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g 6= 1, there exists a homomorphism φ from G onto a finite group
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simple groups, free Burnside groups of sufficiently large exponents
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finite trees are residually finite.
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Conversely every finitely generated residually finite group acts
faithfully on a locally finite rooted tree.
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Linear groups

(A. Malcev, 1940) Every finitely generated linear group is residually
finite.Moreover, it is virtually residually (finite p-)group for all but
finitely many primes p. Note that a linear group itself may not be
residually (finite p-)group for any p. Example: SL3(Z) by the
Margulis normal subgroup theorem.
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Problem. When is a one-relator group 〈X | R = 1〉 residually
finite?

Example 1. BS(2, 3) 〈a, t | ta2t−1 = a3〉 is not residually finite
(a 7→ a2, t 7→ t)

Example 2. BS(1, 2) 〈a, t | tat−1 = a2〉 is metabelian, and linear,
so it is residually finite.
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Theorem. Almost surely as n → ∞, every 1-related group with 3
or more generators and relator of length n, is

◮ Residually finite,
◮ Virtually residually (finite p-)group for all but finitely many

primes p,

◮ Coherent (that is all finitely generated subgroups are finitely
presented).

Three probabilistic models:

Model 1. Uniform distribution on words of length ≤ n.

Model 2. Uniform distribution on cyclically reduced words of
length ≤ n.

Model 3. Uniform distribution on 1-related groups given by
cyclically reduced relators of length ≤ n (up to isomorphism)

These models are equivalent. 3 ≡ 1: I. Kapovich-Schupp.
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Fact 1. (Gromov-Olshanskii) Almost every 1-related group is
hyperbolic.

Fact 2. (Sacerdote and P. E. Schupp, 1974) Every 1-related
group with 3 or more generators is SQ-universal.

Fact 3 (B. Baumslag-Pride) Every group with
#generators-#relators≥ 2 is large, that is it has a subgroup of
finite index that maps onto F2.

Fact 3 and a result of P. Neumann imply Fact 2.
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Let G = 〈x1, ..., xg | u1, ..., ur 〉, g − r ≥ 2.
First note that if r − g ≥ 1 then we can assume that t = x1 occurs
in each relation with total exponent 0, i.e. G maps onto (Z ,+),
t → 1.
Rewrite the relators uk in terms of sj ,i = t ixj t

−i . Assume that m
generators are involved; 0 ≤ j ≤ m − 1.
Consider the subgroup H that is a normal closure of s = tn and all
xi , the kernel of the map G → Z/nZ. It is of index n.
Consider the homomorphic image H̄ of H obtained by killing sj ,i ,
0 ≤ j ≤ r , 0 ≤ i ≤ m − 1.
The standard Reidermeister-Schreier shows that H̄ has
(g − 1)(n − m) + l generators s, sj ,i , j = 2, ..., g ,m ≤ i ≤ n, and
nr relators not involving s.
So H̄ is 〈s〉 ∗ K where K has (g − 1)(n − m) generators and nr
relators. For large enough n, then #generators - #relators of K is
≥ 1. So K maps onto Z, and H̄ maps onto F2. Q.E.D.



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.
Application. There exists an infinite finitely generated group that
is:



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.
Application. There exists an infinite finitely generated group that
is:

◮ residually finite



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.
Application. There exists an infinite finitely generated group that
is:

◮ residually finite

◮ torsion



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.
Application. There exists an infinite finitely generated group that
is:

◮ residually finite

◮ torsion

◮ all sections are residually finite



Lackenby, Olshanskii-Osin and the Burnside problem

Theorem (Lackenby) For every large group G and every g ∈ G
there exists n such that G/〈〈gn〉〉 is large.
Proof (Olshanskii-Osin) Same as Baumslag-Pride.
Application. There exists an infinite finitely generated group that
is:

◮ residually finite

◮ torsion

◮ all sections are residually finite

◮ every finite section is solvable; every nilpotent finite section is
Abelian.
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Replace aiba−i by bi . The index i is called the Magnus a-index of
that letter.
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〈a, b
−1, b0, b1 | b1b

−1

0
b1b

−1

0
b−1

−1
= 1, a−1b0a = b

−1, a
−1b1a = b0〉.

So we can replace b
−1 by b1b

−1

0
b1b

−1

0
, remove this generator,

and get a new presentation of the same group.
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〈a, b0, b1 | a−1b0a = b1b
−1

0
b1b

−1

0
, a−1b1a = b0〉. This is

clearly an ascending HNN extension of the free group 〈b0, b1〉.
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Definition. Let G be a group, φ : G → G be an injective
endomorphism. The group

HNNφ(G ) = 〈G , t | tat−1 = φ(a), a ∈ G 〉

is called an ascending HNN extension of G or the mapping torus of
φ.
Example. 〈x , y , t | txt−1 = xy , tyt−1 = yx〉.
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Facts about ascending HNN extensions

◮ Every element in an ascending HNN extension of G can be
represented in the form t−kgtℓ for some k, ℓ ∈ Z and g ∈ G .
ℓ− k is an invariant, the representation is unique for a given k.

◮ (Feighn-Handel) If G is free then HNNφ(G ) is coherent i.e.
every f.g. subgroup is f.p.

◮ (Geoghegan-Mihalik-S.-Wise) If G is free then HNNφ(G ) is
Hopfian i.e. every surjective endomorphism is injective.

◮ (Wise-S.) An ascending HNNextension of a residually finite
group can be non-residually finite (example - Grigorcuk’s
group and its Lysenok extension).
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Consider the word aba−1 · b−1 · aba−1 · b−1 · a−1b−1a and the
corresponding walk on the plane:

aba−1b−1aba−1b−1a−1b−1a

Magnus indexes of b’s are coordinates of the vertical steps of the
walk.

e

−1 0 1

In general:

b

e

Problem. What is the probability that
a support line of the walk
intersects the walk only once?

Dunfield and Thurston proved recently that this probability is
strictly between 0 and 1.
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Let G = 〈x1, ..., xk | R = 1〉 be a 1-relator group. Let w be the
corresponding walk in Zk , connecting point O with point M.

◮ If k = 2 and one of the two support lines of w that is parallel
to ~OM intersects w in a single vertex or a single edge, then G
is an ascending HNN extension of a free group.

◮ If k > 2 then G is never an ascending HNN extension of a
free group.
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