pro-finite completion of  $F_k$  is what we need.

Let  $G = \langle F_k, t \mid F_k^t = \phi(F_k) \rangle$ .

:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let  $G = \langle F_k, t | F_k^t = \phi(F_k) \rangle$ . Consider the normal closure N of  $F_k$ . Since  $F_k^t \subseteq F_k$ , we have  $F_k \subseteq F_k^{t^{-1}}$ :

Let  $G = \langle F_k, t | F_k^t = \phi(F_k) \rangle$ . Consider the normal closure N of  $F_k$ . Since  $F_k^t \subseteq F_k$ , we have  $F_k \subseteq F_k^{t^{-1}}$ :



Let  $G = \langle F_k, t | F_k^t = \phi(F_k) \rangle$ . Consider the normal closure N of  $F_k$ . Since  $F_k^t \subseteq F_k$ , we have  $F_k \subseteq F_k^{t^{-1}}$ :



Let  $G = \langle F_k, t | F_k^t = \phi(F_k) \rangle$ . Consider the normal closure N of  $F_k$ . Since  $F_k^t \subseteq F_k$ , we have  $F_k \subseteq F_k^{t^{-1}}$ :



Let  $G = \langle F_k, t | F_k^t = \phi(F_k) \rangle$ . Consider the normal closure N of  $F_k$ . Since  $F_k^t \subseteq F_k$ , we have  $F_k \subseteq F_k^{t^{-1}}$ :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



# The group N

The group N is a locally free group where every finitely generated subgroup is inside a free group of rank k.

# The group N

The group N is a locally free group where every finitely generated subgroup is inside a free group of rank k. If  $\phi(F_k) \subset F'_k$ , then N' = N.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

#### Consider again the group $G = \langle a, b, t | tat^{-1} = ab, tbt^{-1} = ba \rangle$ .

Consider again the group  $G = \langle a, b, t | tat^{-1} = ab, tbt^{-1} = ba \rangle$ . Let us prove that G is virtually residually (5-group).

Consider again the group  $G = \langle a, b, t | tat^{-1} = ab, tbt^{-1} = ba \rangle$ . Let us prove that G is virtually residually (5-group). Consider two matrices  $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ . They generate a free subgroup.

Consider again the group  $G = \langle a, b, t \mid tat^{-1} = ab, tbt^{-1} = ba \rangle$ . Let us prove that G is virtually residually (5-group). Consider two matrices  $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ . They generate a free subgroup. Now let us iterate the map  $\psi \colon (x, y) \to (xy, yx)$  starting with  $(A, B) \mod 5^d$ .

Consider again the group  $G = \langle a, b, t \mid tat^{-1} = ab, tbt^{-1} = ba \rangle$ . Let us prove that G is virtually residually (5-group). Consider two matrices  $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ . They generate a free subgroup. Now let us iterate the map  $\psi : (x, y) \to (xy, yx)$  starting with  $(A, B) \mod 5^d$ . That is we are considering the finite group  $SL_2(\mathbb{Z}/5^d\mathbb{Z})$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider again the group  $G = \langle a, b, t \mid tat^{-1} = ab, tbt^{-1} = ba \rangle$ . Let us prove that *G* is virtually residually (5-group). Consider two matrices  $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ . They generate a free subgroup. Now let us iterate the map  $\psi \colon (x, y) \to (xy, yx)$  starting with  $(A, B) \mod 5^d$ . That is we are considering the finite group  $SL_2(\mathbb{Z}/5^d\mathbb{Z})$ . ( $A \mod 5^d, B \mod 5^d$ ) is a periodic point of period  $\ell_d = 6 * 5^{d-1}$ .

Then the group *G* is approximated by the finite groups  $SL_2(\mathbb{Z}/5^d\mathbb{Z})^{\ell_d} \ge \mathbb{Z}/\ell_d\mathbb{Z}$ . Let  $\nu_d$  be the corresponding homomorphisms.



