Polynomial maps over fields and residually finite groups

Mark Sapir

August, 2009, Bath, UK

LECTURE 2. SOME SMALL CANCELATION THEORY AND PROBABILITY.

The main result

Theorem.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Residually finite,

- Residually finite,
- Virtually residually (finite *p*-)group for all but finitely many primes *p*,

- Residually finite,
- Virtually residually (finite *p*-)group for all but finitely many primes *p*,
- Coherent (that is all finitely generated subgroups are finitely presented).

Let $G = \langle x_1, ..., x_k \mid R = 1 \rangle$ be a 1-relator group.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $G = \langle x_1, ..., x_k | R = 1 \rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^k , connecting point O with point M.

Let $G = \langle x_1, ..., x_k | R = 1 \rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^k , connecting point O with point M.

If k = 2 and one of the two support lines of w that is parallel to OM intersects w in a single vertex or a single edge,

Let $G = \langle x_1, ..., x_k | R = 1 \rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^k , connecting point O with point M.

• If k = 2 and one of the two support lines of w that is parallel to \vec{OM} intersects w in a single vertex or a single edge, then G is an ascending HNN extension of a free group.

► If k > 2 then G is never an ascending HNN extension of a free group.

Consider walks in Z^2 and their projections on R.

Consider walks in Z^2 and their projections on R. The projection is a random *bridge*. Support lines \rightarrow extreme points of the bridge.

Consider walks in Z^2 and their projections on R.

The projection is a random *bridge*. Support lines \rightarrow extreme points of the bridge.

A bridge is called *good* if it visits its extreme point only once, otherwise it is *bad*

Consider walks in Z^2 and their projections on R.

The projection is a random *bridge*. Support lines \rightarrow extreme points of the bridge.

A bridge is called *good* if it visits its extreme point only once, otherwise it is *bad*

 $\#good(n) \leq \#bad(n+16)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider walks in Z^2 and their projections on R.

The projection is a random *bridge*. Support lines \rightarrow extreme points of the bridge.

A bridge is called *good* if it visits its extreme point only once, otherwise it is *bad*

 $\#good(n) \le \#bad(n+16)$

 $p_{good} \leq 2^{16} p_{bad}$

Consider walks in Z^2 and their projections on R.

The projection is a random *bridge*. Support lines \rightarrow extreme points of the bridge.

A bridge is called *good* if it visits its extreme point only once, otherwise it is *bad*

 $\#good(n) \le \#bad(n+16)$

$$p_{good} \leq 2^{16} p_{bad}$$

Hence $p_{good} < 1$.

The Congruence Extension Property

(ロ)、(型)、(E)、(E)、 E、 の(の)

Theorem (Olshanskii)

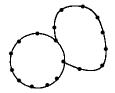
The Congruence Extension Property

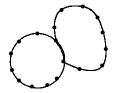
Theorem (Olshanskii)Let K be a collection of (cyclic) words in $\{a.b\}$ that satisfy C'(1/12). Then the subgroup N of F_2 generated by K satisfies the congruence extension property

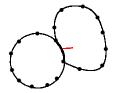
Theorem (Olshanskii)Let K be a collection of (cyclic) words in $\{a.b\}$ that satisfy C'(1/12). Then the subgroup N of F_2 generated by K satisfies the congruence extension property that is for every normal subgroup $L \triangleleft N$, $\langle \langle L \rangle \rangle_F \cap N = L$.

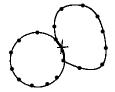
Theorem (Olshanskii)Let K be a collection of (cyclic) words in $\{a.b\}$ that satisfy C'(1/12). Then the subgroup N of F_2 generated by K satisfies the *congruence extension property* that is for every normal subgroup $L \triangleleft N$, $\langle \langle L \rangle \rangle_F \cap N = L$. Hence H = N/L embeds into $G = F_2/\langle \langle L \rangle \rangle$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ろんの

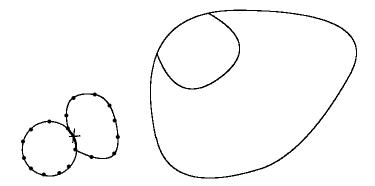




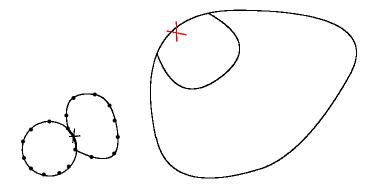




▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●



◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Theorem (Kozáková, Sapir)

Theorem (Kozáková, Sapir) Consider a group $G = \langle x_1, x_2, \dots, x_k | R = 1 \rangle$, where *R* is a word in the free group on $\{x_1, x_2, \dots, x_k\}, k \ge 2$.

