Polynomial maps over fields and residually finite groups

Mark Sapir

August, 2009, Bath, UK

Lecture 2. Some small cancelation theory AND PROBABILITY.

The main result

Theorem.

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n, is embedded into a 2-generated 1-related group which is an ascending HNN extension of a free group, so it is

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n, is embedded into a 2-generated 1-related group which is an ascending HNN extension of a free group, so it is

- Residually finite,

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n, is embedded into a 2-generated 1-related group which is an ascending HNN extension of a free group, so it is

- Residually finite,
- Virtually residually (finite p-)group for all but finitely many primes p,

The main result

Theorem. Almost surely as $n \rightarrow \infty$, every 1 -related group with 3 or more generators and relator of length n, is embedded into a 2-generated 1-related group which is an ascending HNN extension of a free group, so it is

- Residually finite,
- Virtually residually (finite p-)group for all but finitely many primes p,
- Coherent (that is all finitely generated subgroups are finitely presented).

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group.

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

- If $k=2$ and one of the two support lines of w that is parallel to $\overrightarrow{O M}$ intersects w in a single vertex or a single edge,

Ken Brown's results

Let $G=\left\langle x_{1}, \ldots, x_{k} \mid R=1\right\rangle$ be a 1-relator group. Let w be the corresponding walk in \mathbb{Z}^{k}, connecting point O with point M.

- If $k=2$ and one of the two support lines of w that is parallel to $\overrightarrow{O M}$ intersects w in a single vertex or a single edge, then G is an ascending HNN extension of a free group.
- If $k>2$ then G is never an ascending HNN extension of a free group.

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.
The projection is a random bridge. Support lines \rightarrow extreme points of the bridge.

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.
The projection is a random bridge. Support lines \rightarrow extreme points of the bridge.
A bridge is called good if it visits its extreme point only once, otherwise it is bad

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.
The projection is a random bridge. Support lines \rightarrow extreme points of the bridge.
A bridge is called good if it visits its extreme point only once, otherwise it is bad

$$
\# \operatorname{good}(n) \leq \# \operatorname{bad}(n+16)
$$

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.
The projection is a random bridge. Support lines \rightarrow extreme points of the bridge.
A bridge is called good if it visits its extreme point only once, otherwise it is bad

$$
\# \operatorname{good}(n) \leq \# \operatorname{bad}(n+16)
$$

$$
p_{\text {good }} \leq 2^{16} p_{\text {bad }}
$$

The Dunfield-Thurston result

Consider walks in Z^{2} and their projections on R.
The projection is a random bridge. Support lines \rightarrow extreme points of the bridge.
A bridge is called good if it visits its extreme point only once, otherwise it is bad

$$
\# \operatorname{good}(n) \leq \# \operatorname{bad}(n+16)
$$

$$
p_{\text {good }} \leq 2^{16} p_{\text {bad }}
$$

Hence $p_{\text {good }}<1$.

The Congruence Extension Property

Theorem (Olshanskii)

The Congruence Extension Property

Theorem (Olshanskii) Let K be a collection of (cyclic) words in $\{a . b\}$ that satisfy $C^{\prime}(1 / 12)$. Then the subgroup N of F_{2} generated by K satisfies the congruence extension property

The Congruence Extension Property

Theorem (Olshanskii)Let K be a collection of (cyclic) words in $\{a . b\}$ that satisfy $C^{\prime}(1 / 12)$. Then the subgroup N of F_{2} generated by K satisfies the congruence extension property that is for every normal subgroup $L \triangleleft N,\langle\langle L\rangle\rangle_{F} \cap N=L$.

The Congruence Extension Property

Theorem (Olshanskii)Let K be a collection of (cyclic) words in $\{a . b\}$ that satisfy $C^{\prime}(1 / 12)$. Then the subgroup N of F_{2} generated by K satisfies the congruence extension property that is for every normal subgroup $L \triangleleft N,\langle\langle L\rangle\rangle_{F} \cap N=L$. Hence $H=N / L$ embeds into $G=F_{2} /\langle\langle L\rangle\rangle$.

Proof

Proof

Proof

Proof

Proof

$$
\infty
$$

$$
\infty
$$

Embedding into 2-generated groups

Theorem (Kozáková, Sapir)

Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$.

Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group $G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique.

Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group $G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into a 2 -=generated 1-related group which is an ascending HNN extension of a finitely generated free group.

Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into a 2 -=generated 1-related group which is an ascending HNN extension of a finitely generated free group. The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group
$G=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid R=1\right\rangle$, where R is a word in the free group on $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2$. Assume the sum of exponents of x_{k} in R is zero and that the maximal Magnus x_{k}-index of x_{1} is unique. Then G can be embedded into a $2-=$ generated 1 -related group which is an ascending HNN extension of a finitely generated free group. The embedding is given by the map $x_{i} \mapsto w_{i}, i=1, \ldots, k$ where

$$
\begin{aligned}
w_{1} & =a b a^{2} b \ldots a^{n} b a^{n+1} b a^{-n-1} b a^{-n} b \ldots a^{-2} b a^{-1} b \\
w_{i} & =a b^{i} a^{2} b^{i} \ldots a^{n} b^{i} a^{-n} b^{i} \ldots a^{-2} b^{i} a^{-1} b^{i}, \text { for } 1<i<k \\
w_{k} & =a b^{k} a^{2} b^{k} \ldots a^{n} b^{k} a^{-n} b^{k} \ldots a^{-2} b^{k}
\end{aligned}
$$

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$.

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$. A measure μ on C is called the Wiener's measure if for every Borel set A in \mathbb{R}^{k} and every $t<s \in[0,+\infty]$ the probability that $f(t)-f(s)$ is in A is

$$
\frac{1}{\sqrt{2 \pi(t-s)}} \int_{A} e^{\frac{-|x|^{2}}{2(t-s)}} d x
$$

Brownian Motion

Let C be the space of all continuous functions $f:[0,+\infty] \rightarrow \mathbb{R}^{k}$ with $f(0)=0$. We can define a σ-algebra structure on that space generated by the sets of functions of the form $U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n}, x_{n}\right)$ where $t_{i} \in[0,+\infty], x_{i} \in \mathbb{R}^{k}$. This set consists of all functions $f \in C$ such that $f\left(t_{i}\right)=x_{i}$. A measure μ on C is called the Wiener's measure if for every Borel set A in \mathbb{R}^{k} and every $t<s \in[0,+\infty]$ the probability that $f(t)-f(s)$ is in A is

$$
\frac{1}{\sqrt{2 \pi(t-s)}} \int_{A} e^{\frac{-|x|^{2}}{2(t-s)}} d x
$$

That is Brownian motion is a continuous Markov stationary process with normally distributed increments.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$,
$\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$, $\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$. Then $Y_{n}(t)$ converges in distribution to a Brownian motion, as $n \rightarrow \infty$.

Donsker's theorem (modified)

Let $P_{n}^{C R}$ be the uniform distribution on the set of cyclically reduced random walks of length n in \mathbb{R}^{k}. Consider a piecewise linear function $Y_{n}(t):[0,1] \rightarrow \mathbb{R}^{k}$, where the line segments are connecting points $Y_{n}(t)=S_{n t} / \sqrt{n}$ for $t=0,1 / n, 2 / n$, $\ldots, n / n=1$, where $\left(S_{n}\right)$ has a distribution according to $P_{n}^{C R}$. Then $Y_{n}(t)$ converges in distribution to a Brownian motion, as $n \rightarrow \infty$.
We are using Rivin's Central Limit Theorem for cyclically reduced walks.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w^{\prime}.

Convex hull of Brownian motion and maximal Magnus indices

Let again w be the walk in \mathbb{Z}^{k} corresponding to the relator R. Suppose that it connects O and M. Consider the hyperplane P that is orthogonal to $\overrightarrow{O M}$, the projection w^{\prime} of w onto P, and the convex hull of that projection. From our theorem above, it follows that the 1-related group G is inside an ascending HNN extension of a free group if there exists a vertex of Δ that is visited only once by w^{\prime}. The idea to prove it is the following.

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$).

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w ' or length r we construct (in a bijective manner) a "good" walk w ' of length $r+4$.

Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of Δ is growing (a.s.) with the length of w (here it is used that $k \geq 3$). Indeed, if the number of vertices is bounded with positive probability, then with positive probability the limit of random walks w^{\prime} (which is a Brownian bridge) would have non-smooth convex hull which is impossible by a theorem about Brownian motions (Theorem of Cranston-Hsu-March, 1989).

Step 2. For every vertex of Δ for any 'bad" walk w ' or length r we construct (in a bijective manner) a "good" walk w ' of length $r+4$. This implies that the number of vertices of "bad" walks is bounded if the probability of a "bad" walk is >0.

Illustration of Step 2

Here is the walk in \mathbb{Z}^{3} corresponding to the word

$$
c b^{-1} a c a c^{-1} b^{-1} c a c a^{-1} b^{-1} a a b^{-1} c
$$

And its projection onto \mathbb{R}^{2}

Illustration of Step 2

Here is the walk and its projection corresponding to the word

$$
c b^{-1} a c a c^{-1} b^{-1} c a c a^{-1} b^{-1}\left(\left(b^{-1} c b c^{-1}\right)\right) a a b^{-1} c .
$$

Homework

HW 1. We know that the group $\left\langle x, y, t \mid t x t^{-1}=x y, t y t^{-1}=y x\right\rangle$ is hyperbolic (A. Minasyan). By Olshanskii, it must have infinitely many non-abelian finite simple homomorphic images. Find one. The group has the one-relation presentation $\langle x, t \mid[x, t, t]=x\rangle$.