Then the group *G* is approximated by the finite groups  $SL_2(\mathbb{Z}/5^d\mathbb{Z})^{\ell_d} \ge \mathbb{Z}/\ell_d\mathbb{Z}$ . Let  $\nu_d$  be the corresponding homomorphisms. Moreover, the group *N* is residually  $G_d = SL_2(\mathbb{Z}/5^d\mathbb{Z})$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then the group *G* is approximated by the finite groups  $SL_2(\mathbb{Z}/5^d\mathbb{Z})^{\ell_d} \geq \mathbb{Z}/\ell_d\mathbb{Z}$ . Let  $\nu_d$  be the corresponding homomorphisms. Moreover, the group *N* is residually  $G_d = SL_2(\mathbb{Z}/5^d\mathbb{Z})$ . Therefore *N* is inside  $SL_2(\mathbb{C})$ .

Then the group *G* is approximated by the finite groups  $SL_2(\mathbb{Z}/5^d\mathbb{Z})^{\ell_d} \geq \mathbb{Z}/\ell_d\mathbb{Z}$ . Let  $\nu_d$  be the corresponding homomorphisms. Moreover, the group *N* is residually  $G_d = SL_2(\mathbb{Z}/5^d\mathbb{Z})$ . Therefore *N* is inside  $SL_2(\mathbb{C})$ . The group *G* is an extension of a subgroup of  $SL_2(\mathbb{C})$  by  $\mathbb{Z}$ . Still we do not know if *G* is linear.

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group. The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ ,

・ロト・日本・モート モー うへぐ

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M.

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M. Then there exists a characteristic subgroup of  $\mu_d(F_2)$  of index

 $\leq M_1$  which is residually 5-group.

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M.

Then there exists a characteristic subgroup of  $\mu_d(F_2)$  of index

 $\leq M_1$  which is residually 5-group.

The image of G under  $\mu_d$  is is an extension of a subgroup that has a 5-subgroup of index  $\leq M_1$  by a cyclic group which is an image of  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$ .

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M.

Then there exists a characteristic subgroup of  $\mu_d(F_2)$  of index

 $\leq M_1$  which is residually 5-group.

The image of G under  $\mu_d$  is is an extension of a subgroup that has a 5-subgroup of index  $\leq M_1$  by a cyclic group which is an image of  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$ .

Since  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$  has a 5-subgroup of index 6,

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M.

Then there exists a characteristic subgroup of  $\mu_d(F_2)$  of index

 $\leq M_1$  which is residually 5-group.

The image of G under  $\mu_d$  is is an extension of a subgroup that has a 5-subgroup of index  $\leq M_1$  by a cyclic group which is an image of  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$ .

Since  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$  has a 5-subgroup of index 6,  $\mu_d \nu_d(H)$  has a 5-subgroup of index at most some constant  $M_2$  (independent of d).

There exists a natural homomorphism  $\mu_d \colon G_d^{\ell_d} \to G_1^{\ell_d}$ . The kernel is a 5-group.

The image  $\langle x_d, y_d \rangle$  of  $F_2 = \langle x, y \rangle$  under  $\nu_d \mu_d$  is inside the direct power  $G_1^{\ell_d}$ , hence  $\nu_d \mu_d(F_2)$  is a 2-generated group in the variety generated by  $G_1$ , hence it is of bounded size, say, M.

Then there exists a characteristic subgroup of  $\mu_d(F_2)$  of index

 $\leq M_1$  which is residually 5-group.

The image of G under  $\mu_d$  is is an extension of a subgroup that has a 5-subgroup of index  $\leq M_1$  by a cyclic group which is an image of  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$ .

Since  $\mathbb{Z}/6 * 5^{d-1}\mathbb{Z}$  has a 5-subgroup of index 6,  $\mu_d \nu_d(H)$  has a 5-subgroup of index at most some constant  $M_2$  (independent of d). Hence G has a subgroup of index at most  $M_2$  which is residually (finite 5)-group.