Theorem (Kozáková, Sapir) Consider a group $G = \langle x_1, x_2, \ldots, x_k | R = 1 \rangle$, where *R* is a word in the free group on $\{x_1, x_2, \ldots, x_k\}, k \ge 2$. Assume the sum of exponents of x_k in *R* is zero and that the maximal Magnus x_k -index of x_1 is unique.

Theorem (Kozáková, Sapir) Consider a group $G = \langle x_1, x_2, ..., x_k | R = 1 \rangle$, where *R* is a word in the free group on $\{x_1, x_2, ..., x_k\}$, $k \ge 2$. Assume the sum of exponents of x_k in *R* is zero and that the maximal Magnus x_k -index of x_1 is unique. Then *G* can be embedded into a 2-=generated 1-related group which is an ascending HNN extension of a finitely generated free group.

Theorem (Kozáková, Sapir) Consider a group $G = \langle x_1, x_2, \ldots, x_k | R = 1 \rangle$, where *R* is a word in the free group on $\{x_1, x_2, \ldots, x_k\}, k \ge 2$. Assume the sum of exponents of x_k in *R* is zero and that the maximal Magnus x_k -index of x_1 is unique. Then *G* can be embedded into a 2-=generated 1-related group which is an ascending HNN extension of a finitely generated free group. The embedding is given by the map $x_i \mapsto w_i, i = 1, ..., k$ where

Theorem (Kozáková, Sapir) Consider a group $G = \langle x_1, x_2, \ldots, x_k | R = 1 \rangle$, where R is a word in the free group on $\{x_1, x_2, \ldots, x_k\}, k \ge 2$. Assume the sum of exponents of x_k in R is zero and that the maximal Magnus x_k -index of x_1 is unique. Then G can be embedded into a 2-=generated 1-related group which is an ascending HNN extension of a finitely generated free group. The embedding is given by the map $x_i \mapsto w_i, i = 1, ..., k$ where

$$w_{1} = aba^{2}b...a^{n}ba^{n+1}ba^{-n-1}ba^{-n}b...a^{-2}ba^{-1}b$$

$$w_{i} = ab^{i}a^{2}b^{i}...a^{n}b^{i}a^{-n}b^{i}...a^{-2}b^{i}a^{-1}b^{i}, \text{ for } 1 < i < k$$

$$w_{k} = ab^{k}a^{2}b^{k}...a^{n}b^{k}a^{-n}b^{k}...a^{-2}b^{k}$$

Brownian Motion

Let C be the space of all continuous functions $f: [0, +\infty] \to \mathbb{R}^k$ with f(0) = 0.

Let *C* be the space of all continuous functions $f: [0, +\infty] \to \mathbb{R}^k$ with f(0) = 0. We can define a σ -algebra structure on that space generated by the sets of functions of the form $U(t_1, x_1, t_2, x_2, ..., t_n, x_n)$ where $t_i \in [0, +\infty], x_i \in \mathbb{R}^k$.

Let *C* be the space of all continuous functions $f: [0, +\infty] \to \mathbb{R}^k$ with f(0) = 0. We can define a σ -algebra structure on that space generated by the sets of functions of the form $U(t_1, x_1, t_2, x_2, ..., t_n, x_n)$ where $t_i \in [0, +\infty], x_i \in \mathbb{R}^k$. This set consists of all functions $f \in C$ such that $f(t_i) = x_i$.

(日) (同) (三) (三) (三) (○) (○)

Let *C* be the space of all continuous functions $f: [0, +\infty] \to \mathbb{R}^k$ with f(0) = 0. We can define a σ -algebra structure on that space generated by the sets of functions of the form $U(t_1, x_1, t_2, x_2, ..., t_n, x_n)$ where $t_i \in [0, +\infty], x_i \in \mathbb{R}^k$. This set consists of all functions $f \in C$ such that $f(t_i) = x_i$. A measure μ on *C* is called the *Wiener's measure* if for every Borel set *A* in \mathbb{R}^k and every $t < s \in [0, +\infty]$ the probability that f(t) - f(s) is in *A* is

$$\frac{1}{\sqrt{2\pi(t-s)}}\int_{\mathcal{A}}e^{\frac{-|x|^2}{2(t-s)}}dx$$

(日) (同) (三) (三) (三) (○) (○)

