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The main result

Theorem. Almost surely as n → ∞, every 1-related group with 3
or more generators and relator of length n, is embedded into a
2-generated 1-related group which is an ascending HNN extension
of a free group, so it is

◮ Residually finite,

◮ Virtually residually (finite p-)group for all but finitely many
primes p,

◮ Coherent (that is all finitely generated subgroups are finitely
presented).



Homework

HW 1. We know that the group 〈x , y , t | txt−1 = xy , tyt−1 = yx〉
is hyperbolic (A. Minasyan). By Olshanskii, it must have infinitely
many non-abelian finite simple homomorphic images. Find one.
The group has the one-relation presentation 〈x , t | [x , t, t] = x〉.
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Periodic points of a word map

Consider the group

G = 〈x1, ..., xk , t | x t
1 = φ(x1), ..., x

t
k = φ(xk)〉

for some injective endomorphism φ of Fk .
For example,

G = 〈x , y , t | txt−1 = xy , tyt−1 = yx〉.

So the endomorphism

φ : x 7→ xy , y 7→ yx .

Consider any w = w(x , y) 6= 1. We want to find ψ : G → V with
ψ(w) 6= 1, |V | <∞. Suppose that ψ exists.
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Let us denote ψ(x), ψ(y), ψ(t) by x̄ , ȳ , t̄. So we want
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w(x̄ , ȳ) 6= 1.

Note:
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Let us denote ψ(x), ψ(y), ψ(t) by x̄ , ȳ , t̄. So we want

w(x̄ , ȳ) 6= 1.

Note:
t̄(x̄ , ȳ )t̄−1 = (x̄ ȳ , ȳ x̄) = (φ(x), φ(y))

We can continue:

t̄2(x̄ , ȳ)t̄−2 = (x̄ ȳ ȳ x̄ , ȳ x̄ x̄ ȳ) = (φ2(x̄), φ2(ȳ)).

...

t̄k(x̄ , ȳ)t̄−k = (φk(x̄), φk(ȳ)).

Since t̄ has finite order in V , for some k, we must have

(φk(x̄), φk(ȳ)) = (x̄ , ȳ ).

So (x̄ , ȳ ) is a periodic point of the map

φ̃ : (a, b) 7→ (ab, ba).

on the “space” V × V .
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The first reduction

So if G is residually finite then for every w(x , y) 6= 1, we found a
finite group V and a periodic point (x̄ , ȳ ) of the map

φ̃ : (a, b) 7→ (φ(a), φ(b))

on V × V such that
w(x̄ , ȳ) 6= 1.

So the periodic point should be outside the “subvariety” given by
w = 1.
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A key observation

Key observation. If (x̄ , ȳ) is periodic with period of length ℓ,
then there exists a homomorphism from G into the wreath product
V ′ = V ≀ Z/ℓZ = (V × V × ...× V ) ⋋ Z/ℓZ which separates w

from 1.
Indeed, the map

x 7→ ((x̄ , φ(x̄), φ2(x̄), ..., φl−1(x̄)), 0),

y 7→ ((ȳ , φ(ȳ), φ2(ȳ), ..., φℓ−1(ȳ)), 0),

t 7→ ((1, 1, ..., 1),1)

extends to a homomorphism γ : G → V ′ and

γ(w) = ((w(x̄ , ȳ), ...), 0) 6= 1.
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The idea

Thus in order to prove that the group HNNφ(Fk) is residually
finite, we need, for every word w 6= 1 in Fk ,find a finite group G

and a periodic point of the map φ̃ : G k → G koutside the
“subvariety” given by the equation w = 1.
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Example

Consider again the group 〈a, b, t | tat−1 = ab, tbt−1 = ba〉.
Consider two matrices

U =

[

1 2
0 1

]

,V =

[

1 0
2 1

]

.

They generate a free subgroup in SL2(Z) (Sanov, ’48). Then the
matrices

A = UV =

[

5 2
2 1

]

,B = VU =

[

1 2
2 5

]

also generate a free subgroup. Now let us iterate the map
ψ : (x , y) → (xy , yx) starting with (A,B) mod 5. That is we are
considering the finite group SL2(Z/5Z).
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Thus the point (A,B) is periodic in SL2(Z/5Z) with period 6.
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Example continued. Dynamics of polynomial maps over

local fields

Replace 5 by 25, 125, etc. It turned out that (A,B) is periodic in
SL2(Z/25Z) with period 30, in SL2(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P : Z
n → Z

n be a polynomial map with integer
coefficients.Suppose that a point ~x is periodic with period d

modulo some prime p, and the Jacobian JP(x) is not zero. Then ~x
is periodic modulo pk with period pk−1d for every k.

Now take any word w 6= 1 in x , y . Since 〈A,B〉 is free in SL2(Z),
the matrix w(A,B) is not 1, and there exists k ≥ 1 such that
w(A,B) 6= 1 mod 5k .

Therefore our group 〈a, b, t | tat−1 = ab, tbt−1 = ba〉 is residually
finite.
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Polynomial maps over finite fields

Let G = 〈a1, ..., ak , t | tai t
−1 = wi , i = 1, ..., k〉.Consider the ring

of matrices M2(Z).

The map ψ : M2(Z)k → M2(Z)k is given by

~x 7→ (w1(~x), ...,wk (~x)).

It can be considered as a polynomial map A4k → A4k . The group
we consider will be PGL2(.). Here ”.” is any finite field of, say,
characteristic p.

Thus our problem is reduced to the following:

Problem. Let P be a polynomial map An → An with integer
coefficients. Show that the set of periodic points of P is Zariski
dense.
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Fixed points are not enough.

Example: x 7→ x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x , consider quasi-fixed
points, P(x) = xpn

(= Frn(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is
dominant and quasi-finite then the set of quasi-fixed points is
Zariski dense.
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Hrushovsky’s result

Hrushovsky managed to replace An in our statement by arbitrary
variety V .

Theorem (Borisov, Sapir) The ascending HNN extension of any
finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S.
and Wise).

Problem. Is 〈a, b, t | tat−1 = ab, tbt−1 = ba〉 linear?

Conjecture: No.
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Step 2. For all 1 ≤ i ≤ n and j ≥ 1

f
(j)
i (x1, ..., xn) − xQ j

i ∈ IQ .

Step 3. There exists a number k such that for every quasi-fixed
point (a1, ..., an) with big enough Q and for every 1 ≤ i ≤ n the
polynomial

(f
(n)
i (x1, ..., xn) − f

(n)
i (a1, ..., an))

k

is contained in the localization of IQ at (a1, ..., an).
Let us fix some polynomial D with the coefficients in a finite
extension of Fq such that it vanishes on W but not on V .
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Step 4. There exists a positive integer K such that for all
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We know that all points with P(x) = xQ belong to V . We want to
prove that some of them do not belong to W . We suppose that
they all do, and we are going to derive a contradiction.

Step 5. First of all, we claim that in this case R lies in the
localizations of IQ with respect to all maximal ideals of the ring of
polynomials.
This implies that R ∈ IQ .
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This means that there exist polynomials u1, ...un such that

R =

n
∑

i=1

ui · (fi − xQ
i ) (1)

Step 6. We get a set of ui ’s with the following property:

◮ For every i < j the degree of xi in every monomial in uj is
smaller than Q.

Step 7. We look how the monomials cancel in the equation (1)
and get a contradiction.
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