To show that G is virtually residually (finite p)-group for almost all  $p \neq 5$  we need to do the following

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To show that G is virtually residually (finite p)-group for almost all  $p \neq 5$  we need to do the following

a pair of matrices (A, B) such that (A mod p, B mod p) is periodic for φ is found not in G<sub>1</sub> = SL<sub>2</sub>(ℤ/5ℤ),

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

To show that G is virtually residually (finite p)-group for almost all  $p \neq 5$  we need to do the following

a pair of matrices (A, B) such that (A mod p, B mod p) is periodic for φ is found not in G<sub>1</sub> = SL<sub>2</sub>(ℤ/5ℤ), but in G = SL<sub>2</sub>(𝔅/p𝔅) where 𝔅 is the ring of integers of some finite extension of ℚ unramified at p;

(日) (同) (三) (三) (三) (○) (○)

To show that G is virtually residually (finite p)-group for almost all  $p \neq 5$  we need to do the following

- a pair of matrices (A, B) such that (A mod p, B mod p) is periodic for φ is found not in G<sub>1</sub> = SL<sub>2</sub>(ℤ/5ℤ), but in G = SL<sub>2</sub>(𝔅/p𝔅) where 𝔅 is the ring of integers of some finite extension of ℚ unramified at p;
- ▶ in order to find such a pair of matrices with the additional property that (A, B) generate a free subgroup, we use a result of Breuillard and Gelander

To show that G is virtually residually (finite p)-group for almost all  $p \neq 5$  we need to do the following

- a pair of matrices (A, B) such that (A mod p, B mod p) is periodic for φ is found not in G<sub>1</sub> = SL<sub>2</sub>(ℤ/5ℤ), but in G = SL<sub>2</sub>(𝔅/p𝔅) where 𝔅 is the ring of integers of some finite extension of ℚ unramified at p;
- ▶ in order to find such a pair of matrices with the additional property that (A, B) generate a free subgroup, we use a result of Breuillard and Gelander the matrices A, B are found in the p-adic completion of SL<sub>2</sub>(O).

What to do next? Non-residually finite hyperbolic groups.

Consider double HNN extensions of free groups. For example,  $H = \langle x, y, t, s \mid x^t = xy, y^t = yx, x^s = [x, y], y^s = [x^2, y^2] \rangle.$ 

What to do next? Non-residually finite hyperbolic groups.

Consider double HNN extensions of free groups. For example,  $H = \langle x, y, t, s \mid x^t = xy, y^t = yx, x^s = [x, y], y^s = [x^2, y^2] \rangle.$ 

HW2. Find a finite simple non-Abelian homomorphic image of H.

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1?

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1? Fu and Virag proved that a 2-generated 1-related group is almost surely a very special HNN extension of a free group.

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1? Fu and Virag proved that a 2-generated 1-related group is almost surely a very special HNN extension of a free group. That HNN extension is determined by three parameters: integer k (the rank of the free group), integer i between 1 and k, and a word w from the free group  $F_k$ .

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1? Fu and Virag proved that a 2-generated 1-related group is almost surely a very special HNN extension of a free group. That HNN extension is determined by three parameters: integer k (the rank of the free group), integer i between 1 and k, and a word w from the free group  $F_k$ . It is given by the following presentation:

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1? Fu and Virag proved that a 2-generated 1-related group is almost surely a very special HNN extension of a free group. That HNN extension is determined by three parameters: integer k (the rank of the free group), integer i between 1 and k, and a word w from the free group  $F_k$ . It is given by the following presentation:

$$H(k, i, w) = \langle a_1, ..., a_k, t \mid ta_1 t^{-1} = a_2, ..., ta_{i-1} t^{-1} = a_i,$$
  
$$ta_i t^{-1} = w, tw t^{-1} = a_{i+1},$$
  
$$ta_{i+1} t^{-1} = t_{i+2}, ..., ta_{k-1} t^{-1} = a_k \rangle.$$

**Question 1.** Is it true that the probability that a 2-generated 1-related group is residually finite is 1? Fu and Virag proved that a 2-generated 1-related group is almost surely a very special HNN extension of a free group. That HNN extension is determined by three parameters: integer k (the rank of the free group), integer i between 1 and k, and a word w from the free group  $F_k$ . It is given by the following presentation:

$$H(k, i, w) = \langle a_1, ..., a_k, t \mid ta_1t^{-1} = a_2, ..., ta_{i-1}t^{-1} = a_i,$$
  
$$ta_it^{-1} = w, twt^{-1} = a_{i+1},$$
  
$$ta_{i+1}t^{-1} = t_{i+2}, ..., ta_{k-1}t^{-1} = a_k \rangle.$$

**Question 2.** Is every group H(k, i, w) residually finite?