Let *C* be the space of all continuous functions $f: [0, +\infty] \to \mathbb{R}^k$ with f(0) = 0. We can define a σ -algebra structure on that space generated by the sets of functions of the form $U(t_1, x_1, t_2, x_2, ..., t_n, x_n)$ where $t_i \in [0, +\infty], x_i \in \mathbb{R}^k$. This set consists of all functions $f \in C$ such that $f(t_i) = x_i$. A measure μ on *C* is called the *Wiener's measure* if for every Borel set *A* in \mathbb{R}^k and every $t < s \in [0, +\infty]$ the probability that f(t) - f(s) is in *A* is

$$\frac{1}{\sqrt{2\pi(t-s)}}\int_A e^{\frac{-|x|^2}{2(t-s)}}dx.$$

(日) (同) (三) (三) (三) (○) (○)

That is Brownian motion is a continuous Markov stationary process with normally distributed increments.

Let P_n^{CR} be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^k .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let P_n^{CR} be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^k . Consider a piecewise linear function $Y_n(t) : [0,1] \to \mathbb{R}^k$, where the line segments are connecting points $Y_n(t) = S_{nt}/\sqrt{n}$ for t = 0, 1/n, 2/n, $\dots, n/n = 1$, where (S_n) has a distribution according to P_n^{CR} .

(日) (同) (三) (三) (三) (○) (○)

Let P_n^{CR} be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^k . Consider a piecewise linear function $Y_n(t) : [0,1] \to \mathbb{R}^k$, where the line segments are connecting points $Y_n(t) = S_{nt}/\sqrt{n}$ for t = 0, 1/n, 2/n, $\dots, n/n = 1$, where (S_n) has a distribution according to P_n^{CR} . Then $Y_n(t)$ converges in distribution to a Brownian motion, as $n \to \infty$.

Let P_n^{CR} be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^k . Consider a piecewise linear function $Y_n(t) : [0,1] \to \mathbb{R}^k$, where the line segments are connecting points $Y_n(t) = S_{nt}/\sqrt{n}$ for t = 0, 1/n, 2/n, $\dots, n/n = 1$, where (S_n) has a distribution according to P_n^{CR} . Then $Y_n(t)$ converges in distribution to a Brownian motion, as $n \to \infty$.

We are using Rivin's Central Limit Theorem for cyclically reduced walks.

Let again w be the walk in \mathbb{Z}^k corresponding to the relator R. Suppose that it connects O and M.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let again w be the walk in \mathbb{Z}^k corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to \vec{OM} , the projection w' of w onto P, and the convex hull of that projection.

Let again w be the walk in \mathbb{Z}^k corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to OM, the projection w' of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w'.

Let again w be the walk in \mathbb{Z}^k corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to OM, the projection w' of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w'. The idea to prove it is the following.

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \ge 3$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \ge 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w' (which is a Brownian bridge) would have non-smooth convex hull

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w' (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w' (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w' or length r we construct (in a bijective manner) a "good" walk w' of length r + 4.

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w' (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w' or length r we construct (in a bijective manner) a "good" walk w' of length r + 4. This implies that the number of vertices of "bad" walks is bounded if the probability of a "bad" walk is > 0.

Illustration of Step 2

Here is the walk in \mathbb{Z}^3 corresponding to the word

$$cb^{-1}acac^{-1}b^{-1}caca^{-1}b^{-1}aab^{-1}c.$$

And its projection onto \mathbb{R}^2

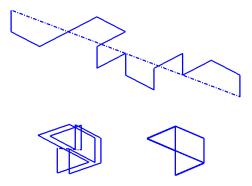
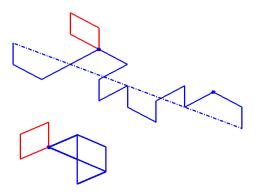


Illustration of Step 2

Here is the walk and its projection corresponding to the word

$$cb^{-1}acac^{-1}b^{-1}caca^{-1}b^{-1}((b^{-1}cbc^{-1}))aab^{-1}c.$$

・ロト ・ 雪 ト ・ ヨ ト



Homework

HW 1. We know that the group $\langle x, y, t | txt^{-1} = xy, tyt^{-1} = yx \rangle$ is hyperbolic (A. Minasyan). By Olshanskii, it must have infinitely many non-abelian finite simple homomorphic images. Find one. The group has the one-relation presentation $\langle x, t | [x, t, t] = x \rangle$.